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Social media enables 
people‑centric climate action 
in the hard‑to‑decarbonise building 
sector
Ramit Debnath1,2*, Ronita Bardhan1*, Darshil U. Shah1, Kamiar Mohaddes1, 
Michael H. Ramage1, R. Michael Alvarez2 & Benjamin K. Sovacool3,4,5

The building and construction sector accounts for around 39% of global carbon dioxide emissions and 
remains a hard‑to‑abate sector. We use a data‑driven analysis of global high‑level climate action on 
emissions reduction in the building sector using 256,717 English‑language tweets across a 13‑year 
time frame (2009–2021). Using natural language processing and network analysis, we show that 
public sentiments and emotions on social media are reactive to these climate policy actions. Between 
2009–2012, discussions around green building‑led emission reduction efforts were highly influential 
in shaping the online public perceptions of climate action. From 2013 to 2016, communication 
around low‑carbon construction and energy efficiency significantly influenced the online narrative. 
More significant interactions on net‑zero transition, climate tech, circular economy, mass timber 
housing and climate justice in 2017–2021 shaped the online climate action discourse. We find positive 
sentiments are more prominent and recurrent and comprise a larger share of the social media 
conversation. However, we also see a rise in negative sentiment by 30–40% following popular policy 
events like the IPCC report launches, the Paris Agreement and the EU Green Deal. With greater online 
engagement and information diffusion, social and environmental justice topics emerge in the online 
discourse. Continuing such shifts in online climate discourse is pivotal to a more just and people‑
centric transition in such hard‑to‑decarbonise sectors.

The Intergovernmental Panel on Climate Change (IPCC) suggests that restricting climate change to 1.5 ◦ C 
requires rapid and extensive changes around energy use, building design, and broader planning of cities and 
 infrastructure1. The buildings and construction sector currently accounts for around 39% of global energy and 
process-related carbon  emissions2,3. The International Energy Agency estimates that to achieve a net-zero carbon 
building stock by 2050, direct building carbon emissions must decrease by 50%, and indirect building sector 
emissions must also decrease 60% by  20304. In a global call for net-zero strategies, a collaboration between the 
UN High-Level Climate Champions, the COP26 Presidency, the UK’s Department for Business, Energy and 
Industrial Strategy (BEIS) and the #BuildingToCOP26 Coalition announced 26 built environment climate initia-
tives at the Cities, Regions and Built Environment Day at the UN  COP265. It included net-zero carbon building 
commitments of over USD 1.2 trillion by the World Green Building  Council6, and a Race to Zero through the 
C40 Cities Clean Construction Action Coalition including over 1049 cities and local governments, representing 
roughly 722 million people and committed to reducing 1.4 gigatons of CO2 equivalent by  20307.

A growing body of evidence from the stakeholder community emphasises the need to incorporate public 
voices in global climate action to enable an equitable and just  transition8–13. As all climate solutions will involve 
people one way or another, there should be a greater emphasis on socio-technical solutions and the social sci-
ences, in addition to the continued development of complex technical  solutions14. The European Union and the 
White House have also emphasised the need to create a democratised space for involving citizens at various levels 
of decision-making10,11,13. However, enabling democratic participation of people in the decarbonisation process 
remains a critical challenge across the local, national and regional  scales15–17. Decarbonising the building sector 
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is challenging as it involves a complex overlap of people, places and practices that creates a barrier to designing 
just emission reduction  policies18–20.

In addition, the distinctive socio-demographic and bio-physical contexts of the built environment makes 
it tremendously resource intensive to use traditional survey instruments at  scale21,22. However, the emergence 
of new data sources like time-series social media interaction datasets has opened up new possibilities for the 
large-scale cross-sectional study of such complex  systems23–25. In this study, we use English-language social 
media (Twitter) data over 13 years (2009–2021, n = 256,717 tweets) to examine public reactions to climate policy 
events concerning building sector emissions reduction (i.e. April 2009 (before COP15) to November 2021 (after 
COP26)). The scale of the climate events is global and organised by intergovernmental bodies like the United 
Nations Framework Convention on Climate Change (UNFCCC) and IPCC.

In doing so, we look at the complex dialectic relationship between social media and climate change politics/
policymaking that may shape user opinion and  reactions26. As a result of social media, citizen journalism has 
increased the immediacy of breaking news; this has accelerated the speed at which politics is conducted and 
 perceived27,28. With over 4.26 billion social media users  worldwide29, the boundaries between local and global 
“content” has been blurred, which is increasingly seen as a critical co-production factor for climate  action30. In 
this paper, we leverage this new form of digital data to capture cross-sectional variation in public sentiments 
and emotions following global emission reduction events concerning the building sector, thereby creating new 
knowledge for evaluating a people-centric and just transition with their emotional responses to climate policy 
processes. Our framing of “reactiveness” is based on the simultaneous consumptive and expressive characteristics 
of social media that make an individual’s news feeds highly  personalized25,31. However, echo chambers exist in 
social media, in which individuals cluster among like-minded  individuals32,33.

Scholars agree that while personalised news feeds contextualise relevant issues (social, political, economic, 
etc.), they are also a useful lens for analysing climate change  opinion25,34. They also provide a setting to examine 
what sentiment users have about climate  change35,36 and the ability to analyse how people frame their issues in 
the  discussion25,36. In an ontological context, evidence shows that social media contains a greater spectrum of 
non-elite (general public generated content) social conversations which are not part of mainstream media organi-
sations. However, these occur alongside elite (politicians, advocacy groups, etc.) conversations, providing a much 
larger intersectional bandwidth of information on public opinion which is critical for policy  evaluation25,37–39. 
It is this information intersectionality that makes social media reactive to climate change content. For example, 
studies have shown that Twitter engagement spikes and search volume peaks around specific news stories on 
climate-induced weather events, high-profile media events like Al Gore’s and the IPCC’s nomination for the Noble 
Peace  Prize36,40. Similarly, UNFCCC and IPCC events have shown to encourage higher hashtag use on  Twitter40.

We conceptualise a people-centric transition in the context of the built environment as a medium of design 
thinking, i.e., to design interventions that are both effective in reducing embodied and operational emissions, as 
well as achieving wider societal goals of environmental justice: wellbeing, equity and fairness. Recent research 
have shown that social media platforms like Twitter can be used to derive causality discourse for users reactive-
ness to climate change-related  events26,41–43. Three factors are central to understanding causality discourse on 
Twitter: the extreme-event factor, the media-driven science communication factor, and the digital-action  factor26 
(see SI Table 1 for detailed explanation). We operationalise this framework in this paper to evaluate three ques-
tions empirically: (i) What are the characteristics of a people-centric transition on social media towards emis-
sion reduction in the building sector over the 13-year time frame?; (ii) How has this messaging been received 
by users (i.e., public reactions) on social media over global climate negotiation and policy events on building 
emission reductions?; and (iii) How have the critical discourses changed over the temporal scale in the context 
of a people-centric transition?

The novelty of this paper is twofold. First, it empirically evaluates causality discourses of social media mes-
saging of high-level policy events concerning emission reduction in the built environment. Second, it meth-
odologically expands the use of social media interaction data from Twitter to define people-centric transition 
in the context of global climate action in the building sector. The methodology is a multi-method application of 
natural language processing (NLP), sentiment analysis and network theory (see “Methods” section). Therefore, 
we contribute significantly with our use of state-of-the-art computational social sciences applied to the domain 
of just policy design. The findings from this study will be helpful to a wide range of stakeholders who are explor-
ing pathways for a people-centric transition and its contextualised implementation of low-carbon strategies in 
the context of a net-zero future.

We evaluate how different global climate action events shaped the discussions around emission reduction 
and low-carbon transition of the built environment using hashtag co-occurrence networks. As mentioned above, 
hashtags can be used to measure climate communications on  Twitter25,40, as two overlapping processes influence 
the choice of using a particular hashtag: attention-seeking behaviour by users and the contagion process driven 
by the virality of specific  hashtags44,45. Moreover, studies have also found that Twitter hashtags offer a strategic 
vantage point on social movements as they provide scalability through networked information  dissemination45. 
Berglez and Al-Safaq26 theorise this as a causality discourse influenced by the digital-action factor, and we expand 
on their theory to test how certain hashtags are propagated over time. These characteristics of hashtags motivated 
our study to investigate how hashtag networks in the emission reduction in building discourse are shaped in the 
people-centric transition of Twitter communication.

Towards people‑centric climate action in building sector emissions reduction
Strategies to enable a people-centric transition in the built environment are anecdotal and not always informed 
by data. The proactive role of people in the decision-making process and the science-policy interface on climate 
change are well-studied, for example, involving recent approaches like public-private-people-partnerships (4P), 
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value sharing governance, and information-to-empowerment  approaches30,46–51. However, very little academic 
research is available on utilising public sentiments and emotions in just net-zero transitions in the building sector.

In a people-centric decarbonisation context, studies have shown that psycho-social factors like habits and 
attitudes are strong determinants of individual  behaviour52. Studies like these have mentioned a habit-breaking 
mechanism that could help reduce emissions in the mobility  sector52. It is also found that emotionally anchoring 
and objectifying climate change in media communications can enhance public engagement in the issue and form 
collective identities based on a mixture of  emotions53. Furthermore, a vast pool of evidence exists on behavioural 
interventions for emissions reduction in buildings encompassing a range of initiatives like monetary incentives 
involving financial rewards to nudges and non-monetary interventions information visualisation, feedback, and 
social norms and  motivation54–56. However, these studies discuss interventions as a clinical measure to reduce 
energy use and emissions in buildings without considering their user-emotional reaction. While capturing 
such emotions on a large scale can be challenging and resource-intensive, Twitter data can provide a new way 
of dynamically looking at how people react to climate action and policy decisions.

In addition, studies have shown that the individual-level expressions of environmental justice desires centre 
around the notion that people are developing a shared future. Moreover, each individual feels they have some-
thing to contribute in shaping, making and co-creating an equitable  future57. This conception aligns with notions 
of personal responsibility and collective capability, extending Sen’s work on individual capabilities and collective 
 responsibility58. Individualistic capabilities influence a broad range of basic needs and functions like transporta-
tion, employment, health, housing, economic opportunities, community diaspora, and political participation 
that shapes the collective meaning of environmental justice in the context of extreme weather  impacts59.

Kern and  Rogge60 further demonstrated that if political, social and psychological dimensions can support eco-
nomic and technological innovations, the low-carbon transition can be achieved faster. Moreover, Martiskainen 
and Sovacool explore the emotions (including positive and negative feelings) associated with low-carbon energy 
transitions, including those in the built environment, and depict a range of reactions from joy and pride to fear 
and  anger61. Similarly, Sovacool and Griffiths look at some of the negative cultural implications of building ret-
rofits, showing how demographic aspects such as class or heritage dissuade households from pursuing energy-
efficiency  upgrades62. However, these studies approach the decarbonisation of the built environment through 
the transportation and mobility sector.

In a similar methodological approach, another way to study public opinion on climate policy is through social 
media, using data from Twitter, Facebook, YouTube, Reddit, and other social media  platforms63. There is a grow-
ing interest in using social media to examine human behaviour, attitudes, and interactions on a real-time, large 
scale, within a short period, as opposed to conventional surveys or interview  methods64,65. In addition, social 
media offers a unique platform where users can share their personal stories providing first-hand unmediated 
accounts of their lived experiences. Studies have also found that social media can lead to greater empathy with 
vulnerable groups and heightened response to the impacts of climate change or natural disasters while strength-
ening existing groups’ social ties by facilitating acts of caring, giving, and pro-social  behaviour66. For example, 
a recent study explored tweets on the carbon emission trading system for multi-dimensional policy analysis in 
the European Union (EU). It demonstrated the importance of the public’s cognition of climate  policies67. Fur-
thermore, the study found that enabling public engagement (or people-centrism) in climate mitigation measures 
allows people to express their environmental interests, improves the transparency of policy governance and 
creates a space for the legitimacy of climate  policies67,68. Kirilenko, Molodostova and  Stepchenkova42 found that 
the public recognised extreme temperature anomalies and connected these anomalies to climate change through 
Twitter use. Similarly, Yeo, S. L et al.43 showed how the hashtags #globalwarming and #climatechange on Twitter 
influenced lay audiences’ perceptions of climate change which have important implications for climate action 
communication and discourse.

Also, Twitter data was used by Kim et al.69 to examine the public’s emotional attitudes towards nuclear energy 
as a low-carbon strategy. Sluban et al.70 used hashtag networks to explore general emotional tendencies towards 
’green energy’, ’climate change’ and ’carbon emissions’. That same study concluded that more public opinion 
research is needed to enable a people-centric just transition. Tweets related to energy-related topics from the 
EU Sustainability Energy Week were used to map stakeholders’ significant energy concerns and emotional 
tendencies towards these issues by Bain and  Chaban71. Veltri and  Atanasova72 explored the network topology 
of climate change tweets and news media articles for automated text classification according to psychological 
process categories. Recently, Twitter posts that mentioned climate change in the context of three high-magnitude 
extreme weather events - Hurricane Irene, Hurricane Sandy and Snowstorm Jonas were used by Roxburgh et al.73 
to derive discourses of climate denialism, criticism and polarising political ideologies. An unsolicited public 
opinion poll on climate change sentiments by Cody et al.74 used Tweets between 2008 and 2014 to explore the 
public emotional response to natural disasters, climate bills and oil drilling. Similarly, Debnath et al.75 have used 
Facebook posts to explore public perceptions of climate technology (in this case, electric vehicle) adoption across 
political, economic, social, technological, legal and environmental policy dimensions.

However, none of the above studies explores the people-centric dimensions of building emission reduction 
and its association with policy-led climate action. This research gap provides the primary motivation for our 
study. We discover five salient findings, as discussed below.

Results
Public sentiments in emissions reduction in buildings: Five findings. We begin by showing in 
Fig. 1 the results from the sentiment analysis of the tweets containing #emission and #building between 2009 and 
2021 (n = 256,717, see "Methods" Section). Five key findings arise. First, there is a strong relationship between 
Twitter activity concerning the building sector and major policy events on climate change. The tweets are traced 
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Figure 1.  Time series of Twitter reactions concerning major climate negotiations and policy events (2009–
2021). (a) Twitter interactions (tweets, retweets, comments) with #emission and #building; (b) 6-month moving 
average estimates of tweet sentiments; (c) Spearman correlation between negative sentiments with daily tweet 
volume. The adjusted R-squared value is 0.296, standard error is 0.192 significant at 0.001 level, (d) Spearman 
correlation between positive sentiments with daily tweet volume. The adjusted R-squared value is 0.299, and the 
standard error is 0.271, significant at the 0.001 level.
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as per major climate negotiations and policy events by the UNFCCC. For example, it can be seen in Fig. 1a that 
there have been topics relevant to building sector emissions in the IPCC reports, but it received greater engage-
ment following big report releases like the IPCC Special Report on Global Warming 1.5 ◦C76. A similar trend 
in an exponential rise in Twitter engagement following a major climate communication event was also seen by 
Berglez and Al-Safaq26, which was attributed to user network creation on social media platforms. Studies have 
generally shown that Twitter engagement with the term ’emissions’ increases after extreme weather  events25,77. 
However, our observation is uncommon for this hard-to-abate sector as we find people are also reactive to cli-
mate policy events.

Furthermore, using the causality discourse  lens26 (which normatively relates climate communication on 
Twitter and its associated user engagement), enables us to infer user reactiveness through sentiment analysis 
following a high-level climate policy event. To use the causality discourse approach, we divided the 13-year 
timeline into four temporal scales (N1 (2009–2012), N2 (2013–2016), N3 (2017–*2020) and N4 (2021)) in 
order to evaluate Twitter causality discourses of external policy events. For N1 (2009–2013), it can be seen that 
the appeal for global standards for reducing building emissions began soon after COP15 in 2009. Furthermore, 
establishing the Green Climate Fund at the Cancun Agreement in 2010 encouraged the green building sector 
to spotlight the discourse around built environment-centric emission reduction at COP17 in Durban (2011). 
However, until COP18 in 2012, the focus was on energy efficiency and operational emission reduction benefits 
through an extensive focus on green buildings (see Fig. 1a).

Similarly, in the N2 (2013–2016) period (see SI Fig A1), policy discourse on integrated approaches to climate 
change mitigation, adaptation and resilience of the built environment took centre stage with the release of the 
IPCC Fifth Assessment Report on Climate Change (AR5) with a dedicated chapter on forecasting and long-range 
planning for emissions reductions from the building sector  (see78 and Fig. 1a). This led to discussions on the need 
for sustainable finance for low-carbon cities in COP-20 in 2014 (see Fig. 1a). These shaped the Paris Agreement’s 
critical messages for the building sector: reducing operational emissions through energy efficiency and addressing 
the whole life cycle of the built environment sector (also mentioned  in79), and essentially flagged wide-ranging 
policy discussions and stakeholder discourses on net-zero buildings and the built environment (see COP22 in 
Fig. 1a). Inferring from the causality discourse lens (see SI Table A1), it can be seen that both the popularity of 
the policy events (Paris Agreement and IPCC AR5) and its extensive media-driven science communication led 
to a greater engagement on Twitter.

Our results show the influence of a similar causality discourse around a higher Twitter engagement around 
COP-23 (N4 (2017–2020)). This COP had a specific agenda called ’Human Settlement Day’, which focused on 
cities, affordable housing and climate action. Such topical shifts also cause greater engagement within the users-
generated network, as seen through increases in retweets, following, and followers count during N4 (shown 
in SI Figures A9, A10 and A11). Furthermore, with a similar causality lens, we found the tweet volume grew 
exponentially with the launch of the IPCC Special Report on Global Warming of 1.5 ◦ C, which stated the need 
to enable more profound emission reduction in the urban and infrastructure  system76.

Moreover, the discourse on green/climate finance for residential homes got traction in COP25 in 2019, also 
reflected in the ’circular economy’ and ’social housing fund’ discourses of the EU Green Deal (see Fig. 1a  and80). 
The growing importance of emission reduction in buildings in the global climate action and policymaking 
was further illustrated through the flagship ’Cities, Region and Built environment Day’ at the recent COP26 at 
Glasglow (2021); and its correspondingly high Twitter traffic due to heavy media coverage and user engagement 
driven by the digital media effect (defined as per the causality discourse lens, see SI Table A1) (see Fig. 1a).

Second, the moving-average sentiment analysis shows that positive sentiments are more prominent and recur-
rent and comprise a larger share of the social media conversation than negative sentiments, with few exceptions. 
For example, the negative sentiment share rose to almost 40% from below 10% post-COP-15. However, this share 
fell to nearly zero on the announcement of the Green Climate Fund (2010) (see Fig. 1b). Similarly, tweets with 
more than 50% negative sentiment peaked between COP-17 and COP-18 in June 2012 (see Fig. 1b). In the same 
period (i.e., N1: 2009–12), sentiment analysis found that tweets showed a more significant share of emotions 
like ’trust’ and ’anticipation’, as shown in Fig. 2 (see SI Fig A1).

The sentiment trend for N2 (2013 - 2016) also shows a higher share of positive sentiment (cumulative share 
of ≈70%), with negative peaks during the Paris Agreement ( ≈50%, see Fig. 1b). Between January and April 2013, 
tweets showed emotions like high ’trust’, ’surprise’ and ’joy’, whose share fell significantly with the rise in negative 
emotions like ’anger’ and ’fear’ in August 2013 (see Fig. 2, SI Fig A1). The share for ’surprise’ increased during 
COP-19. However, the critical key emotion shared during with IPCC AR5 release was ’anticipation’ ( ≈90%) and 
’fear’ ( ≈60%, see Fig. 2). A similar trend is seen in the tweets during the Paris Agreement, with an additional 
share in ’trust’ (see Fig. 2). Interestingly, the share of sadness increased after the IPCC Global Warming 1.5 ◦ C 
Report to ≈30% (N3 and N4 (2018–2021), see Fig. 2). Peaks in emotions like ’surprise’ and ’trust’ are also seen 
post-EU Green Deal negotiations driven by a discourse that this new deal will kick start a building regulation 
by replacing concrete with low-carbon materials like cross-laminated timber (see Fig. 2). Thus, the sentiment 
analysis showed public reactiveness in the building and emission to popular policy events, also observed  by25.

As a general result, we see that increases in Twitter engagement (i.e. daily Tweets) have a significant correlation 
with both increases in negative ( R2

= 0.296 at 99% CI) and positive sentiments ( R2
= 0.299 at 99% CI) across 

the 13-year timescale (see Fig. 1c and d). Table 1 shows that the tweets with the highest negative sentiment scores 
contribute to spikes in Fig. 1b. Temporally an overlapping negative discourse is associated with a high carbon 
tax and strict building codes. At the same time, hundreds of new coal power plants are being rapidly built. These 
tweets also have geopolitical contexts, especially concerning China’s emissions reduction policies. More specific 
to the building sector, tweets from the United States showed thematic associations with stakeholder groups (like 
builders, utilities, and fossil fuel firms) lobbying against the implementation of climate-sensitive building codes 
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and guidelines (see N3 in Table 1). Moreover, specific to N4 (2021), the tweets also showed the presence of climate 
denial and politically polarising tweets shaping an online narrative of carbon tax as a scam.

Third, we find a steady rise in negative sentiments by ∼30–40% after 2014 (see Fig. 1b). From a causality 
discourse perspective, this can be attributed to increased Twitter engagement with the launch of such big climate 
action report releases. For example, with the launch of IPCC AR5 in 2015, the share of anticipation and fear in 
the social media dialogue increased by ∼90% and ∼60%, respectively. Similarly, the share of sadness increased 

Figure 2.  6-month moving average representation of the estimated emotion distribution in the tweets over the 
13 years. Tweets corresponding to the spike in emotion score are shown across the 2009–2021 time scale. The 
y-axis shows the normalized score on a scale of 0.0–1.0.
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by ∼30% following the IPCC Special Report on Global Warming 1.5 ◦ C in November 2019 (see SI Figure A1). 
The trust share increased following the Paris Agreement in October 2015 ( ∼30%) and the EU Green Deal.

Figure 2 shows that users are more reactive to specific climate action themes in the built environment. For 
example, a recent debate in November 2020 over lobbying of builders and utility companies over non-compliance 
with new building codes in the US spiked the share of “anger” in the tweets (see Fig. 2 and SI A1). In contrast, 
a lot more thematic diversity is seen across tweets in the “anticipation” category that spread across timber as an 
alternative low-carbon building material to coalition formation by non-governmental organisations to reduce 
building sector emissions to political polarisation over building codes implemented in the US (see Fig. 2). The 
tweets with the highest score for “fear” are consistent with the broader discourse of high emissions in the building 
sector, while the share of joy was elevated with tweets on government actions like “Britain takes stock of emis-
sions from homes and businesses...” or “...building with wood as a climate solution...” in recent discourse. Spikes 
in the “surprise” score were by tweets with a socio-technical discourse that further emphasised Martiskainen 
and Sovacool’s61 findings on emotions around sustainability transition. Similarly, tweets with a high “trust” score 
had a common thematic focus on policy action for emission reduction, illustrating the presence of the digital 
action causality discourse (see SI Table A1).

Such trends provide generalised insights on the people-centric transition and reactiveness towards high-level 
climate policy events that shape online narratives. They show that by increasing the conversation about decar-
bonisation on social media, policy actions matter to the public, making them reactive through varied emotional 
responses (supporting the findings  of25,26,42,61).

Fourth, an exponential increase in the number of edges and nodes of the resultant temporal network dem-
onstrated the topical diffusion of high-level climate policy discussions in the public domain (see Fig. 3, network 
characteristics in SI Table A2). Building on network theories of information  diffusion81,82, here we refer to diffu-
sion as an increased number of inter-related hashtagged topics in the tweet network containing #emission and 
#building. Moreover, we constructed these networks as co-occurrence networks that fundamentally implied that 
user interactions drive hashtag expansions. Thus, emphasising that information diffusion occurs through the 
growth of co-occurring hashtags with the base hashtags (emission and building).

Table 1.  Tweets with highest negative sentiment scores across the 13-year time scale.

Timeline Tweets

N1 (2009–2012)

- It’s complete spin! Knocking down the old building for no reason increases the emissions associated with the project.
- Errgh, tired of chatter on climate .doing something now. Building a unique emissions reduction company. Sick of hot 
air, fixing dirty air
- cap & trade legislation “a bad fit for addressing the building human influence on the climate,” because of foreign emis-
sions.
- Typical stupid politicians!! lower Aussie CO2 emissions by(wait for it) building new coal plants!
- How the heck? You are building more coal-fired power stations! Less emissions, yeah right Guvvanunt!!!!
- No emissions and no grid connection required - think this is the future of buildings? No

N2 (2013–2016)

- Emissions building faster than we thought’ they won’t rise enough. China’s building 500 coal stations over 10yrs.
Can’t you read? emissions risen despite the “action”.
- And building new #pipelines is not how we get there: CO2 emisions must be 0 by 2070 to prevent #climate disaster
- Now that his own State Dep’t has told him after 2 exhaustive reviews that NOT building Keystone will increase emis-
sions, Obama says
- The UK is building the worlds first power plant that might have *negative* emissions
- Bigger problem w/ carbon capture (CCS). IEA estimates say it will be 20% of emissions cuts...but nobody is building 
CCS at scale.
- Typical Wolfsburg performance. Building up the hype but never really living up to it. More fraudulent than VW’s CO2 
emissions report.

N3 (2017–2020)

- It’s time we say NO to Trudeau’s Carbon Tax in Canada. Time everyone started a protest movement like in France.
- Not only is no one cutting CO2 emissions, the world is building 1200 new coal plants and producing record amounts 
of oil
- Problems with nuclear power include risks in mining and transportation, nuclear weapons, the cost of building a 
power station,
- Foreign Ministers should announce that we are in a state of emergency, a climate emergency,
- and that’s if global warming is real We cannot address #ClimateChange w/o phasing out gas appliances in buildings. 
Period.
- Inside the climate battle quietly raging about US homes. The gas industry is opposing building code updates
- Any mentions of China building 300 coal power plants over the next 30 years? And their Paris “commitment” not 
having
them decreasing emissions for over a decade?

N4 (2020–2021)

- China will keep building coal plants while Biden raises energy costs for Americans by crushing fossil fuels.
- Invest in carbon capture tech. It looks ridiculous to pledge cutting carbon emissions while building pipelines and 
fracking.
- ITS A SCAM by Liberals....You are thieves and fraudsters. Carbon Scam Tax wont and hasnt made any difference at all 
in global GHG emissions.
- Please cancel the dirty-fueled Peabody Peaker. You can’t be building a new fossil-fuel powered electric plant and meet 
emissions reductions goals.
#StopPeabodyPeaker
- CLIMATE CHANGE IS NATURAL! We only make 5% of CO2. We produce GIGA-TONS of AEROSOLS, offsetting 
our CO2 emissions.
- Stop destroying American industry over this FALSE threat. Solar cells are a net energy DRAIN when you count ALL 
costs.
- “Liberals have pitched themselves as climate leaders with policies like the carbon tax and setting a target of net-zero by 
2050.
But they have presided over six years of growing greenhouse gas emissions, and they are building a new bitumen pipe-
line...”
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The nodes represent the changing ego centres of the specific hashtags that shape public discourse on carbon 
reduction in the built environment. For example, in Fig. 4a, the larger nodes for N1 show the ego centres for 
hashtags #emissions, #carbon, #building and #environment, which denote the trending social media discourse 
for 2009–2012. This network expands in N2 (see Fig. 3b and SI Figure A2) with trending hashtags such as #cli-
matechange, #building, #energyefficiency, #ghg, #transportation, #greenbuilding and #actonclimate, denoting 
the growing public interest for climate action in the built environment between 2013 and 2016. This network 
expansion indicates increased public awareness and engagement toward climate change and carbon reduction 
in the built environment, which can be seen significantly expanding in Fig. 3 (N3 and N4).

We also find that the network modularity increases over time (i.e., 0.444 for N1 to 0.674 for N4), indicat-
ing more connections between the nodes within modules but sparse connections between nodes in different 
modules. It implies that with expanding network (N1–N4), hashtags co-occurrences occur through greater 

Figure 3.  Topologies of hashtag co-occurrence networks (N1–N4) across the 13-year timeline (2009–2021) 
denoting diffusion of climate policy events into the public domain. The size of the node is respective to its 
frequency in a particular network.
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Figure 4.  Eigenvector centrality score ( > 0.01 ) distribution with nodes (hashtags) in the N1–N4 network. 
A score of 1 indicates highest influence of a specific hashtag, while 0 implies hashtags of least influence. This 
measure demonstrates changing online public discourse through hashtags over the 13 year of climate policy 
action. We see mid-end of centrality scores (0.1– 0.3) to be most dynamic across the networks and use it as a 
basis for analysis in this paper. Extended results are presented in SI Figures A2, A3 and A4.
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intra-connections - indicating user engagement over similar topics in groups. Therefore, we see specific hashtags 
become more central to the Twitter conversation over time, which is further explained through the use of eigen-
vector centrality scores.

N3 (see Fig. 4c and SI Figure A3) further shows the diffusion of the above hashtags into more specific 
climate action topics like #climatetech, #netzero, #renewableenergy, #innovation, #health and #climatecrisis, 
documenting that higher-level policy action translates into more specific climate communication toolkits that 
create action-oriented online communities, for 2017 - 2020. This expansion of online climate communities is 
also verified through higher modularity scores for N3 than N2 (see SI Table A2). The N4 was specific to the 
recent UN COP-26 in 2021, after which new hashtags like #buildingstocop26, #woodforgood, #housingcrisis 
and #climatejusticenow appeared (see SI Figure A6), showing the growing public interest in carbon reduction 
as a route to enabling social and environmental justice. Common environmental justice hashtags across the 13 
years with their corresponding eigenvector centrality score are illustrated in Fig. 5.

Fifth, tweets’ core topics change over time as new innovations, technologies, or issues emerge. We specifically 
see this topic dynamism for mid-range centrality scores (0.1–0.3), and the hashtags in the higher score range do 
not change that much across N1 to N4 (see Fig. 4). For example, in the mid-end of the eigenvector centrality score 
(0.1–0.3), additions like #carboncapture and #masstimber were new in N4. They provided a critical clue toward 
the changing focus on the life cycle of emissions and sequestration through carbon capture and storage (CCS), 
natural materials, nature-based solutions and mass timber housing (see Fig. 4d and SI Figure A4). However, as 
these new emergent hashtags do not become highly central over time, it implies that the core online discourse 
of decarbonising the building sector does not shift significantly with the conversation around new technological 
or process-related innovations.

There are significant overlaps between N3 and N4 regarding hashtags with high eigenvector centrality val-
ues as they are part of current climate policy and emission reduction conversations in the building sector (see 
Fig. 1a). New hashtags in N4 can be tracked in Fig. 4d. This figure includes #ccs and #climatetechnology in the 
higher score range (0.6–0.3), a shift from N3, also demonstrated through network expansion in N4. This shift 
can be attributed to its association with #cop26, which increased its network influence. Additions also include 
#businessinnovation, #geoengineering, #concreteeconomy in the same range. Moreover, it can be seen from 
Fig. 4d that greater emphasis on #homes, #retrofit, #supplychain in the mid-score range (0.1–0.3) indicates a 
shift in the online discourse towards residential sector emission reduction efforts (see Fig. 4d), which is a critical 
demand-side decarbonisation topic.

Also, some of hashtags associated with #cop26 in the N4 network are #buildingtocop26, #woodforgood, 
#healthyclimate, #housingcrisis, #scaleupnow, and #climatejusticenow (see Fig. 4d and SI Figure A6). It indi-
cates a paradigm shift in the emission and building policy narratives towards broader social and environmental 
justice contexts. For example, N3 and N4 #masstimber and #woodforgood featured relatively higher eigenvector 
centrality values showing emerging themes in the building emission reduction discourse: alternate low-carbon 
materials to concrete construction. Similarly, the housing crisis, healthy climate, scale-up, and climate justice are 
related to the social justice movement associated with global affordable and healthy social housing narratives.

We further show this thematic evolution to social and environmental justice themes in Fig. 5. For example, 
we found an increase in eigenvector centrality scores for hashtags like affordable housing, save our future, climate 
justice, and carbon tax from 2017. More specifically, an increase in the centrality scores is seen for #climateaction, 
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Figure 5.  An eigenvector centrality heatmap showing temporal shifts in the online discourse through common 
social and environmental justice hashtags (#, y-axis) across the 13-year period (2009–2021).
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#climatecrisis, #healthybuildings and #netzero across N1 to N4 period, demonstrating diffusion of such topics 
in users’ Twitter network. This provides crucial empirical evidence demonstrating that the online climate action 
discourse has become broader and people-centric over time.

Discussion
We have performed a data-driven analysis of the reactiveness of social media users to global climate negotiation 
and policy events on emissions reduction efforts in the building sector. The analysis used 256,717 tweets mention-
ing #emission and #building over a 13-year time frame (2009–2021). Our results show that social media users are 
reactive to high-level policy events by UNFCCC in the building sector. We found five results characterising how 
the people-centric transition in the built environment is influenced by social media use. As a general trend, we 
find that increases in Twitter engagement (i.e. daily Tweets) have a significant correlation with increases in both 
negative ( R2

= 0.296 at 99% CI) and positive sentiments ( R2
= 0.299 at 99% CI) around building sector climate 

action (see Fig. 1). We find positive sentiments grow over time as Twitter engagement increases exponentially 
post-2014. We also observed a rise in negative sentiments by 30–40% since 2014, with spikes caused by tweets on 
environmental injustice (like the world continues to build coal power plants and oil pipelines), non-compliance 
by influential actors (like governments, fossil fuel industry, etc.) and climate denialism (see Fig. 2). We also see 
a general trend where emotions like anger, fear and sadness following high-visibility policy events like the Paris 
Agreement, IPCC Reports and EU Green Deal announcements - potentially caused by the digital action factor 
and the media-driven science communication factor as theorised by Berglez and Al-Safaq26.

Mapping tweets that caused a spike in the dynamic emotional response revealed that public concerns trian-
gulated around inaction towards emission reduction, fairness of carbon tax, the politicisation of building codes 
(distinctively seen for the US) and concerns of environmental degradation (see Fig. 2). This triangulation dem-
onstrated a strong environmental justice discourse amongst the Twitter users (supporting the findings  of62,83). On 
the other hand, the tweets corresponding to higher anticipation scores showed a strong discourse on innovative 
emissions reduction strategies uncommon in the building and construction sector-for example, enabling con-
struction with alternate building materials like cross-laminated timber (CLT), implementing climate-sensitive 
building codes and circular economy. We specifically see these terms emerge and create a broader tweet network 
in N3 and N4 (see Fig. 3 and SI Figures A5 and A6)). Moreover, in these hashtag co-occurrence networks, we 
further see the emergence of broader interconnected low-carbon transition and environmental justice terms like 
social housing, climate justice, wood for good, save our future, climate emergency, climate tech, affordable hous-
ing, healthy buildings, etc. (see Fig. 4 in N3 and N4) which were either absent or in extremely low salience in N1 
and N2 networks. We further showed these temporal shifts in environmental justice-thematic hashtags in Fig. 5.

Such network expansion due to increased Twitter engagement and subsequent information diffusion in the 
building sector emission reduction supports existing research on social network theories emphasising such dif-
fusion is critical for social  integration81,82. Our results demonstrating the emergence of environmental justice 
themes in N3 and N4 (see Figs. 4 and 5) further emphasise that greater engagement can influence communication 
on emissions reduction. Our research can inform future emission reduction strategies in the building sector.

Thus, our findings provide two vital empirical proofs in support of increasing climate communication and 
engagement in hard-to-decarbonise sectors. First, greater digital engagement shapes public perceptions of emis-
sion reduction as demonstrated through expanding hashtag network concerning #emission and #building (see 
Figs. 1 and 3), enabling people to be at the centre of such emission reduction efforts. Second, people are con-
cerned about climate action in this sector as their engagement drives the narratives around justice and fairness, or 
at least we see users are engaging with relevant hashtags, as seen through emerging terms from energy efficiency 
and green building in N1 and N2 to social and environmental justice concerns in N3 and N4 (see Figs. 3, 4 and 
5). The COP26 was extraordinary as the N4 hashtags attributed to the intersection of public health, circular 
economy, affordable housing, and decarbonisation of the built environment (see SI Figure A6). Although these 
mid-eigenvector centrality scores (0.1–0.3) capture these topics as emerging themes, it supports our assumption 
that in a people-centric transition of the built environment, the public is concerned with both emission reduction 
and achieving goals of environmental justice.

However, reflecting on the current Twitter user base ( ≈211 million users globally), we found approximately 
a quarter-million or so tweets on emissions in the building sector during our analysis period, indicating that 
these issues are still low salience. So, one crucial task for policymakers is to immediately raise the salience of 
these issues and develop communications strategies to emphasise the importance of climate action in hard-to-
decarbonise sectors like the building sector.

Conclusion
Building sector decarbonisation is challenging, and it is an urgent global call for the scientific and policy com-
munity. Our study shows that greater social media engagement can steer the online discourse on emissions 
reduction in this sector from demand-side techno-solutionism to focus on environmental justice while expand-
ing the climate action network. This finding has critical implications for designing people-centric policies that 
enable the public to be at the heart of the emission reduction  discussions14. We show that people are reactive to 
high-level climate actions on social media, as measured through the dynamic sentiment analysis over 13 years 
and the expansion of user communication networks. This salient finding implies that policy actions are no longer 
isolated events in this digital age and demand two-way communication.

At a broader level, this paper showed people are reactive to high-level climate action in a hard-to-abate sector 
and should be included systematically in emission reduction decision-making, supporting current debates on the 
democratisation of climate action. Failure to include public voices in this policy debate may lead to environmental 
and social injustices. Methodologically, we also show that social media provides a new type of cross-sectional 
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public datasets for climate policy evaluations and can be easily reproduced in other sectors to support existing 
econometric methodologies.

We would like to note here that our Twitter dataset is generalisable to a specific population of users tweeting 
about these topics for which these issues matter. Thus, our conclusions hold true for this user base who engage 
with Twitter communication containing #emission(s) and #building(s). We studied the opinion of those for 
whom the topic was salient. It was beyond this study’s scope to examine the topic’s relative importance for those 
who do not engage with the above hashtags. Thus, critical conclusions from this paper are: emissions reduction 
decision-making for hard-to-decarbonise sectors need not be isolated; people are reactive to high-level climate 
action events on social media platforms. People engage and expand their network on these platforms to express 
matters vital to them. In our case, it was the context of environmental and social justice with climate action in the 
building sector. Thus, digital tools like social media can be critical for enabling a people-centric climate action.

This paper notably has some limitations. For example, we relied on Twitter’s publicly available dataset through 
v2API, which can have embedded socio-demographic representation bias. To reduce such biases, we used a 
restricted hashtag query design using ’AND’ operator to capture the cross-sectional breadth of the issue in the 
buildings sector, per the best practice  recommendations84–86. We used the English-language-based NRC lexicon 
for sentiment analysis, which is well-recognised in the literature. However, it is limited to its current lexicon 
database. It does not account for complex human emotions like irony or sarcasm. We cross-validated at least 
40% of the Tweets with human readers for sentiment matching. It remains a future extension of this study to 
employ survey methods and participatory workshops with different stakeholders to capture the rich narrative of 
grounded emission reduction efforts following such high-level policy events. Furthermore, research is necessary 
to compare the impact of on-Twitter versus off-Twitter activities on policy reactions and develop a methodology 
of cross-validating online and offline discourses with greater accuracy. Finally, we expand this niche reactive 
public policy analysis field using computational social sciences.

Our study fills a critical research gap using a novel data stream. Moreover, it paves the way for future research 
on people-centric climate action across hard-to-decarbonise sectors. Finally, this paper emphasises explicitly 
that social media platforms can help amplify such efforts by engaging and improving the public understanding 
of the climate crisis.

Methods
Using a unique Twitter dataset, this study uses a data-driven mixed-method methodological approach to under-
standing public reactiveness to high-level climate policy events by UNFCCC concerning emission reduction in 
the building sector. The mixed-method approach consists of two critical stages. First stage is the empirical setup 
of a theoretical background based on existing social media climate communication  literature25–27,36, especially 
expanding on a critical discourse theoretic  lens26 and applying it to our climate policy reactiveness evaluation. 
The second stage is the quantitative treatment of 256,717 tweets over 13 years (2009–2021) using natural language 
processing (NLP), sentiment analysis and hashtag extraction, and network topology analysis based on eigenvec-
tor centrality and hashtag co-occurrence mapping. These stages are explained in detail below with supporting 
information presented in SI Section 2.

Data source. Digital social media platforms like Twitter have gained extensive public popularity among 
researchers as an effective source of data on public opinion about environmental issues and climate policies 
as it enables a diverse range of user-generated content (like texts, images, pictures, audio, video and live con-
versation)63. In addition, tweets offer advantages over traditional methods (including online and face-to-face 
surveys) for exploring public perception and  attitudes65. For example, Twitter users can independently publish 
and deliver UGCs of their choice, adding depth to their  opinions87. Moreover, users can interact through con-
versational replies, retweets, and likes, showing the relationships and reflecting the social nature of informa-
tion  transmission87. Furthermore, as a data platform, Twitter can gather real-time data on an extraordinary 
scale and dimension (i.e., time, location, user attributes) and echo public awareness and response to social and 
environmental policies, facilitating discussions and information  propagation88. Finally, Twitter allows academic 
researchers to collect and analyse data from their platform.

In this study, we use Twitter’s latest  v2API89 to collect historical tweets for 13 years. We used the R-program-
ming language to build the query parameters for data collection using the academictwitteR v0.3.0 package. The 
tweets are downloaded as separate JSON files for a tweet- and user-level information separately on each query. 
These data packets are then bound into an R data.frame object or tibble for further analysis in the R environ-
ment. Due to the development and expansion of Twitter between 2009 and 2021, the number of Twitter users has 
increased significantly. We normalise this effect using ratios rather than absolute figures across the time scale. 
Detailed sample characteristics are illustrated in SI Section 2 (Figures A7 to A11).

As a search query, we used two specific hashtags (#) ’#emission’ and ’#building’ (and its plural forms) with 
the logical operator ’AND’ to capture any available English-language tweets in public Twitter v2API domain 
during this 13-year timeframe without any geographical restrictions. This produced a dataset of 256,717 tweets 
and retweets containing the above hashtags from 188,096 unique user accounts with an exponentially increasing 
trend from 2009 - 2021. We kept the search query restricted by design, as more general queries would expand the 
size of the datasets greatly, leading to downstream problems like noise and computational/analytic difficulties. 
Similarly, more complex queries (i.e. nesting) would lead to complex datasets, as well as shifting the focus from 
the building sector. Our query generates a traceable dataset, that likely has less noise than a a much larger dataset 
would if it were generated by less restrictive query, and which allows for straightforward analysis of the data. We 
specifically use hashtags as they are a critical communication tool on Twitter and have become an essential part 
of Twitter-led data  analysis85. Users deploy hashtags to annotate the content they produce, allowing other users 
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to discover their tweets and enable interaction on the  platform90–94. Also, adding a hashtag to a tweet corresponds 
to joining a network or community of users (Tweeters) discussing the same topic. Finally, hashtags are also used 
by Twitter to calculate trending topics, which encourages the users to post and engage in these  communities91. By 
tweeting a hashtag, users explicitly annotate their tweets for a specific network of Tweeters, or  communities92,94.

Natural Language Processing. The tweets were processed with an NLP workflow using the tidyverse 
v1.3.1 and tidytext v0.3.2 packages in R. The workflow consisted of text pre-processing, feature extraction for 
n-grams and sentiment analysis. The pre-processing stage consisted of tokenisation, stemming and lemmatisa-
tion. In NLP, tokenisation refers to breaking down the given text into smaller units in a sentence called  token95,96. 
Stemming in NLP is a morphological technique that breaks words into their root  form96. Finally, lemmatisation 
is another normalisation technique used to reduce inflectional forms of words to a common base  form96. It 
differs from stemming as it uses lexical knowledge bases to get the correct base forms of  words96. At this NLP 
pre-processing stage, we removed the stopwords using the tm v0.7-8 package in R. Stopwords are the most 
common words in any language (like articles, prepositions, pronouns, conjunctions, etc.) which do not add 
much information to the text. For example, common stopwords in English are “the”, “a”, “an”, “so”, and “what”96. 
This workflow extracted the cleaned base form of words from the 256,717 tweets. In addition, it generated a 
document-term-matrix (dtm) needed for sentiment analysis.

Parallel to this pre-processing, we isolated individual hashtags from the tweet data corpus. The hashtags were 
extracted from each tweet using a feature extraction-like data pipeline where the tidygramr v0.1.0 package pre-
pares n-gram models. We extracted hashtag unigrams from each tweet (n = 13,743) and stored them as a separate 
dtm that included feature vectors of #ngram and the number of times it is repeated in an individual tweet (called 
‘freq’). Both ‘#ngram’and ‘freq’ were later used to create the hashtag network graphs. During this unigram feature 
selection process, we also excluded ‘#emission’ and ‘#building’ to reduce over-representation biases in the dtm.

We used the NRC Word-Emotion Association  Lexicon97 for the sentiment analysis of the tweets through the 
syuzhet v1.0.6  package98,99. It consists of a list of English words and their connotations with eight basic emotions 
(anger, fear, anticipation, trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive); 
the list of corresponding words/terms to the specific sentiment and emotions can be found here:98. The derived 
sentiment scores were then scaled between 0 and 1 (feature scaled) through a min-max normalisation function 
(see eq. 1) in R to visualise its strengths across the tweet time series. In addition, the time-series of sentiments 
were represented through moving average decomposition of 6-months trends (see eq 2).

where m = 2k + 1 . The estimate of the trend-cycle at time t is obtained by averaging values of the time series 
within k periods of t. All of the code necessary to reproduce the pre-processing and analysis are available at 
https:// github. com/ Ramit 1201/ Emiss ionRe ducti on. git.

Network topology analysis. In the previous step, we extracted 13,743 unique hashtags n-grams from 
theQ2 256,717 tweet corpus. These #ngrams provide the basis for constructing hashtag co-occurrence net-
works for #emission(s) and #building(s). The hashtag co-occurrence networks were produced for four distinct 
timescales, N1 (2009–2012), N2 (2013–2016), N3 (2017–2020) and N4 (2021). Co-occurrence networks are a 
graphical representation of how frequently variables appear  together100. In our hashtag co-occurrence network 
construction, we measure how frequently (‘freq’) specific hashtags (as #ngram) are presented in a single tweet. 
A node represents each hashtag in the network, and the co-occurrence between two nodes represents an edge-
weighted by its frequency. Key steps involved in the construction of the co-occurrence networks are building 
a weighted edge list, conversion to an undirected network containing #ngrams connected by edges indicating 
when these #ngrams were listed together and then visualising the network using Gephi v0.9.2. Weighted degree 
values for each node measure the importance of an n-gram. A higher value indicates a greater influence of that 
n-gram (denoted through larger labels) in that network. The undirected network topologies were evaluated 
based on metrics commonly used in social network analysis  research101.

Modularity is at the core of the most popular algorithms for community detection. It measures the structure of 
a graph G where each partition of the vertices has a modularity score. With higher scores indicating that the parti-
tion better captures community structure in  G102,103. Modularity as a metric Q can be expressed as (see eq. 3)104,

where ejj is the fraction of edges in the network that connect vertices in partition i to those in partition j, and 
aij =

∑

i ejj
104.

Eigenvector centrality measures the influence of a node in a network. It evaluates a node’s importance while 
considering the importance of its  neighbours105. It is based on the principle that links from important nodes are 
valued more than links from trivial nodes. All nodes start equal; however, nodes with more edges start gaining 
importance as the computation progresses. Their importance propagates out to the nodes to which they are con-
nected. Through iterative computing, the values stabilize, resulting in the final values for eigenvector  centrality106.

(1)normalized.values =
value −minimum

maximum−minimum

(2)Tt =
1

m

k
∑

j=−k

(3)Q =

∑

i

(

ejj − a2i
)

https://github.com/Ramit1201/EmissionReduction.git
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The clustering coefficient is defined in graph theory as a measure of the degree to which nodes in a graph 
tend to cluster  together107. For an undirected graph, the global clustering coefficient C is estimated in terms of 
the adjacency matrix A (see eq. 4),

where ki =
∑

j Aij , is the number of neighbours of a vertex, i and j are vertices of the graph.
Degree centrality measures the number of edges connected to a node, which is a widely used centrality 

measure. It is expressed as an integer or count and assigns an importance score based simply on the number of 
edges held by each node. The nodes with a higher degree are  central106. Mathematically it is represented in eq. 5,

where m(i, j) = 1 , if there is a link from node i to node j. Graph density measures how many ties between param-
eters exist compared to how many ties between parameters are possible. The density of an unidirected graph is 
presented in eq. 6,

where n is the number of nodes in the network.
The networks were optimised using the ForceAtlas2 (FA2) algorithm based on a force-directed layout that 

simulates a physical system to spatialise a  network108. Nodes repulse each other like charged particles. At the 
same time, edges attract their nodes like magnets. These forces create a movement that converges to a balanced 
state with higher connected nodes placed centrally while nodes with lower connectivity are placed towards the 
network’s  periphery108. This final (optimised) network configuration is expected to help interpret the data. The 
refinement of the network visualisation was performed by using the linlog, gravity and overlapping prevention 
layout settings in Gephi for the FA2 algorithm [a detailed mathematical background for FA2 is provided by 
Jacomy et al.108. Additionally, further visual refinement of the networks was performed using functions like 
Noverlap, and labeladjust  layouts109.
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