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Automated analysis of fibrous cap 
in intravascular optical coherence 
tomography images of coronary 
arteries
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Vladislav N. Zimin 2, Luis A. P. Dallan 2, Justin N. Kim 1, Ammar Hoori 1, Sadeer G. Al‑Kindi 2, 
Giulio Guagliumi 4, Hiram G. Bezerra 5 & David L. Wilson 1,6*

Thin‑cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk 
factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography 
(IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque 
vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous 
cap thickness in IVOCT images. This study analyzed a total of 4360 IVOCT image frames of 77 lesions 
among 41 patients. Expert cardiologists manually labeled lipidous plaque based on established 
criteria. To improve segmentation performance, preprocessing included lumen segmentation, pixel‑
shifting, and noise filtering on the raw polar (r, θ) IVOCT images. We used the DeepLab‑v3 plus deep 
learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected 
the outer border of the fibrous cap using a special dynamic programming algorithm and assessed 
the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity 
of 85.8% and A‑line Dice coefficient of 0.837. By comparing lipid angle measurements between two 
analysts following editing of our automated software, we found good agreement by Bland–Altman 
analysis (difference 6.7° ± 17°; mean ~ 196°). Our method accurately detected the fibrous cap from the 
detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. 
Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts 
with Bland–Altman analysis (4.2 ± 14.6 µm; mean ~ 175 µm), indicating little bias between users and 
good reproducibility of the measurement. We developed a fully automated method for fibrous cap 
quantification in IVOCT images, resulting in good agreement with determinations by analysts. The 
method has great potential to enable highly automated, repeatable, and comprehensive evaluations 
of TCFAs.

Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for 
thrombosis and acute coronary syndrome (ACS)1,2. Based on histologic studies, a fibrous cap thickness of < 65 µm 
is implicated in plaque  ruptures3. However, Kume et al. found thicker cap measurements with intravascular 
optical coherence tomography (IVOCT), likely due to tissue shrinkage in  histology4. The IVOCT consensus 
document also suggested that this cutoff should be adjusted when applied to IVOCT images to account for the 
potential tissue shrinkage (10–20%) during histopathologic  processing5. Point measurements of thickness are 
inadequate because biomechanics indicates that the both size and distribution of the thinned region is impor-
tant for  rupture6. This biomechanical perspective suggests the need for a three-dimensional (3D) analysis of 
cap thickness. Although intravascular ultrasound is widely used to visualize coronary arteries, it is not possible 
to identify the presence of TCFA due to its low resolution (150–250 µm)7,8. As a high contrast, high-resolution 
imaging technique, IVOCT provides an axial resolution of approximately 12–18 µm9. With its near histologic 
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resolution and its optical contrast, IVOCT allows a unique assessment of plaque microscopic features (e.g., TCFA, 
macrophage, cholesterol crystal, and microchannel), and in particular cap thickness, suggesting an improved 
opportunity to assess the plaque vulnerability.

Although IVOCT enables clinicians to identify the presence of TCFA, challenges remain. First, a single 
IVOCT pullback includes 300–500 image frames, leading to data overload. Typically, a clinician needs 1 hour 
to carefully review a pullback and label lipidous plaque and fibrous cap thickness. This timeframe is impossible 
during a clinical procedure and laborious for research studies with large numbers of pullbacks. Second, manual 
analysis of fibrous cap can be subject to high inter- and intra-observer  variability5. This high degree of variability 
creates a confounding factor for widespread quantitative and visual evaluation, especially considering the vari-
able experience among cardiologists. An accurate, automated method could provide faster, consistent assessment 
of TCFA and support treatment decision-making. Furthermore, quantitative assessment of the fibrous cap can 
support research studies to elucidate the underlying mechanisms and factors in cap thinning and plaque rupture. 
Compared with the results of variable manual assessments, automated, consistent measurements will improve 
the power to examine change in such studies.

The purpose of this study was to develop and test a fully automated and accurate approach to detect lipid 
plaque and quantitatively assess the fibrous cap in 3D IVOCT images. Our approach includes deep learning 
identification of lipidous plaques using a large, carefully labeled dataset, segmentation of the fibrous cap, numeric 
assessment of cap thickness, and evaluation of methods. For the first time, we will be able to automatically ana-
lyze cap thickness over an entire lesion, which will allow us to extend simple point measurements of minimum 
thickness to an assessment more closely realizing the full biomechanical impact of a lesion.

Methods
Briefly, our method identifies the location of lipidous plaque using a semantic segmentation deep learning 
method with important preprocessing steps. Then, a specialized algorithm identifies the outer fibrous cap border 
and completes segmentation of the fibrous cap. The software performs multiple quantitative assessments (e.g., 
angle, thickness map, and thickness statistics). Next, we compare the results of this method with those of expert 
analysts. The following text describes the image data used for deep learning identification of lipidous plaques; 
the image processing and analysis methods, including deep learning; and our approaches to evaluation. Figure 1 
shows an overall workflow of the proposed method on the representative IVOCT frame.

Study population and manual labeling. Images are from a sub-study of the TRiple Assessment of 
Neointima Stent FOrmation to Reabsorbable polyMer With Optical Coherence Tomography (TRANSFORM-
OCT)  trial10. Patients with stable angina and documented ischemia or ACS who had undergone IVOCT exami-

Figure 1.  An overall workflow of the proposed method. Preprocessing including lumen segmentation, pixel-
shifting, and noise reduction is applied to the original IVOCT (r, θ) image, and the output is used as an input to 
DeepLab-v3 plus deep learning model for lipid plaque detection. In the context of detected lipid plaque, fibrous 
cap is detected and quantitatively assessed.
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nation were eligible for the study. Major exclusion criteria were the presence of unprotected left main disease, 
chronic total occlusion, baseline serum creatinine >2.0 mg/dL, life expectancy <18 months, and unsuitability to 
OCT imaging (at the investigator’s discretion). Final analysis included a total of 4360 image frames of 77 lesions 
among 41 patients (43 pullbacks). Of the 4360 images, 2363 images were annotated as lipidic, and 1997 images 
were annotated as normal. The IVOCT images were acquired with a frequency-domain OCT system (ILUMIEN 
OPTIS, St. Jude Medical), which uses a tunable light source sweeping from 1250 to 1360 nm. Imaging pullback 
was performed with a frame rate of 180 fps, pullback speed of 36 mm/s, and axial resolution of approximately 
20 µm. This study was conducted in accordance with the Declaration of Helsinki and with approval from the 
Institutional Review Board of University Hospitals Cleveland Medical Center (Cleveland, OH, USA). Written 
informed consent was waived by the Institutional Review Board of University Hospitals Cleveland Medical 
Center (Cleveland, OH, USA).

For manual annotation, the raw IVOCT data in the polar (r, θ) domain was transformed to the Cartesian 
(x, y) domain. Each image was manually analyzed by two cardiologists from the Cardiovascular Imaging Core 
Laboratory. The location of lipid plaque was identified based on definitions in the “consensus document”5 using 
OCTOPUS  software11. Specifically, a signal-poor region with diffused outer borders, a fast IVOCT signal drop-
off, and little or no IVOCT signal backscattering within a lesion was considered to be a lipid plaque. In case of 
disagreement between the two readers, they revaluated the frames and reached a consensus decision. Because 
lipid rapidly attenuates the IVOCT signal, it is impossible to see the outer edge of lipidous plaque in IVOCT 
images. As a result, lipid annotations for this study consisted of marking the arc of the lipidous region with a 
depth of 50 pixels from the lumen boundary and broad stroke in (x, y) images. In our software, we ensured that 
every lipid label consisted of a ribbon of pixels 20 pixels wide in the (r, θ) representation. Every other pixel in the 
(r, θ) images was given a label of “other,” which allowed us to set up an approach of binary semantic segmenta-
tion. An example of manual annotation is shown in Fig. 2.

Preprocessing. We applied a modified version of a previously proposed approach for  preprocessing12,13 to 
raw polar (r, θ) IVOCT data (Fig. 1). First, the lumen boundary was detected using the deep learning approach 
as described previously by our  group14. Second, each A-line was pixel-shifted to the left so that all vessel wall 
A-lines have the same starting pixel along the radial direction. A-line shifting creates a smaller region of interest 
for deep learning and aligns tissues so that different lesions look more similar to the network. That is, in (x, y), 
two lesions at different angles (e.g., 90° and 270°) and different depths look quite different to a network, but in 
our preprocessed (r, θ) representation, the two lesion may look quite similar, thereby reducing the number of 
training samples needed. Third, we cropped and used the first 1.5 mm (300 pixels) from the lumen boundary in 
the r direction because of the limited penetration depth of the IVOCT signal, reducing the size of data in deep 
learning. Fourth, speckle noise was reduced using a Gaussian filter with a kernel using a standard deviation of 
1 pixel and a footprint of (7,7). Preprocessed images were used as an input to the deep learning model for lipid 
plaque detection.

Automated identification of lipid plaque. We implemented DeepLab-v3 plus semantic  segmentation15 
for lipid plaque segmentation as shown in Fig. 1. The DeepLab-v3 plus network takes advantage of both an 
encoder module that enables capture of contextual information at different grid scales and a decoder module 
that effectively recovers object boundaries. We briefly describe the three key concepts as follows. First, atrous 
convolution is a method that controls the resolution of features and adjusts the field-of-view of a filter. Atrous 
convolution allows the network to learn multiscale contextual information without increasing the number of 
parameters and generalizes standard convolution operation. Second, the depth-wise convolution carries out an 

Figure 2.  Representative case of lipid and fibrous cap annotations with quantitative measurements: lipid angle 
and fibrous cap thickness. Green and yellow are lipid and fibrous cap, respectively. The luminal boundary 
perfectly matches to the lumen boundary, and the abluminal boundary is defined as the inner border of the lipid 
pool. Lipid annotations were 50 pixels away from the lumen boundary with a ribbon of 20 pixels wide in (r,θ) 
domain. Colors are green (lipid plaque) and yellow (fibrous cap).
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independent spatial convolution for each input channel, and the pointwise convolution is then used to combine 
the output from the depth-wise convolution. This process drastically reduces computational complexity while 
maintaining similar—or better—segmentation performance. Third, the encoder extracts the essential informa-
tion at different resolutions. The most important features are the objects in the image and their locations. Here 
we used the  Xception16 as the backbone network for feature extraction. After each convolution, the batch nor-
malization and rectified linear unit were followed. The decoder generated an output label with the same image 
resolution as the input image. The receptive field is one of the key factors for determining segmentation perfor-
mance because it provides context for a decision. In this study, the receptive field of our network covered the 
entire input image.

Automated fibrous cap detection. A fibroatheroma is characterized by a low IVOCT signal region with 
a poorly delineated border followed by a very rapidly attenuating signal in the lipidous region due to the associ-
ated high absorption of  light5. In the context of detected lipid plaque, we assessed fibrous cap thickness between 
the luminal boundary and the abluminal boundary, defined as the boundary between the fibrous and lipidous 
 regions17 (see Fig. 2). The lumen boundary was obtained as previously described from the deep learning lumen 
segmentation. The abluminal boundary has a high-intensity difference between the fibrous cap and lipid pool, 
and therefore can be characterized by a gradual transition of pixel intensity from bright to dark. To detect the 
abluminal boundary, we used a dynamic programming as proposed previously by our  group17. The method 
was previously validated against manual delineations in 14 lipid-rich lesions, and provided promising  results17. 
Briefly, we generated a gradient map for each A-line using a filtering operation, which yielded a strong positive 
response at the bright to dark edges. Then, using dynamic programming, we found the path with the maxi-
mum cumulative edge strength, which defined the abluminal boundary. Details of these algorithms are provided 
 elsewhere17.

Network training. We used an adaptive moment estimation optimizer for network  training18. The initial 
learning rate, drop factor, and drop period were empirically set to 0.001, 0.2, and 5, respectively. To gradually 
reduce the learning rate, we multiplied the initial learning rate by a drop factor for every drop period. The initial 
weights of each layer were determined using the  Xception16 pretrained on the ImageNet  database19. Weights 
were fine-tuned starting from the last layer by changing the learning rates of the previous layers. Because our 
dataset was imbalanced, we computed the inversed median frequency of class proportions and used them as 
the class weight. To avoid overfitting during the training, we stopped the training when the validation loss did 
not improve over 5 consecutive epochs or when a maximum number of epochs (50) was reached, whichever 
occurred first. The binary cross-entropy loss function over the softmax function was extensively used as the out-
put. All image processing and network training were done using MATLAB (R2018b, MathWorks) on a NVIDIA 
Geforce TITAN RTX GPU (24 GB memory).

Performance evaluation. We divided a total of 77 lipidic lesions into the training set and held-out test 
set. Using a 90–10% split, the training and held-out test set included 68 lesions (3821 frames) and 9 lesions (539 
frames), respectively. To optimize network hyperparameters, we performed a five-fold cross-validation on the 
training dataset. The 68 lesions were split into 5 independent subsets. For each iteration, 3 were considered for 
training, 1 for validation, and 1 for testing. The held-out data were used for further evaluations.

Lipidous plaque segmentation was evaluated using conventional metrics, such as precision, sensitivity, speci-
ficity, and Dice coefficient. Particularly, given that A-line classification is more suitable for angle measurement 
of lipidous region and removes the confusion associated with the depth of unseen lipidous regions, we assessed 
results in terms of A-line  classification13,20. In addition, we quantified the lipid angle and fibrous cap thickness 
for each frame (Fig. 2) and performed an inter-observer variability test between two analysts after automated 
analysis. Two experienced cardiologists independently edited the automated lipid plaque and fibrous cap detec-
tion results on the held-out test set using a dedicated editing tool. This approach provided two pairings of 
segmentation (lipid)/detection (fibrous cap) results. We evaluated the agreement using linear regression and 
Bland–Altman analyses. In addition, we asked two cardiologists to perform visual assessment of fibrous cap 
detection. They reviewed the fibrous cap detection results and responded to this question: “Is the automated 
fibrous cap detection acceptable?” Responses were scaled from 1 to 5 as follows: 1, strongly disagree; 2, disagree; 
3, unsure; 4, agree; and 5, strongly agree.

Results
Patient samples. This study included 41 patients with multi-vessel disease who had undergone staged per-
cutaneous coronary intervention with stent implantation. No patients were excluded on the basis of clinical 
characteristics or image processing results. The median age was 63.7 ± 10.0 years, and 85.4% were men. Among 
the 41 patients, 28 (68.3%) had hypertension, 25 patients (61%) were current smokers, and 6 patients (14.6%) 
had diabetes mellitus. Table 1 details patient characteristics.

Automated lipid detection. Our method successfully identified the lipid plaque in almost all situations. 
Figure 3 shows the manual annotation and automated prediction on the held-out test set. Our method provided 
excellent discriminability of lipid plaque from other tissues such as fibrous tissue and calcification. On the held-
out set, our method had a precision of 81.8%, sensitivity of 85.8%, specificity of 90.7%, and A-line Dice coef-
ficient of 0.837, and the differences were within 2% compared with those of the five-fold cross-validation. These 
findings indicate that our model is suitably trained and reliable. The supplementary Figure S1 demonstrates 
training and validation learning curves for one cross-validation round, indicating a small performance differ-
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ence between training and validation. Inter-observer variability of lipid angle deviation between two analysts are 
provided in the supplementary Figure S2. A lipid angle difference between ground truth and automated predic-
tion + manual editing is shown in the supplementary Figure S3.

Several cases challenged our method. Figure 4 shows the representative challenging cases that required 
modifications for detecting lipidous plaque. When the lipid was distributed near the side branch, our method 
generated unreliable predictions (Fig. 4A); however, these instances were rare. In addition, our method occasion-
ally produced false predictions for the mixed plaques (Fig. 4B).

In addition, we evaluated the inter-observer variability of lipid angle measurement after manual editing 
between two experts (Fig. 5). Bland–Altman analysis showed a very small bias (6.7° ± 17.3°), and most of these 
measurements were included within the limit of agreement. Linear regression analysis also provided a very high 
similarity between two observers (R2 = 0.943), indicating the exceptionally low user bias of the proposed method.

Automated fibrous cap detection. Our method accurately detects the fibrous cap from the detected 
lipid tissue. Figure 6 demonstrates automated fibrous cap detections on the representative cases. Our method 
required a significant modification for only 5.5% ± 0.9% frames of the held-out test set; of the 539 frames, Expert 
1 modified 33 and Expert 2 modified 26. In these cases, most errors resulted from the false automated detec-

Table 1.  Baseline characteristics of study cohort (n = 41). PCI percutaneous coronary intervention, CABG 
coronary artery bypass graft, ACS acute coronary syndrome, NSTEMI non-ST segment elevation myocardial 
infarction, STEMI ST-segment elevation myocardial infarction.

Age (years), mean ± SD 63.7 ± 10.0

Men, n (%) 35 (85.4%)

Hypertension, n (%) 28 (68.3%)

Hypercholesterolemia, n (%) 17 (41.5%)

Current smoker, n (%) 25 (61.0%)

Diabetes mellitus, n (%) 6 (14.6%)

Body mass index (kg/m2), mean ± SD 41.4 ± 2.8

Previous myocardial infarction, n (%) 5

Previous PCI, n (%) 5

Previous CABG, n (%) 1

Previous stroke, n (%) 4

Indication for PCI, n (%)

 ACS 8

 Stable angina 9

 Unstable angina 4

 NSTEMI 5

 STEMI 15

Figure 3.  Lipid detection results on the held-out test set. Panels are (top) original IVOCT images and 
(bottom) manual and automated results. Green is the manual annotation, and yellow is the predicted result. 
Please understand that these markups show the angle region of lipidic lesions. The white asterisk (*) indicates the 
guidewire shadow.
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tion of lipid. Furthermore, the two cardiologists unanimously scored with the highest value (5) for all lesions, 
indicating strong agreement that clinical decision-making would be the same for manual and automated results.

Although our method worked well in most cases, several challenging cases required significant manual cor-
rections. Our method produced unreliable detection results when the lipid label included other tissue types, 
such as tissue dissection (Fig. 7).

Bland–Altman analyses of fibrous cap thickness after editing showed a great reliability of the proposed method 
(Fig. 8). The bias of fibrous cap thickness measurement between two experts was 4.2 ± 14.6 µm, and these meas-
urements were all included in the limit of agreement. From the linear regression analysis, the R2 value of fibrous 
cap thickness measurement was 0.974, indicating no significant bias between two experts for using the software 
(Fig. 8). Figure 9 shows 3D visualizations of fibrous cap thickness on the representative IVOCT pullbacks with a 
short lesion with TCFA (Fig. 9A), a long lesion with TCFA (Fig. 9B), a short lesion without TCFA (Fig. 9C), and 
a long lesion without TCFA (Fig. 9D). Our method enables comprehensive assessment of fibrous cap thickness 
in the entire pullback.

Figure 4.  Challenging cases in lipid detection requiring editing. (A) The algorithm reasonably identified the 
lipid location, but showed errors on the side branch regions. (B) False lipid prediction often happened to the 
mixed plaques. The first, second, and third columns are original images, automated results, and manually edited 
results, respectively. Green is the fibrous cap, and white asterisk (*) indicates the guidewire shadow.

Figure 5.  Inter-observer variability test of lipid angle between two analysts after automated prediction + manual 
editing. Panels are (left) linear regression plot and (right) Bland–Altman plot. The R-squared  (R2) value was 
0.943 (left), and the mean bias between two analysts was 6.7° ± 17.3° (right).
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Discussion
It is clinically accepted that the presence of TCFA is associated with plaque  ruptures1,2. Although manual analysis 
of the fibrous cap is challenging and prone to high inter- and intra-observer variability, no studies have attempted 
to develop an automated image analysis method for the fibrous cap. We built on our previous  studies12–14,17,20–24 
and for the first time have developed a fully automated method for quantitatively assessing the fibrous cap in 

Figure 6.  Automated thin-cap fibroatheroma detection results on the held-out test set: (left) original IVOCT 
image, (center) cropped image for better visualization, and (right) cropped image overlaid with fibrous cap 
detection. Green is fibrous cap, and white asterisk (*) is the guidewire shadow.

Figure 7.  Challenging cases in fibrous cap detection requiring editing. Fibrous cap detection was not reliable 
when the lipid label includes other regions such as tissue dissection. The left, center, and right panels are original 
image, automated result, and manually edited results, respectively. Green is the fibrous cap, and white asterisk (*) 
indicates the guidewire shadow.
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Figure 8.  Inter-observer variability test of minimum fibrous cap thickness between two analysts after 
automated detection + manual editing. Panels are: (left) linear regression plot and (right) Bland–Altman plot. 
The R-squared (R2) value between two analysts was 0.974 (left), and the mean bias was 4.2 ± 14.6 µm (right). This 
result indicates that there is no significant bias between two experts for using software.

Figure 9.  Three-dimensional (3D) visualizations of fibrous cap thickness on the representative IVOCT 
pullbacks, including: (A) short lesion with TCFA, (B) long lesion with TCFA, (C) short lesion without TCFA, 
and (D) long lesion without TCFA. The reader can zoom in each artery to see variations of fibrous cap thickness. 
(A) Although the lesion length was not too long (< 7 mm), the average fibrous cap thickness was less than 
65 µm across the lesion indicating that the lesion is prone to rupture. (B) There were two lipidous lesions having 
15 mm (left) and 5 mm (right) lengths. Both lesions were heavily lipidic with a mean cap thickness of < 65 µm. 
The artery was much more prone to rupture than (A). (C) The lesion was stable, since the length was short 
(< 3 mm) and the fibrous cap thickness was always greater than 150 µm. (D) Although the fibrous cap thickness 
was always over 80 µm across the lesion, the lesion length was very long (> 30 mm). There were several spots 
approaching toward the vulnerable plaque than (C). The color map visualizes the fibrous cap in the range of 0 
to 300 µm. The yellow arrows indicate representative IVOCT frames of each rendering. Our method provides 
comprehensive fibrous cap map in the entire IVOCT pullback, so clinicians can make appropriate treatment 
decisions.
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IVOCT images. Although we proposed a method for identifying fibrous caps in IVOCT images in our previous 
 study17, there were two significant limitations. First, the lipidous plaque must be manually determined by the 
user. Second, the method was validated on only 14 lipidous lesions (323 frames). In combination with automated 
lipid plaque segmentation using deep learning, our method provides very good results for fibrous cap detection 
with a reasonable computation time, suggesting that this method could be a promising solution for both research 
and clinical applications.

Despite the complexity of lipidous plaque segmentation, our method provides excellent agreement with 
experienced analysts. Results were very close to manual annotations, with a sensitivity of 85.8%, a specificity of 
90.7%, and A-line Dice of 0.837. Accurate detection of lipidous plaque is a prerequisite for automated fibrous 
cap analysis. Although a good inter-reader agreement was observed between our expert analysts (Fig. 5), it is 
important to note that manual analysis can depend on the reader’s experience. That is, if less experienced ana-
lysts are reading the images, results are subject to a high inter-observer variability compared with other tissues 
visualized with IVOCT, such as calcification. To minimize the potential discrepancy from manual annotation, 
analysts must very carefully annotate lipid tissues according to the definitions described  previously5. Principally, 
if the signal quickly decays with a diffuse outer border, this region was regarded as lipid plaque. Based on these 
consistent labels, our deep learning model was able to successfully learn the lipid characteristics and clearly 
differentiate them from other plaques, such as fibrous and calcified plaques. Interestingly, most errors occurred 
in areas of mixed tissues (Fig. 4B), which included a certain level of lipid, and not from the fibrous or calcified 
plaques. This finding indicates that our method has the potential to detect mixed plaque, which is a forerunner 
of vulnerable lipidous plaque.

In addition to the lipid segmentation, our automated method showed a promising result for fibrous cap detec-
tion. The visual assessment of the fibrous cap border is challenging because of its thin appearance, giving rise to 
inaccurate measurement. Particularly, although IVOCT has a high axial/radial resolution, it is very difficult to 
manually assess the thinnest fibrous caps in IVOCT images. Given that the abluminal boundary of the fibrous 
cap shows a high-intensity difference between the fibrous cap and lipid pool, our boundary optimization method 
was suitable for capturing the gradual transition of pixel from bright to dark. Also, this method does not require 
any training process, thereby providing reproducible, consistent results.

Our method enabled excellent repeatability of the lipid and fibrous cap analyses by two expert analysts. 
From the inter-observer variability test, we found a very small bias (lipid angle, 6.7° ± 17.3°; fibrous cap thick-
ness, 4.2 ± 14.6 µm) and high similarity (R2, lipid angle, 0.943; fibrous cap thickness, 0.974) between the two 
analysts. Our highly automated analysis will be exactly repeatable, and even with manual editing, it will likely 
be much more repeatable than using different analysts. For the fibrous cap, the two experts unanimously pro-
vided the highest visual assessment score (5) across the held-out test set (9 lesions with 539 frames) indicating 
that our method would lead to the same clinical decision-making as the manual assessment in clinics. In addi-
tion, automated analysis required a user intervention only for 5.5% frames on the held-out test set. Typically, 
the intervention consisted of changing the angle to be analyzed, a quick change. To review and edit automated 
analysis requires about 4 min on the typical vessel. Likely this time will improve with more experience and pos-
sibly improved editing tools. We estimate that a fully manual 3D analysis of fibrous cap thickness would take 
an analyst about 45 min on that same vessel or 11 times that of the semi-automated approach. This estimation 
suggests that our method will enable large research studies. In addition, with further refinement, it is conceiv-
able that the method could be used clinically to help physicians determine a proper landing zone for a stent.

Automated 3D fibrous cap assessment, such as for cap size and distribution, may enhance clinical research 
as seen in the following examples. First, we can uniquely analyze serial imaging data on the long-term charac-
terization (18 months) of stented vessels with the evolution of neo-atherosclerosis10. This approach will allow to 
determine characteristics of atherosclerosis and suboptimal stent deployment predictive of short- and interme-
diate-term adverse results—in-stent restenosis and plaque progression. Second, there is a unique opportunity 
to identify determinants of a future major adverse cardiovascular event (MACE). Risk prediction for MACE 
has met with some success using the computed tomography (CT) calcium  score25–28, CT  angiography29–32, and, 
more recently, with intravascular  ultrasound33. However, none of these methods show the disease detail, such 
as fibrous cap thickness, size, and distribution that is available with IVOCT, suggesting a new opportunity to 
learn about the characteristics of atherosclerosis that are most detrimental to human health. We can analyze 
the characteristics of pre-stent atherosclerosis and stent deployment, as well as determine the risk of MACE 
using machine/deep learning approaches. Third, the analysis of lipidous, vulnerable plaques will suggest more 
aggressive drug therapeutic regimens. Guagliumi et al. showed that high-intensity lipid-lowering therapy can 
cause regression of those  plaques10, making the plaque more stable and less prone to rupture. With the use of 
our method, a clinician would be able to precisely segment the lipid and fibrous cap, ultimately assessing the 
effect of those medications on them.

Our method could enable a comprehensive assessment of plaque vulnerability. Macrophage, cholesterol crys-
tal, and microchannel are commonly considered to be among the most important clinical predictors for plaque 
vulnerability in IVOCT  images34. According to the previous  report35, an isolated few patterns are probably not 
clinically significant, whereas a large accumulation of these characteristics within a thin fibrous cap may be of 
more concern. In addition, Nakazato et al. reported that a higher prevalence of adverse plaque characteristics 
can be observed when the macrophage coexists with the TCFA in the context of fibrous  cap36. In our previous 
 study37–39, we proposed automated methods for quantifying macrophage and microchannel in IVOCT images. 
Therefore, combining 3D assessments of fibrous cap thickness with the presence of macrophages, cholesterol 
crystals, and microchannels could aid a more comprehensive assessment of coronary plaque in IVOCT images.

Our method is computationally realistic for clinical and research applications. On our computer system with 
non-optimized code, the computation time is only about 0.1 s per image: 0.05 s for preprocessing, 0.02 s for lipid 
segmentation, and 0.03 s for fibrous cap detection. The proposed method can process a high-resolution IVOCT 
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pullback of 540 frames within 1 min, which is suitable even for clinical application. Moreover, code optimization 
in a language such as C++ may allow our method to be suitable for real-time treatment planning.

This study has several limitations. First, our method often showed inaccurate lipid segmentations on the 
side branch and mixed plaque. The false detection arising at side branches is easily recognized and manually 
corrected. In addition, it may be possible to create an algorithmic fix. Regarding the mixed plaque, no widely 
accepted standard in IVOCT images exists because it significantly depends on the user’s experience. However, 
the mixed plaques can also be easily identified and manually edited. Second, although we used a large dataset, a 
future study using even more data with accurate annotation may further improve performance. Third, we used 
a conventional deep learning semantic segmentation (DeepLab-v3 plus) for lipid segmentation. Results may be 
improved with the use of more advanced deep learning models.

Conclusion
We developed a fully automated method for fibrous cap quantification in IVOCT images. Deep learning semantic 
segmentation well identified the location of lipid plaque, and the fibrous cap was detected using dynamic pro-
gramming. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive 
evaluations of vulnerable plaques and treatments. We believe that the method is promising for both research 
and clinical applications.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to legal/ethical 
reasons but are available from the corresponding author on reasonable request.
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