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Classification of breast cancer 
histology images using 
MSMV‑PFENet
Linxian Liu1,2,5, Wenxiang Feng1,5, Cheng Chen2, Manhua Liu2, Yuan Qu2,3 & 
Jiamiao Yang2,3,4*

Deep learning has been used extensively in histopathological image classification, but people in 
this field are still exploring new neural network architectures for more effective and efficient cancer 
diagnosis. Here, we propose multi-scale, multi-view progressive feature encoding network (MSMV-
PFENet) for effective classification. With respect to the density of cell nuclei, we selected the regions 
potentially related to carcinogenesis at multiple scales from each view. The progressive feature 
encoding network then extracted the global and local features from these regions. A bidirectional long 
short-term memory analyzed the encoding vectors to get a category score, and finally the majority 
voting method integrated different views to classify the histopathological images. We tested our 
method on the breast cancer histology dataset from the ICIAR 2018 grand challenge. The proposed 
MSMV-PFENet achieved 93.0% and 94.8% accuracies at the patch and image levels, respectively. This 
method can potentially benefit the clinical cancer diagnosis.

Cancer is one of the most lethal diseases for human beings. According to the report from WHO, the number 
of diagnosed patients with cancer reached 19.3 million, and its casualty had increased to 10  million1. The gold 
standard for the clinical diagnosis of cancer is histopathological examination in which pathologists look into 
the prepared tissue sections to determine whether the tumor is benign or  malignant2. The examination done 
by pathologists has two shortcomings. First, pathologists sometimes need to carefully examine many places 
in histological image with high magnification and large field of view. This operation is labor-intensive and 
time-consuming. Second, for high sensitivity and specificity, the examination demands profound professional 
knowledge and experience - more than 100,000 examinations often required in  practice3. Pathologists without 
many practices are prone to the wrong diagnosis, causing patients to miss a valuable period of early treatment.

Benefiting from the development of image recognition technology, the computer-aided histological examina-
tion has made a breakthrough in clinical  application4–7. It is not only improving the efficiency of examination but 
also reducing the rate of misdiagnosis. The computer-aided cancer diagnosis decides by analyzing the features 
in the image. For example, the local binary patterns, gray level co-occurrence matrix, the opponent colour local 
binary pattern, and many other techniques can be used to extract the features and help achieve a classification 
accuracy of  85%8,9. The features extracted by these methods usually are very useful in terms of classifying a 
specific lesion type but are not enough for classifying multiple lesion types in one classifier.

In recent years, deep learning has achieved tremendous success in image  classification10,11 and image 
 enhancement12,13. It can extract abstract features from images with little human  intervention14,15. Image clas-
sification methods based on deep learning frameworks, such as the convolutional neural network (CNN) and 
recurrent neural network (RNN), have been widely used in the pathological classification of  cancer16–22. CNN, 
as a feed-forward neural network relying on its filtering and pooling layers, is good at extracting the features at 
a local  level23. In contrast, RNN as a feed-backward neural network regarding the previous output as a part of its 
input, is good at processing the information at a global  level24. Both frameworks have attracted the attention from 
the healthcare industry. Before they can be formally deployed in clinical applications, some issues must first be 
addressed. For example, the useful information in each input image is quite limited, due to the small image size 
sent to the neural  networks25,26; however, sending the whole-slide image (WSI) into the neural network leads to 
a significant computational  cost27.
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There are three common ways to solve this dilemma. The first one is using a low-latency discriminator which 
can find out the suspicious area in the original  image28,29. Then, a neural network can classify each case with 
respect to the suspicious area. The second way is segmenting the original image into multiple  patches30. The 
neural network then analyzes each patch independently. In the end, the program will summarize the result of 
each patch in the original image and draw a conclusion about the class of this case. The third way is extracting 
features at multiple scales and analyzing the local and global features  simultaneously31,32. However, using the 
deep learning method to select suspicious areas from the high-resolution pathological image is time-consuming. 
Patch-based  approach30 will lose feature context information if the relationship between patches cannot be well 
solved. In addition, the methods based on multi-scale31,32 fail to provide targeted models for multi-scale feature 
representation.

Furthermore, the breast cancer datasets such as  BACH33 and  BreakHis8 often have a limited volume. Using the 
limited data to train the network can easily lead to over-fitting and become useless in the  application34. Transfer 
 learning35 and data  augmentation36 can somehow solve this problem. In the transfer learning, the network model 
is pre-trained on a generalized dataset and then trained on the specific dataset where your application is defined. 
In the image augmentation, the dataset is effectively expanded by various affine  transformations37. This method 
is especially effective for the large-scale pathological images.

Here, we propose multi-scale, multi-view progressive feature encoding network (MSMV-PFENet). To extract 
more effective suspicious region, the key-region-extraction module (KREM) selects the image patches from the 
original pathological images, according to the density of cell nuclei. The progressive feature encoding network 
(PFENet), as our multi-scale feature representation model, progressively extracts features from the images and 
encodes the features into vectors. The feature discrimination network (FDNet) integrates encoding vectors of 
multiple-scales through bidirectional long short-term memory (BiLSTM)), mining potential feature relationships 
between local and global, to avoid loss of information between patches. We combine the advantages of CNN and 
RNN to preserve the short-term and long-term spatial correlation between the features at different scales. In 
addition, the majority-voting method summarizes the results of six views to determine the final category, avoiding 
one-sidedness under a single view. Testing the model on the breast cancer histology (BACH)  dataset33 and Yan’s 
 dataset30, MSMV-PFENet can achieve a good performance in terms of accuracy, precision, recall, and F1 score.

Methods
The proposed MVMS-PFENet took up the high-resolution HE staining pathological images (2048 × 1536) and 
would classify the images into four categories—normal, benign, carcinoma in situ, and invasive carcinoma. As 
shown in Fig. 1, we performed six view transformations (raw, 90◦ , 180◦ , 270◦ , x-flip, y-flip) on an input image 
after preprocessing. In each view, the key regions at three scales were selected from the region with a high density 
of cell nuclei (Fig. 1a), we got six groups of multi-scale key image patches. The PFENet encoded each group of 
patches into vectors (Fig. 1b), then a two-layer BiLSTM fused the encoding vectors of the patches at different 
scales to get category scores in each view (Fig. 1c). Finally, the FDNet analyzed the scores obtained from the 

Figure 1.  Diagram of breast cancer pathological image classification using MSMV-PFENet. (a) KREM. (b) 
PFENet. (c) FDNet. MSI: multi-scale input; PIL: preprocessing input layer; CB: convolution block; AAP: 
adaptive average pooling; D: dimensions; MV: majority vote.
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six views and determined the type of cancer according to majority voting (Fig. 1c). The detailed structure of 
MVMS-PFENet is shown in Table 1.

In KREM, inspired by the standard histological examination, we created a module to extract the suspicious 
areas in a large original image for further analysis to reduce computational cost. The designed module selected 
the image patches at different scales from the original image with respect to the density of cell nuclei due to its 
underlying relation with the lesion.

As shown in Fig. 2, the KREM selection process consists of four key steps: Eq. (1) We first converted the 
colorful input image to a grayscale image and set a threshold according to the mean of pixel values. As a result, 
we obtained a binary image in which the white pixels represented the area occupied by the nuclei. Equation (2) 
Via the statistical analysis of all the histological images at 200× magnification in the dataset, we found that the 
majority of nuclei were in an oval shape with an area of more than 80 pixels and the ratio of area to circumference 
was less than 2.5. According to this criterion, irrelevant regions were removed to refine the region of the nucleus. 
Equation (3) We used a sliding window to search in the image and calculated the number of detected nuclei in the 
window. Equation (4) The image patches with the highest number of nuclei would be selected. Within a selected 
region, a smaller sliding window repeated the previous process to select the image patches at the next scale. In 
this paper, we used sliding windows at three scales. The sizes of sliding windows at the three scales were 897 × 
897, 400 × 400, and 224 × 224, respectively. Their corresponding step sizes respectively were 80, 40 and 20 pixels.

In the training phase, KREM first rotated each pathological image by 90◦ , 180◦ , 270◦ , and inverted rela-
tive to the x- and y-axes to augment the limited dataset. Then we picked out 12 regions with the densest nuclei 
from candidate windows at the first selecting level to further expand the amount of data. Unlike other data 

Table 1.  The architecture of MSMV-PFENet. “Conv” layer shown in the table corresponds to the sequence 
BN-ReLU-convolution (BN, batch normalization; ReLU, rectified linear unit); FC: fully connected layer.

Block Layers Output size (C × H × W) Parameters Repetition

MSI

Input-1 3 × 224 × 224 Downscale 4 × –

Input-2 3 × 224 × 224 Downscale 1.79× –

Input-3 3× 224 × 224 Downscale 1 × –

PIL
Conv 64 × 112 × 112 7 × 7, Stride 1 –

Maxpool 64 × 56 × 56 3 × 3, Stride 1 –

CB-1

Conv 64 × 56 × 56 1 × 1, Stride 1

× 3Conv 64 × 56 × 56 3 × 3, Stride 1

Conv 256 × 56 × 56 1 × 1, Stride 1

CB-2

Conv 128 × 56 × 56 1 × 1, Stride 1

× 4Conv 128 × 28 × 28 3 × 3, Stride 2 or 1

Conv 512 × 28 × 28 1 × 1, Stride 1

CB-3

Conv 256 × 28 × 28 1 × 1, Stride 1

 × 6Conv 256 × 14 × 14 3 × 3, Stride 2 or 1

Conv 1024× 14 × 14 1× 1, Stride 1

CB-4

Conv 512 × 14 × 14 1 × 1, Stride 1

 × 3Conv 512 × 7 × 7 3 × 3, Stride 2 or 1

Conv 2048 × 7 × 7 1 × 1, Stride 1

AAP
AdaptiveAvgPool2d 2048 – –

Concatenation 2048 × 3 – –

FD BiLSTM 256 1 × 4

Output
FC 4 – –

Softmax 4 – –

Figure 2.  Diagram showing how the KREM extracts image patches. The extraction process includes four key 
steps: binarization, refinement, count, and selection.
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augmentation methods, this step is based on the data augmentation achieved by our proposed sliding window 
nuclei density detection technique. This can reduce invalid patches and preserve the information of the lesions. 
After that, our pathological image dataset was amplified by 72 times. In the testing phase, KREM performed 
six view transformations on a testing image, and only picked the densest region of cell nuclei in each view. We 
observe from 6 views, thereby avoiding the sliding step length too long and could not cover the area with dense 
nuclei. Figure 3 shows the image patches selected by the KREM.

The structure of PFENet was composed of three parallel networks. The PFENet represented the image patches 
at multiple scales by vectors to facilitate the fusion of features of different scales (Fig. 4). Before inputting the 
network, we used bilinear interpolation to subsample the image patches at the ratios of 4 × , 1.79× , and 1 × . The 
three image patches produced in each view were used as a group, corresponding to the three inputs of the PFENet. 
The PFENet at all scales shares the same structure similar to  ResNet5038. We did not adopt a network structure 
larger than ResNet50 to limit the computation cost in the feature extraction. The PFENet progressively extracted 
low-level color, texture, and deep semantic features layer by layer through convolution to learn pathological 
information at various scales. Finally, three 2048-dimensional encoding vectors were obtained via the adaptive 
average pooling layer. This would reduce the amount of calculation in the BiLSTM to get category scores.

The encoding vectors at different scales represent global and local features, and they have strong correla-
tions at one view. We used two layers of BiLSTM to share and learn the feature representation. The two-layer 
BiLSTM is a part of FDNet, as shown in Fig. 1c, the input is three consecutive sequences corresponding to the 
output of PFENet. BiLSTM is composed of two LSTM (Fig. 5). A directed ring is formed between LSTM units, 
which creates the internal state of the network and makes information flow between units. The output of LSTM 
depends on the previous input and the current internal state. The encoding vectors were fed into the network, 

Figure 3.  An example showing the image patches selected by the KREM. The left is the input image, and 
the right is the densest area of cell nuclei on three scales selected from image after performing six view 
transformations. First, second and third are the scale levels.

Figure 4.  Diagram of obtaining the encoding vector. The adaptive average pooling layer flattens the output 
feature map into a 2048-dimensional (D) encoding vector to represent the key region image patch.
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and the information flowed in three channels to establish a global and local relationship, thereby making up for 
the limitations of features at different scales. In this way, BiLSTM fused multi-scale pathological features and 
mined the potential feature relationships between input sequences, and then got pathological image category 
scores in each view. Finally, we got scores on six views. To realize the end-to-end classification, PFENet and 
BiLSTM were jointly trained.

Pathological images are special in that they have no directional specification. The diagnosis results should not 
be affected by the view and should be consistent. However, images clipped from the WSI may have blank areas, 
as shown in the last column of Fig. 6. The existence of the blank areas will cause inaccurate extraction of image 
patches in key areas. In addition, the window has a stride in sliding and cannot traverse the image completely, 
which will also affect the acquisition of key areas. Therefore we need to further discriminate categories from 
different views. The final category is determined by the results of six views using the majority voting method.

Results
Experimental setup. We trained and tested the MSMV-PFENet on a platform equipped with one NVIDIA 
Tesla V100 GPU (32G memory) and 24-core Intel Xeon Platinum 8168 Processor (33M Cache, 2.70 GHz). We 
trained the network with a batch size of 64 through 27,000 iterations, using stochastic gradient descent (SGD) in 
which we set the momentum to 0.9 and weight decay to 1e-4. To accelerate the training, we set the initial learn-
ing rate at 0.01 for the first 30 batches and then divided the rate by 10 after every 10 batches, until the rate was 
equal to 1e-4. The BACH  dataset33 used in our experiment contained 400 training images and 100 testing images 
(Fig. 6, Table 2). The dimensions of images are 2048 × 1536 pixels, and the pixel size is 0.42µm× 0.42µm . We 
divided training images into two sets with a ratio equal to 4:1 for training and validation.

Figure 5.  Diagram of two-layer BiLSTM we used. Each circle represents a node, the input layer has three nodes 
and the output layer has four nodes. The direction arrow indicates the direction of information flow.

Figure 6.  Microscopic H &E images of four types of tumors from the BACH dataset (200× magnification).
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To avoid over-fitting due to the small size of the dataset, we used transfer  learning35 and data  augmentation36 
techniques. PFENet originated from ResNet50 pre-trained from ImageNet. PFENet did not have the average 
pooling layers and fully connected layers that were essential for ResNet50 and replaced by an adaptive aver-
age pooling layer. We randomly initialized the parameters in FDNet and trained FDNet with PFENet together. 
PFENet encoded the features in the image into a vector, and FDNet took the vector in for classification. We fine-
tuned the whole model according to the classification feedback so that FDNet could discriminate the various 
features and images correctly. The specific details of dataset augmentation are presented in the Methods section. 
We also normalized the color in the images to avoid the inconsistency caused by different staining  protocols39.

To demonstrate the classification capabilities of MSMV-PFENet, we used the same image-level and patch-
level as  in30,31 to evaluate the network from multiple aspects. We defined the accuracy (Acc), precision (Pre), 
recall (Rec), and F1 score (F1) as

Here, TP, TN, FP, and FN are the true-positive, true-negative, false-positive, and false-negative, respectively. 
These criteria had also been adopted  elsewhere40,41.

Comparison with other methods. To show the classification capability of MSMV-PFENet, we compared 
the accuracy given by our network with that in the other  published30,39,42–44. Our MSMV-PFENet could achieve 
an accuracy of 93.0% at patch-level (Table 3); the value was higher than those reported elsewhere. The compari-
son illustrated that a well-trained MSMV-PFENet could effectively extract the most important features in the 
original images at both the local and global levels. Moreover, the BiLSTM and majority voting mechanism in our 
network further boosted the accuracy through comprehensive consideration of local and global features. As a 
result, MSMV-PFENet achieved an accuracy of 94.8% at image-level.

Results on the key regions extraction. To check the influence of various methods extracting the image 
patches from the original images, we compared our method guided by the density of cell nuclei with other 
methods of randomly selecting patches. When we chose the random selection, training MSMV-PFENet was 
difficult, because not all of the lesions in the original image would be sent to the classifier for analysis, which led 
to relatively low accuracy ( 85.4% ). In comparison, our method made the training process much easier than the 
random selection method and benefited the classification power of MSMV-PFENet, based on the fact that can-
cer cells were often associated with increased nuclear size, irregular nuclear contours, and disturbed chromatin 
distribution. At the patch-level, the accuracy could reach  93.0%.

(1)Acc =
TP + TN

TP + TN + FP + FN
,

(2)Pre =
TP

TP + FP
,

(3)Rec =
TP

TP + FN
,

(4)F1 =
2× Pre × Rec

Pre + Rec
,

Table 2.  Information about the BACH  dataset33.

BACH dataset Normal Benign In situ Invasive Total

Train and validate 100 100 100 100 400

Test 25 25 25 25 100

Table 3.  Reported classification accuracy at patch-level and image-level using various networks.

Method Patch (%) Image (%)

Araújo et al.42 66.7 77.8

Kohl et al.39 – 83.0

Rakhlin et al.43 – 87.2

Golatkar et al.44 79.0 85.0

Yan et al.30 82.1 91.3

Our work 93.0 94.8
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Results on different network combinations. To find an optimal design for feature encoding and dis-
criminating in MSMV-PFENet, we carried out a comprehensive study comparing various architectures (Table 4). 
For feature encoding, we chose a fully connected layer as the feature discriminator and tested FENet, PFENet, 
 VGG1626,  GoogLeNet45, and ResNet-10138 as the feature encoder (Table 4, rows 1–6). PFENet in this test pro-
vided the best accuracy at both the patch and image levels among the five architectures because the PFENet 
containing 3 CNNs in parallel could encode the features from the local and global levels simultaneously. The 
global features represented at low resolution also reduced the computational cost and made the classifier more 
efficient than analyzing a high-resolution image as a whole.

After we settled down the issue with feature encoding, we tested several candidates, including the FC, support 
vector machine (SVM) and BiLSTM, for the classifier (Table 4, rows 6–10). BiLSTM outperformed the other two 
candidates, because it could effectively associate the information at the local and global levels. Unfortunately, 
training BiLSTM was difficult. The deeper the BiLSTM network was, the harder the network converged to a 
qualified discriminator. Balancing the tradeoff between the accuracy and feasibility of training, we finally chose 
a network design with a double-layer BiLSTM for the following demonstrations.

Results of the whole network. Figure 7a shows the confusion matrix calculated in our test on the BACH 
test dataset. The results confirmed that our MSMV-PFENet could accurately associate the histological images 
with their clinical outcomes, including normal, benign, in situ carcinoma, and invasive carcinoma. The preci-
sion, recall, and F1 score as additional references were also calculated, and these scores had always been higher 
than 92.8% (Fig. 7b). We noticed that the misclassification rate was higher for the normal tissue, which perhaps 
was induced by the subtle inconsistency in the tissue morphology among the populations with different geno-
types.

In addition, we also verified our method on the Yan’s  dataset30. This dataset contains 3771 diversified high-
resolution pathological images. Figure 8a shows the confusion matrix calculated on the test dataset. The precision, 

Table 4.  Performance comparison of various network architecture combinations.

Feature encoding method Discrimination method Patch ( %) Image ( %)

Single FENet FC 84.3 85.4

Double FENet FC 86.6 88.9

VGG16 FC 78.8 80.1

GoogLeNet FC 82.0 82.6

ResNet-101 FC 85.5 86.1

PFENet FC 88.7 92.5

PFENet SVM 89.1 90.0

PFENet BiLSTM 89.5 92.3

PFENet (best) BiLSTM × 2 93.0 94.8

PFENet BiLSTM × 3 91.2 93.7

Figure 7.  Results of the whole network on the BACH test dataset. (a) Confusion matrix illustrating the 
classification done by MSMV-PFENet. (b) Histogram of the precision, recall and F1 score for the evaluation of 
MSMV-PFENet.
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recall, and F1 score were still maintained at higher than 92% (Fig. 8b), and the accuracy reached 95.6% . The results 
demonstrated that MVMS-PFENet also can achieved good performance on a larger dataset.

Conclusion
In this paper, we proposed MSMV-PFENet to classify the high-resolution breast histopathological images. We 
first selected the image patches at multiple scales from the high-resolution images, using a sliding window and the 
statistics of cell nuclei, so as to avoid selecting invalid image patches and preserve the data information of lesions. 
The PFENet then extracted the color, texture and deep semantic features of pathological images and converted 
these image patches into the encoding vectors to improve the efficiency of multi-scale feature processing. The 
BiLSTM fused the encoding vectors and mined the potential feature between sequences to get category scores 
in each view. Transfer learning accelerated the convergence of PFENet as well as BiLSTM and improved the 
generality of the model. The image augmentation expanded the dataset through various rotations and flips and 
reduced the likelihood of over-fitting. The majority voting method combined the category scores from six views 
(original, 90◦ rotated, 180◦ rotated, 270◦ rotated, x-flip, y-flip) and further improved the accuracy of classification. 
The results were verified on the BACH dataset, and the accuracy of patch-level and image-level reached 93% and 
94.8% respectively. We also verified our method on the dataset released by Yan et al.30, and achieved the state-
of-the-art results. Our method therefore could be a potentially useful tool for pathologists working on cancer.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 6 December 2021; Accepted: 13 October 2022
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