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Simplified inelastic electron 
tunneling spectroscopy based 
on low‑noise derivatives
Shankar Kesarwani1, Shobhna Misra1, Dipankar Saha1, Maria Luisa Della Rocca2, 
Indrajit Roy3, Swaroop Ganguly1 & Ashutosh Mahajan4*

A standard experimental setup for Inelastic Electron Tunneling Spectroscopy (IETS) performs the 
measurement of the second derivative of the current with respect to the voltage ( d2I/dV2 ) using a 
small AC signal and a lock-in based second harmonic detection. This avoids noise arising from direct 
differentiation of the current-voltage characteristics (I–V) by standard numerical methods. Here we 
demonstrate a noise-filtering algorithm based on Tikhonov Regularization to obtain IET spectra (i.e. 
d
2

I/dV2 vs. V) from measured DC I–V curves. This leads to a simple and effective numerical method 
for IETS extraction. We apply the algorithm to I–V data from a molecular junction and a metal-
insulator-semiconductor tunneling device, demonstrating that the computed first/second derivatives 
have a workable match with those obtained from our lock-in measurements; the computed IET 
spectral peaks also correlate well with reported experimental ones. Finally, we present a scheme for 
automated tuning of the algorithm parameters well-suited for the use of this numerical protocol in 
real applications.

Inelastic Electron Tunneling Spectroscopy (IETS) is a powerful tool to measure vibrational spectra, introduced by 
Lambe and Jaklevic in 19661. Since then, it has been widely used for studying electron-phonon inelastic interac-
tion and vibrational spectroscopy of molecules and organic and inorganic thin films2–6. Other well-established 
vibrational spectroscopy techniques, like Raman Spectroscopy and Fourier Transform Infrared Spectroscopy 
(FTIR), require somewhat involved optical setups. IETS, on the other hand, is an all-electronic technique, and 
as such does not exclude the optically inactive modes of vibration. It also promises ultra-high sensitivity and 
high selectivity7–10.

In 1996, a new dimension to IETS was opened up with the proposition from Luca Turin that biological olfac-
tion might be based on sensing the vibrational energies of odorant molecules through an IETS mechanism11. 
While controversial, this ‘Vibration Theory of Olfaction’ gave a new lease of life to the longstanding hypothesis 
that smell is derived from molecular vibrations12. It also positioned Olfaction as a prototypical system in the 
nascent field of Quantum Biology13.

This proposition has piqued technological interest in electronic nose (e-nose) sensors, which would be bio-
mimetic in the sense of being IETS-based14,15. Currently, there is an abundance of e-nose technologies for gas 
or vapour sensing, based on various transduction mechanisms (e.g. resistive, capacitive)16,17; but mimicking 
natural olfaction is still an open challenge. A biomimetic sensor would be a significant advance with potential 
applications in multiple domains, e.g. security (as can be seen from the use of sniffer dogs to detect explosives 
and drugs), environmental monitoring, healthcare, food/agriculture, and cosmetics.

Thus, IETS could be a lab tool for physico-chemical analysis and, with further development, a plausible 
candidate to realize a quantum biomimetic e-nose sensor.

The process of inelastic electron tunneling occurs when electrons tunneling through a thin barrier lose 
part of their energy in exciting phonon modes in the barrier or vibrational modes of proximate molecules. The 
onset of such inelastic tunneling process is indicated by a kink in the current vs. voltage (I–V) characteristics 
whenever q times V (where q is the electronic charge) increases beyond the energy of a vibrational mode. This 
corresponds to the opening of an inelastic tunneling transport channel as shown in the red circle of Fig. 1. The 
vibrational spectra depend on the constituent atoms and their bondings, as a consequence it acts as a chemical 
fingerprint of the barrier material. Since the elastic current usually dominates over the inelastic contribution in 
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most tunneling devices, signatures of inelastic transport are hard to discern directly in the I–V curves. This can be 
better addressed by measuring or computing the second derivative of the I–V curves. This leads to a vibrational 
spectrum (the IET spectrum) with peaks corresponding to various vibrational modes, similar to standard Raman 
or FTIR spectra. However, traditional methods of computing numerical derivatives based on finite differences, 
typically lead to large noise levels. This difficulty is surmounted in a typical IETS experimental setup for a direct 
second derivative measurement. In this case, under an applied small AC input voltage, the non linear tunneling 
device current output is composed by higher order harmonics of the applied input; Taylor Series analysis shows 
the second harmonic to be proportional to the second derivative of the I–V curve. Homodyne detection is used 
to measure the second harmonic of the output signal. However, lock-in amplifiers, while versatile and robust for 
the derivative measurement, make the experimental setup bulky and expensive, particularly for e-nose sensor 
applications.

In this work, we have implemented a filtering algorithm to obtain low-noise first and second derivative com-
putation from noisy DC I–V measurements. This alternative protocol can be highly suited for the realization of 
compact IETS-based sensor systems, as well as analytical setups. It can also greatly simplify low-noise derivative 
measurements for a larger range of other applications18,19. We validate our approach by comparing our results 
with standard IETS measurements performed on two devices of different nature, a molecular junction and a 
metal-insulator-semiconductor (MIS) tunneling device.

The novelty here springs from the adaptation of the filtering algorithm (hereafter called ‘Algorithm’) from 
the applied mathematics literature20,21. We introduce the “Algorithm” section. Its application to reproduce the 
experimental results from traditional IETS measurement on a molecular junction22 is presented in “Results and 
discussions: molecular junction” section. In “Results and discussions: MIS device” section, we similarly show 
its application to IETS for a MIS tunneling device. In this case, the IETS peaks are seen to be merged with each 
other; we show that vibrational peak decomposition enables the identification of the material system nonethe-
less. In “Automated computation of IET spectra” section, we present a strategy to automate the tuning of the 
parameters of the Algorithm for the estimation of the low-noise derivatives of I–V, which would be a necessary 
element of a real analytical setup or sensor system.

Algorithm
IET spectra consist of peaks in the second derivative of I vs. V at voltages (or equivalently energies or wavenum-
bers) corresponding to the excited vibrational modes. We present a far simplified approach to IETS numerical 
computation based on a direct evaluation of a low-noise first and second derivative of the I–V curve. The experi-
mental and numerical approaches are schematically compared in Fig. 1. On the left, the typical experimental 
set-up is illustrated, where DC and AC voltage signals are added up and fed to the device under test (DUT); the 

Figure 1.   Schematic of IETS phenomenology (center), the standard setup thereof (left), and the method 
proposed here (right). The inset in the central red circle shows a tunnel barrier connected to contacts. The 
opening up of the inelastic channel leads to a kink in the I–V characteristics, as seen in the top panel of the 
stacked schematic plot on the right. The first derivative gives a step-like feature, and the second derivative a 
spectroscopic peak as shown underneath. Since usual numerical differentiation is noisy, the setup used for IETS 
is a small-signal lock-in illustrated on the top left. It applies a combined dc plus ac input to the tunneling ‘device 
under test’ (DUT). The output current I out will contain dc and ac components, including higher harmonics. The 
first (second) harmonic will be proportional to the first (second) derivative, and these are detected by a lock-in 
amplifier. Our setup, illustrated on the top right, features a simple I–V measurement followed by a filtering 
algorithm to generate low-noise derivatives. This leads to the IET spectrum in the intuitive way illustrated by the 
stacked plots on the right.
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device current Iout goes as the input to a lock-in amplifier, for detection of its first and second harmonic com-
ponents. The right part of Fig. 1 shows the schematic of the DC I–V measurement setup. The proposed noise 
filtering algorithm needs only the measured current as function of the bias voltage in order to calculate the first 
and second derivative of the I–V curve, analogous to the experimental approach. The small-signal measure-
ment with a lock-in tuned at the first harmonic yields the first derivative of I vs. V, i.e. the conductance; thus the 
filtering Algorithm yields a first derivative en route to the second. We have therefore, in all cases, also compared 
these two as an intermediate validation of the Algorithm.

Let vector y be the measured experimental data for the current and x be its derivative, the conductivity. They 
are related by the matrix equation Ax = y , where A is the assembled matrix by finite difference scheme with a 
quadrature rule of integration.

The low-noise derivative estimation here is essentially a noise filtering process based on Tikhonov 
Regularization20. It imposes the following costs—mathematically parameterized in a ‘Cost Functional’, Jη(x) , as 
seen in Eq. (1). One, for moving away from the simple derivative of the given noisy function—this is the ‘Fidelity’ 
term φ in the Cost Functional. Two, for a derivative that is too jittery—the ‘Penalty’ term ψ in the Cost Functional,

which can be written in matrix form as,

where, η is the tuning parameter, widely known as a regularization parameter that is essentially the outcome of 
the Tikhonov regularization20.

The regularization parameter η is determined by the balancing principle as described in21. The balance 
between these terms is attained by the Regularization Parameter η and a second parameter γ that controls the 
shape of the solution. The Penalty and Fidelity terms can be related linearly as follows21,23:

The mathematical details of the Algorithm, including the balancing principles for the determination of the 
Regularization Parameter, are detailed in Supplementary Material, Section I. The flow chart therein, Fig. S1, 
illustrates the steps in the method for obtaining the low-noise second derivative of the I–V characteristics. In the 
following sections, this method has been applied to calculate IET spectra for two different systems, which match 
very good those obtained from a standard IETS setup. Lastly, we mention in passing that this filtering Algorithm 
has also been implemented and validated on a Raspberry Pi electronic microcontroller.

Results and discussions: molecular junction
The Algorithm has been tested on IETS results reported by Salhani et.al22 on a large-area vertical molecular 
junction. These junctions are based on a cross-conjugated Anthraquinone (AQ) layer. The junctions were fabri-
cated in a standard cross-bar geometry and the molecular layer was covalently grafted on the base electrode by 
diazonium electrochemistry. The total AQ thickness was estimated to ∼ 8 nm by atomic force microscopy (AFM).

Low-noise transport measurements were carried out at low temperature ( 5 K) by acquiring simultaneously 
the DC current-voltage characteristics, its first and second derivative, by the lock-in technique. The rms modula-
tion voltage chosen for the measurements was 8 mV at a frequency of f = 17 Hz, and the integration time was 
3 sec. The longer integration time reduces noise levels. Noise reduction is also effected by utilizing two low-pass 
filter options in the lock-in amplifier: the input analog filter and the synchronous filter. Signatures of vibrational 
modes excited by inelastic events are revealed in the whole measured voltage range.

The Algorithm is applied to the I–V characteristics measured experimentally as described in Ref.22. The 
Algorithm generates the first and second derivative as well as the filtered I–V data, as seen in Fig. 2a,b. Both 
the first and second derivative functions produced by the algorithm are compared with the direct experimental 
measured data in Fig. 2. A good matching is obtained for the algorithm parameter γ equal to 0.8. That includes 
the multiple peaks in the second derivative (IETS) data as seen in Fig. 2(c) where the peak assignmens to vibra-
tional modes have been indicated.

In Table 1, we bring out the difference in the peak position obtained by the lock-in measurement and by 
the algorithm. The error in detection is calculated for the quantitative characterization. It can be seen that the 
error in peak position is less than 4 % except for the second peak and the peaks detected by the algorithm fall 
in the range reported in experimental measurements in22 and references therein. However, 3 peaks out of 13 
reported in the experimental measurements are missed out by the algorithm. The first and second derivatives 
calculated using the standard finite difference method with moving average smoothing (FDMA) are shown for 
comparison in Fig. 3. The first derivative is smoothed with a moving average of width 5, but is still significantly 
noisier, particularly at higher bias. Whereas the second derivative, despite smoothing with a moving average of 
width 9, is extremely noisy.

Lastly, we note that the DC I–V characteristics here are measured while applying the AC modulation voltage. 
This could lead to a broadening of spectral peaks as in the lock-in measurement, due to the modulation voltage. 
In hindsight, the accuracy could be improved by removing the AC modulation during the DC measurement.

This constitutes the first validation of our approach of using the filtering derivative Algorithm on DC I–V 
data, as a promising alternative to the standard IETS setup.

(1)Jη(x) = φ(Ax − y)+ ηψ(x),

(2)Jη(x) = (Ax − y)T (Ax − y)+ ηDxTDx,

(3)ψ(x) = γ ηφ(x)
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Results and discussions: MIS device
The second test of the Algorithm has been performed on MIS tunneling devices, fabricated for the purpose of 
this study. The MIS comprises a 10/100 nm thick Cr/Au as the top metal, followed by 2 nm layer of HfO2 from 
Atomic Layer Deposition (ALD) as the insulating layer and Si(100) substrate with n-type doping of about 1019 /
cm3 . The IETS measurements were performed at a temperature of 10 K. The device fabrication and measurement 
are detailed in Supplementary Material, Section II. The Algorithm is applied to the measured DC I–V to obtain 
dI/dV vs. V. A comparison of the first derivatives is shown in the Supplementary Material, Section II. Applying 
the Algorithm to this dI/dV then yields d 2I/dV2 vs. V. A comparison of the second derivatives (IETS) is shown 
in Fig. 4 with the same color code of Fig. 2. In both cases, the derivative spectra produced by the Algorithm 
matches well with those obtained from the direct measurements. In comparison, we see from Fig. 4b that the 
second derivative calculated using the standard finite difference method is extremely noisy even after smoothing 

Figure 2.   Blue and red colors denote, respectively, plots obtained from experiment (EXPT) and by the 
application of the filtering algorithm (ALGO) for a molecular junction. (a) First derivative of the current as a 
function of voltage (conductance), dI/dV vs. V. Inset: I–V characteristics. (b) Second derivative of the current 
as a function of voltage (IET spectrum), d 2I/dV2 vs. V. (c) Both positive and negative bias IETS peaks are 
represented as curves plotted after Symmetrization on the experimental data and algorithm curves.
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with a moving average of width 9 (FDMA). The coefficient of determination is computed for both the Algorithm 
and the FDMA method, in order to quantify their accuracy.

The device structure is not symmetrical due to which there is an asymmetry between positive and negative 
bias spectra4,24. The IET spectra present overlapping peaks. The identification of the molecular vibration related 
to chemical species would require to deconvolve these peaks inferring the contributions which add up to give 
the spectrum. Obviously, this is an optimization problem that involves finding out the peak characteristics (e.g. 
number, shape, center, height, width) so that their superposition gives the best fit to the IETS spectrum. Note 
that peaks overlapping is a known problem affecting IETS measurements at high temperatures. Thus, a robust 
tool for the deconvolution of overlapping peaks could also enable higher-temperature IETS numerical analysis. 
We carried out unconstrained deconvolution (i.e. without any user-specified peak values) of the IET spectra 
obtained from the Algorithm, and from the lock-in measurement and is plotted in Fig. 5. Peak identification 
in terms of the responsible molecule/material and mode was carried out to the best of available information 
(previously reported Raman, FTIR and IET spectroscopic data), and is reported in Table 2. Peaks obtained from 
the experimental IETS at 193, 364, 565, 633 cm−1 correspond to the Monoclinic HfO2 , peaks at 865, 1310 cm−1 
belong to SiO2 molecule (Asymmetric Stretch), 879 cm−1 for Hf-silicate and 1527 cm−1 for 2-propanol are in good 
agreement with the literature4,24–27. Similarly the peaks obtained from the Algorithm at 174, 229, 601 cm−1 belong 
to Monoclinic HfO2 , peaks at 475 cm−1 to SiO2 molecule (Rocking), peaks at 1069, 1212 cm−1 to SiO2 molecule 
(Asymmetric Stretch), 882 cm−1 for Hf-silicate, 1402 cm−1 for 2-propanol, 1457 cm−1 for 2-propanone and 1603 
cm−1 for 1-Methyl-2-pyrrolidinone. We note that the errors between peaks obtained here versus those previously 
reported is well within 10 percent in almost all cases4,25–29. In principle, the error could be further minimized 
by reducing the peak width through the insertion of RF filters in the measurement lines30–33. Now, we point out 
that HfO2 , SiO2 , Hf Silicate and 2-propanol are adequately identified by both the techniques, though the spectra 
obtained are not exactly identical. This is promising for the development of this and similar algorithms, indicating 
that with sufficient data and training, they can eventually replace the small-signal second harmonic approach 
traditionally used in IETS experiments. A preliminary approach toward that is described in the following section.

Figure 3.   Comparison of derivatives of current from: experimental lock-in measurement (EXPT, in blue); our 
filtering algorithm (ALGO, in red); and, finite differences smoothed by moving averages (FDMA, in gray). (a) 
First derivative of current with respect to voltage, i.e. conductance, vs. voltage. The FD first derivative has been 
filtered with a moving average of width 5. (b) Second derivative of current with respect to voltage vs. voltage, i.e. 
IET spectrum. The FD second derivative has been filtered with a moving average of width 9.
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Automated computation of IET spectra
The filtering Algorithm balances ‘Fidelity’ to the nominal derivative of a noise-added function with a ‘Penalty’ 
for an excessively jittery derivative, in order to arrive at the optimal estimate of the true derivative. Now, for the 
Algorithm to be used as a standalone tool for low-noise derivative computation, we need to develop a method for 
automatic parameter estimation. In particular, we focus on automating the choice of the parameter γ in Eq. (3).

First, in order to expand our working data-set of IETS-like spectra beyond the experimental ones from the 
use cases above, we generate a synthetic dataset, as suggested by Ito et al.21. The synthetic I–V data is obtained 
by twice integrating a sum of Gaussian peaks (corresponding to noise-free IETS) and adding white (Additive 
White Gaussian) or colored (pink and brown) noise thereto. The detailed methodology has been elucidated in 
the Supplementary Material, Section III.

We find that the optimal γ depends on a few factors. Namely, the magnitude of the additive noise; and, any 
two of the following: the resolution between data points, their number, the range of the data. Automation of the 
choice of γ is accomplished by fitting analytical formulas to γ as a function of the relevant parameters.

The resolution of the I–V data on the voltage scale plays an essential role in the choice of γ since a finer 
resolution captures smaller-scale features. In this case, the formula for γ needs more inputs (than for a coarser 
resolution) for optimal fitting. For voltage resolution below 0.5 mV, we find that the optimal γ must be considered 
to depend on both the noise level and the number of points in (or equivalently, the data range of) the spectrum. 
For voltage resolution in the narrow intermediate range of 0.5 mV to 1 mV, where we observe somewhat broader 
features, the γ may be considered to depend only on the number of points in the spectrum (it is possible to 
subsume this regime within the prior one). For coarser resolutions, and equivalently even broader features, a 
constant value of γ is found to suffice. The quantitative dependencies are captured by the following formulas that 
are empirically found to apply to our synthetic dataset, and illustrated by the contours and curve in Fig. 6a,b.

For resolution = 0.0005, γ = 0.0816 ∗ δ ∗
√
n

Figure 4.   Comparison of second derivative of current with respect to voltage vs. wavenumber, i.e. IET 
spectrum—from smoothed experimental lock-in based second-harmonic measurement (EXPT, in blue); from 
our filtering algorithm (ALGO, in red); and from finite differences smoothed by moving averages (FDMA, in 
gray). (a) Linear-linear plot of IET spectrum for MIS tunnel, showing EXPT and ALGO. (b) Log-linear plot of 
IET spectrum, showing EXPT, ALGO, and FDMA. The FD second derivative has been filtered with a moving 
average of width 9 here. R 2 is the coefficient of determination, quantifying the match to EXPT.
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Figure 5.   Deconvolution of IET spectra separating out the peaks related to molecular vibration identified by 
the arrows for MIS tunneling device. Red denotes the IET spectrum, green denotes the deconvoluted peaks, 
and black denotes their sum (which match with the IET spectra). (a) Experimental IETS, from small-signal 
lock-in measurement. The peaks at 193, 364, 565, 633 cm−1 belong to HfO2 , peaks at 865, 1310 cm−1 belong to 
SiO2 , 879 cm−1 to Hf Silicate and 1527 cm−1 corresponds to 2-propanol. (b) IETS obtained by application of the 
filtering algorithm. The peaks at 174, 229, 601 cm−1 belong to HfO2 , peaks at 475, 1069, 1212 cm−1 belong to 
SiO2 , 882 cm−1 to Hf Silicate, 1402 cm−1 corresponds to 2-propanol, 1457 cm−1 to 2-propanone and 1603 cm−1 
to 1-Methyl-2-pyrrolidinone.

Table 1.   IETS peaks obtained from standard measurements and from the filtering algorithm; identified 
through comparison with peaks reported in22 and references therein).

S. no.
Energy in meV (lock-in 
measurement) Energy in meV (algorithm)

Error(%) (deviation from the 
mean) Assignment

1 6–18 NOT detected – AQ skeletal def

2 25–40 37 13.85 ν(Au–N)

3 60–75 65 3.7 ν(C–N) δ(C–N=N)

4 100–110 NOT detected – δ(=C–H) δ(N–H)

5 125–135 130 0 δ(=C–H) ν(C–C)

6 165–180 177 2.60 AQ ring stretch.ν(C–N), ν
(N=N)

7 200–210 205 0 AQ aromatic def.ν(C=C), ν
(C=O)

8 230–235 234 0.64 δ(=C–H) overtones

9 250–265 247 4.0 δ(=C–H) overtones

10 285–310 302 1.51 ν(N≡N)

11 345–360 353 1.41 ν(C=C) overtones ν(CH2)

12 400–415 NOT Detected – ν(N–H), ν(O–H) ν(C=O) 
overtones ν(C=C)

13 427–450 434 1.02 ν (O–H)
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Table 2.   IETS peaks obtained from standard measurements and from the filtering algorithm; identified 
through comparison with peaks reported in the literature from IET, Raman and FTIR spectroscopy. Note that 
the available data allows identification of the molecule/material in all cases, but not always the vibrational 
mode. (*These molecules are conjectured to be organic residues from our sample processing).

Molecule/material 
(mode) Spectroscopy techniques Peaks reported (cm−1) IETS ALGO (cm−1) Error (%) ALGO (cm−1) IETS EXPT(cm−1) Error (%) EXPT (cm−1)

HfO2 Monoclinic RAMAN 175 174 0.57 193 10.29

HfO2 Monoclinic RAMAN 241 229 4.98 – –

HfO2 Monoclinic IR, RAMAN 355, 355 – – 364 2.54, 2.54

HfO2 Monoclinic RAMAN, IETS 577, 584 – – 565 2.08, 3.25

HfO2 Monoclinic RAMAN, IETS 639,640 601 5.95, 6.09 633 0.94, 1.09

SiO2 (Rocking) IR 457 475 3.94 – –

SiO2 (Asymmetric Stretch) IETS 847 – – 865 2.13

SiO2 (Asymmetric Stretch) IR 1076 1069 0.65 – –

SiO2 (Asymmetric Stretch) IR 1256 1212 3.50 1310 4.30

Hf silicate IETS 928 882 4.96 879 5.28
∗2-propanol IR 1466 1402 4.37 1527 4.16
∗2-propanone IR 1420 1457 2.61 – –
∗1-Methyl-2-pyrrolid-
inone IR 1674 1603 4.24 – –

Figure 6.   (a) Contour plot of surface showing the relation of γ with the noise to signal ratio and number of 
points. Red points show synthetic data and black point corresponds to experimental data. (b) Plot showing 
the relation of γ with the number of points, red points show synthetic data and the black point corresponds to 
experimental data.
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For resolution = 0.001, γ = 0.0086 ∗
√
n

For resolution = 0.002, γ = 0.8

Here δ is the relative error after high pass filtering of the data, and n is the total number of data points.
It can be seen from Fig. 6 that the optimal γ for the data from the experimental use cases of “Results and 

discussions: molecular junction” and “Results and discussions: MIS device” sections are also consistent with the 
above formulas. Further improvement in optimizing γ could perhaps be achieved by using more experimental 
IETS data, and by incorporating better noise models into the synthetic data.

Conclusion
We have applied Tikhonov Regularization based noise-filtering to compute the low-noise second derivative of 
representative DC I–V experimental measurements, as a tool for fast and simple numerical IET spectroscopy. 
This approach has been validated by demonstrating the match of IET spectra obtained using the algorithm to 
those from the standard second-harmonic lock-in measurement in two different systems, namely a molecular 
junction and an MIS diode. For both of these, we find that the algorithm replicates most, but not all, of the IET 
spectral peaks detected by lock-in measurement. It also finds a few peaks that the latter does not—but which do 
coincide with reported peaks in these systems. With an abundance of training data that would accompany real-
life application, the algorithm should easily identify the material system in question.For that situation, where 
a standard IETS measurement will not be available as a reference, we have presented a method for automatic 
tuning of the algorithm parameters for optimal estimation of the derivative. Our method can greatly simplify 
IETS measurement hardware for analysis or sensor applications. It could also be useful for precision extraction 
of first derivatives, such as conductance, in a large range of applications. As usual, there do remain a few open 
questions. These concern the capability of the algorithm: to extract IETS lineshape modification due to metal 
clustering during device fabrication34,35; to extract IET spectra for the extremely large noise levels in the initial 
DC I–V36; and so forth.

Data Availability
The datasets analysed during the current study available from the corresponding author on reasonable request.

Received: 1 April 2022; Accepted: 26 September 2022

References
	 1.	 Jaklevic, R. C. & Lambe, J. Molecular vibration spectra by electron tunneling. Phys. Rev. Lett. 17, 1139–1140. https://​doi.​org/​10.​

1103/​PhysR​evLett.​17.​1139 (1966).
	 2.	 Jeong, H. et al. Investigation of inelastic electron tunneling spectra of metal-molecule-metal junctions fabricated using direct metal 

transfer method. Appl. Phys. Lett. 106(6), 063110. https://​doi.​org/​10.​1063/1.​49081​85 (2015).
	 3.	 Liu, Z. et al. Inelastic electron tunneling spectroscopy study of ultrathin al2o3-tio2 dielectric stack on si. Appl. Phys. Lett. 97(20), 

202905. https://​doi.​org/​10.​1063/1.​35184​78 (2010).
	 4.	 Kim, E. J., Shandalov, M., Saraswat, K. C. & McIntyre, P. C. Inelastic electron tunneling study of crystallization effects and defect 

energies in hafnium oxide gate dielectrics. Appl. Phys. Lett. 98(3), 032108. https://​doi.​org/​10.​1063/1.​35279​77 (2011).
	 5.	 Wang, W. Electrical Characterization of Self-assembled Monolayers. PhD Thesis, Yale University, (2004)
	 6.	 Lauhon, L. & Ho, W. Effects of temperature and other experimental variables on single molecule vibrational spectroscopy with 

the scanning tunneling microscope. Rev. Sci. Instrum. 72(1), 216–223 (2001).
	 7.	 Hansma, P. K. Tunneling Spectroscopy 1st edn. (Springer, US, 1982).
	 8.	 Hansma, P. K. Inelastic electron tunneling. Phys. Rep. 30, 145–206 (1977).
	 9.	 Hipps, U. & Mazur, K. W. Inelastic electron tunneling: An alternative molecular spectroscopy. J. Phys. Chem. 97, 7803–7814 (1993).
	10.	 Reed, M. A. Inelastic electron tunneling spectroscopy. Mater. Today 11(11), 46–50 (2008).
	11.	 Turin, L. A Spectroscopic Mechanism for Primary Olfactory Reception. Chem. Senses 21(6), 773–791. https://​doi.​org/​10.​1093/​

chemse/​21.6.​773 (1996).
	12.	 Dyson, G. Malcolm. The scientific basis of odour. J. Soc. Chem. Ind. 57(28), 647–651. https://​doi.​org/​10.​1002/​jctb.​50005​72802 

(1938).
	13.	 Ball, P. Physics of life: The dawn of quantum biology. Nature 474(7351), 272–274. https://​doi.​org/​10.​1038/​47427​2a (2011).
	14.	 Bommisetty, V. et al. Gas sensing based on inelastic electron tunneling spectroscopy. IEEE Sens. J. 8(6), 983–988 (2008).
	15.	 Patil, P. Design and fabrication of electron energy filters for room temperature inelastic electron tunneling spectroscopy. Master 

Thesis, Massachusetts Institute of Technology (2013).
	16.	 Wilson, A. D., Baietto, M. engApplications and advances in electronic-nose technologies. engSensors (Basel, Switzerland), 9(7), 

5099–5148 (2009)
	17.	 Arshak, E., Moore, K., Lyons, G. M., Harris, J. & Clifford, J. A review of gas sensors employed in electronic nose applications. Sensor 

Rev. 24(2), 181–198. https://​doi.​org/​10.​1108/​02602​28041​05259​77 (2004).
	18.	 Carabello, S., Lambert, J., Mlack, J. & Ramos, R. Differential conductance measurements of mgb2-based josephson junctions below 

1 kelvin. IEEE Trans. Appl. Supercond. 21(3), 3083–3085 (2011).
	19.	 Chen, K. et al. Study of mgb2/i/ pb tunnel junctions on mgo (211) substrates. Appl. Phys. Lett. 93(1), 012502. https://​doi.​org/​10.​

1063/1.​29564​14 (2008).
	20.	 Tikhonov, A. N., Goncharsky, A., Stepanov, V., Yagola, A. G. Numerical Methods for the Solution of Ill-posed Problems, Vol. 328. 

(Springer Science and Business Media, 2013).
	21.	 Ito, K., Jin, B. & Takeuchi, T. A regularization parameter for nonsmooth Tikhonov regularization. SIAM J. Sci. Comput. 33(3), 

1415–1438 (2011).
	22.	 Salhani, C. et al. Inelastic electron tunneling spectroscopy in molecular junctions showing quantum interference. Phys. Rev. B 

95(16), 165431 (2017).
	23.	 Roy, I. G. On computing first and second order derivative spectra. J. Comput. Phys. 295, 307–321 (2015).
	24.	 He, W. & Ma, T. P. Inelastic electron tunneling spectroscopy study of ultrathin hfo2 and hfalo. Appl. Phys. Lett. 83(13), 2605–2607. 

https://​doi.​org/​10.​1063/1.​16148​37 (2003).
	25.	 You, S. L. et al. Inelastic electron tunneling spectroscopy study of metal-oxide-semiconductor diodes based on high- ? Gate 

dielectrics. Appl. Phys. Lett. 92, 12113 (2008).

https://doi.org/10.1103/PhysRevLett.17.1139
https://doi.org/10.1103/PhysRevLett.17.1139
https://doi.org/10.1063/1.4908185
https://doi.org/10.1063/1.3518478
https://doi.org/10.1063/1.3527977
https://doi.org/10.1093/chemse/21.6.773
https://doi.org/10.1093/chemse/21.6.773
https://doi.org/10.1002/jctb.5000572802
https://doi.org/10.1038/474272a
https://doi.org/10.1108/02602280410525977
https://doi.org/10.1063/1.2956414
https://doi.org/10.1063/1.2956414
https://doi.org/10.1063/1.1614837


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19216  | https://doi.org/10.1038/s41598-022-21302-4

www.nature.com/scientificreports/

	26.	 Kirk, C. T. Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys. Rev. B 38, 
1255–1273. https://​doi.​org/​10.​1103/​PhysR​evB.​38.​1255 (1988).

	27.	 Institute of Chemistry University of Tartu, Estonia. Database of atr-ft-ir spectra of various materials. https://​spect​ra.​chem.​ut.​ee/​
conse​rvati​on_​mater​ials/​isopr​opyl-​alcoh​ol/

	28.	 John Wiley & Sons, Inc., spectraBase; SpectraBase Compound ID=4HLO8JSbhfh SpectraBase Spectrum ID=GqOUu4SJ7p1 
(Online). https://​spect​rabase.​com/​spect​rum/​GqOUu​4SJ7p1

	29.	 Institute of Chemistry University of Tartu, Estonia. Database of atr-ft-ir spectra of various materials (Online). https://​spect​ra.​
chem.​ut.​ee/​conse​rvati​on_​mater​ials/​aceto​ne/

	30.	 Peronio, A., Okabayashi, N., Griesbeck, F. & Giessibl, F. Radio frequency filter for an enhanced resolution of inelastic electron 
tunneling spectroscopy in a combined scanning tunneling- and atomic force microscope. Rev. Sci. Instrum. 90(12), 123104. https://​
doi.​org/​10.​1063/1.​51198​88 (2019).

	31.	 Bladh, K. et al. Comparison of cryogenic filters for use in single electronics experiments. Rev. Sci. Instrum. 74(3), 1323–1327. 
https://​doi.​org/​10.​1063/1.​15407​21 (2003).

	32.	 le Sueur, H. & Joyez, P. Microfabricated electromagnetic filters for millikelvin experiments. Rev. Sci. Instrum. 77(11), 115102. 
https://​doi.​org/​10.​1063/1.​23707​44 (2006).

	33.	 Assig, M. et al. A 10 mk scanning tunneling microscope operating in ultra high vacuum and high magnetic fields. Rev. Sci. Instrum. 
84(3), 033903. https://​doi.​org/​10.​1063/1.​47937​93 (2013).

	34.	 Wang, W., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled 
monolayer. Nano Lett. 4(4), 643–646. https://​doi.​org/​10.​1021/​nl049​870v (2004).

	35.	 Yu, L. H., Zangmeister, C. D. & Kushmerick, J. G. Origin of discrepancies in inelastic electron tunneling spectra of molecular 
junctions. Phys. Rev. Lett. 98, 206803. https://​doi.​org/​10.​1103/​PhysR​evLett.​98.​206803 (2007).

	36.	 Okabayashi, N. & Komeda, T. Inelastic electron tunneling spectroscopy with a dilution refrigerator based scanning tunneling 
microscope. Measur. Sci. Technol. 20(9), 095602. https://​doi.​org/​10.​1088/​0957-​0233/​20/9/​095602 (2009).

Acknowledgements
The IIT Bombay authors acknowledge support from the Department of Science and Technology and the Ministry 
of Electronics and Information Technology, Government of India, through the Nanoelectronics Network for 
Research and Applications. The first two authors, S.K. and S.M. have an equal contribution.

Author contributions
S.K. and M.D.R. fabricated the devices and carried out the IETS measurements. A. M. and I.R. worked on the 
algorithm. S.M. worked on automated computation of the IET spectrum. S.M. and S.K. worked on peak decon-
volution of the MIS IET spectra. A.M., S.G., D.S., M.D.R, and S.K. conceptualized the study. All co-authors 
contributed to writing and editing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​21302-4.

Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1103/PhysRevB.38.1255
https://spectra.chem.ut.ee/conservation_materials/isopropyl-alcohol/
https://spectra.chem.ut.ee/conservation_materials/isopropyl-alcohol/
https://spectrabase.com/spectrum/GqOUu4SJ7p1
https://spectra.chem.ut.ee/conservation_materials/acetone/
https://spectra.chem.ut.ee/conservation_materials/acetone/
https://doi.org/10.1063/1.5119888
https://doi.org/10.1063/1.5119888
https://doi.org/10.1063/1.1540721
https://doi.org/10.1063/1.2370744
https://doi.org/10.1063/1.4793793
https://doi.org/10.1021/nl049870v
https://doi.org/10.1103/PhysRevLett.98.206803
https://doi.org/10.1088/0957-0233/20/9/095602
https://doi.org/10.1038/s41598-022-21302-4
https://doi.org/10.1038/s41598-022-21302-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Simplified inelastic electron tunneling spectroscopy based on low-noise derivatives
	Algorithm
	Results and discussions: molecular junction
	Results and discussions: MIS device
	Automated computation of IET spectra
	Conclusion
	References
	Acknowledgements


