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Ecological niche modeling 
based on ensemble algorithms 
to predicting current and future 
potential distribution of African 
swine fever virus in China
Yue‑peng Li1,2, Xiang Gao1,2, Qi An1,2, Zhuo Sun1,2 & Hong‑bin Wang1,2*

African swine fever (ASF) is a tick‑borne infectious disease initially described in Shenyang province 
China in 2018 but is now currently present nationwide. ASF has high infectivity and mortality rates, 
which often results in transportation and trade bans, and high expenses to prevent and control the, 
hence causing huge economic losses and a huge negative impact on the Chinese pig farming industry. 
Ecological niche modeling has long been adopted in the epidemiology of infectious diseases, in 
particular vector‑borne diseases. This study aimed to establish an ecological niche model combined 
with data from ASF incidence rates in China from August 2018 to December 2021 in order to predict 
areas for African swine fever virus (ASFV) distribution in China. The model was developed in R software 
using the biomod2 package and ensemble modeling techniques. Environmental and topographic 
variables included were mean diurnal range (°C), isothermality, mean temperature of wettest quarter 
(°C), precipitation seasonality (cv), mean precipitation of warmest quarter(mm), mean precipitation of 
coldest quarter (mm), normalized difference vegetation index, wind speed (m/s), solar radiation (kJ /
day), and elevation/altitude (m). Contribution rates of the variables normalized difference vegetation 
index, mean temperature of wettest quarter, mean precipitation of coldest quarter, and mean 
precipitation of warmest quarter were, respectively, 47.61%, 28.85%, 10.85%, and 7.27% (according 
to CA), which accounted for over 80% of contribution rates related to variables. According to model 
prediction, most of areas revealed as suitable for ASF distribution are located in the southeast coast 
or central region of China, wherein environmental conditions are suitable for soft ticks’ survival. In 
contrast, areas unsuitable for ASFV distribution in China are associated with arid climate and poor 
vegetation, which are less conducive to soft ticks’ survival, hence to ASFV transmission. In addition, 
prediction spatial suitability for future ASFV distribution suggests narrower areas for ASFV spread. 
Thus, the ensemble model designed herein could be used to conceive more efficient prevention and 
control measure against ASF according to different geographical locations in China.

African swine fever (ASF) is a hemorrhagic disease of domestic swine and wild boars with extremely high mor-
tality rates (usually close to 100%)1, being considered a mandatory notifiable disease by the World Organization 
for Animal Health (OIE)2,3. Clinical manifestations of ASF are diverse, ranging from chronic and subclinical to 
hemorrhagic fever and sudden death, depending on the type of virus virulence and host  susceptibility3,4.

African swine fever virus (ASFV) is a large, enveloped DNA virus, and the only member of the genus Asfivi-
rus in the family Asfaviridae. ASFV is the only known tick-borne DNA arbovirus involving a complex cycle of 
transmission among swine, wild boars, and soft  ticks1,3.

ASFV spreads in various ways. Soft ticks are the vectors and reservoirs of ASFV. Soft ticks have long survival 
time, and the virus can survive for up to five years when enters Ornithodoros erraticus ticks. In tick reservoirs, 
ASFV could be transmitted from male ticks to female ticks during mating, and female ticks in turn transmit 
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the virus to the prole by infected oocytes. Soft ticks of the genus Ornithodoros, including Ornithodoros moubata 
complex ticks and Ornithodoros erraticus soft ticks, are involved in the transmission of ASFV to domestic  swine5. 
Thus, infected domestic swine spread the virus rapidly to the group via blood, excrement, and carcasses. Environ-
mental transmission is also an important route of ASFV dissemination. Contaminated transportation vehicles 
can also have a role in transmission of ASFV, pork products may be a key factor in determining outbreaks and 
the spread of ASF in  China6–8.

ASF was first described in Kenya, and subsequently spread worldwide thus resulting in a global pandemic. 
In 2017, ASF was then described in Siberia, Russia, and subsequently a large number of ASF outbreaks occurred 
in the Russian Far  East8. African swine fever first emerged in Shenyang, China in August 2018, and then spread 
to many Chinses provinces, causing a nationwide outbreak. ASF had a negative impact on animal health and 
economic development in world. As the world’s largest pork producer and consumer, China has been impacted by 
the ASF epidemic. At the same time, ASF has an important impact on the global economy and  trade4. However, 
ASF might also accelerate the transformation of China’s pig farming industry and propel better standardization 
and the development of safer production  systems7,8.

Ecological niche models are employed to explore the relationship between the distribution range of species 
and corresponding environmental variables. The basis of this model is that the species-environment relation-
ship can explain and predict present and future species spatio-temporal  distribution9. Ecological niche model 
has been widely used in biology, wildlife protection, global biological change, and widely used in the field of 
 epidemiology10–12. In addition, ecological niche models have been successfully applied to disease control and 
prediction. Cheng et al.13 compared the ecological niche model and the epidemiological model to assess the risk 
of Usutu virus transmission in Europe. The results showed, the ecological niche model could better describe 
disease distribution, whereas the SEIR model could correctly predict the area of disease spread, but not temporal 
disease dynamics, thus demonstrating the difference between the applicability of the ecological niche model and 
the epidemiological model.

With the democratization of information and access to information, environmental and topographic variables 
can be freely obtained, which can be combined with animal disease surveillance data, to establish ecological 
niche models of disease incidence and spatio-temporal suitability for virus transmission. The widespread use 
of R software has diversified the development of ecological niche models and provided a platform for the col-
lection of multiple  models14. A free R package for developing ensemble models, i.e., Biomod, was developed by 
Thuiller et al. in  200315–18.

Thus, the present work aimed to evaluate the spatio-temporal suitability areas for ASFV spread by establishing 
an integrated ecological niche model based on ASF incidence data in China from August 1, 2018, to December 
31, 2021, combined with biological environmental and topographic variables. And provide useful ideas for ASF 
prevention and control measures for different geographical locations in China. Besides, we predicted spatio-
temporal ASFV spread and the future suitability areas for the current to 2040 and 2040 to 2060.

Material and methods
Epidemiological data collection. Data on ASF cases and outbreaks occurring in China from August 
1, 2018, to December 31, 2021 were reported from 194 reports published by the World Organization for Ani-
mal Health (OIE) (https:// www. oie. int/) and Food and Agriculture Organization of the United Nations (FAO) 
(https:// empres- i. apps. fao. org/). Data collected included information about location, region, and specific latitude 
and longitude coordinates of reported ASF cases and outbreaks. To be included in the study, all points had to fall 
within the study area and cases records were checked for possible error. The R package ‘range Builder’(https:// 
github. com/ ptitle/ range Build er) was used for spatial point filtering to reduce spatial clustering, considering the 
filtering range 10 km in the R software. To build, the reduced spatial clustering model, 179 cases reports occurred 
in China were included (Fig. 1).

Environmental and topographic variables collection. Environmental and topographic variables are 
important components of ecological niche  models19. Topo-graphic and climate variables were downloaded from 
the Worldclim 2.1 database (https:// world clim. org).

Environmental and topographic variables were collected, which included 19 Bioclimatic variables, mean 
annual maximum temperature, mean annual minimum temperature, mean annual precipitation, solar radiation, 
elevation, wind speed, average temperature, water vapor pressure, and normalized difference vegetation index 
(NDVI). NDVI from China Resource and Environment Science and Data Center (https:// www. resdc. cn/ data. 
aspx? DATAID= 257). 19 Bioclimatic variables, 6 environmental variables, and NDVI were for the ecological 
niche model designed herein (supplementary material Table 1). Besides, projected bioclimatic datasets from 
2020 to 2040 and 2040 to 2060 were downloaded from the new WorldClim 2.1 database (https:// world clim. org).

Environmental variables processing. All variables were in ESRI Grid raster file format. ArcGIS software 
was used to trim raster data to obtain same extent, cell size (2.5 arcmins of resolution), and coordinate system. 
Trimmed raster data were restricted to China extent using China map layers in shapefile format. However, due 
to multicollinearity, these variables could not all be included in the model. Multicollinearity checks were per-
formed on 26 environmental variables which were verified using the VIF procedure of the USDM package in 
R  software20. Variables with Pearson correlation coefficient greater than 0.7 and VIF values greater than 8 were 
excluded from the variable set. 10 variables were finally retained for use in the model (refer to supplementary 
material Table 2).

https://www.oie.int/
https://empres-i.apps.fao.org/
https://github.com/ptitle/rangeBuilder
https://github.com/ptitle/rangeBuilder
https://worldclim.org
https://www.resdc.cn/data.aspx?DATAID=257
https://www.resdc.cn/data.aspx?DATAID=257
https://worldclim.org
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Model establishment. Models were established using R software. Biomod 2 is a widely used R package for 
building ensemble models since it is freely available and offers diverse  algorithms21–23. Thus, the Biomod 2 pack-
age was used to establish a predictive model to describe environmental suitability areas of ASFV distribution in 
China. The ensemble model is the pool of ten algorithms, namely Artificial Neural Networks (ANN), Surface 
Range Envelope (SRE), Flexible Discriminant Analysis (FDA), General Linear Models (GLM), General Additive 
Models (GAM), General Boosted Models (GBM), Classification Tree Analysis (CTA), Multiple Adaptive Regres-
sion Splines (MARS), Random Forests (RF), and Maximum Entropy model (Max Ent)17. Except Max Ent, and 
other models employ a presence-absence  approach24, a surface range envelope model was used to generate 1000 
absence  points25,26. Pseudo-absence points selected by SRE improved model prediction sensitivity.

In the model ensemble process, GLM, GBM, GAM, and RF algorithms required adjusted arguments. Under 
the GLM function, the formula given was defined as quadratic and the information criteria for the stepwise 
selection procedure was AIC; Decision tree arguments were 500 in GBM function; GAM function was defined 
as "GAM_mgcv"; parameter of "mtry" was 3 in RF function.

A model option in Biomod 2, each algorithm was run three times, for a total of thirty runs for the ten algo-
rithms. The data sets were divided in two parts: 80% of data was used to develop model, and 20% of data was used 
to evaluation model. The Area Under the Receiver Operating Curve (AUC) ROC curve, KAPPA, and the true 
skill statistic (TSS) were used to evaluate the performance of single and ensemble  models27. Ensembles with a TSS 
below 0.8 were not included in the model. Variables included to build ensemble models were mean suitability, 
weighted mean, and committee averaging (CA) to represent global suitable level. CA has been incorporated in 
the ensemble modeling approach. First, it could be used to predict a suitable niche model, and second, it could 
also be used to evaluate the performance of the  model20.

The CMIP5 climate model adopted in the IPCC5 Assessment Report, whereas the CMIP6 model adopted 
the latest assessment report. Compared with the previous climate model, the CMIP6 adds four Shared Socioeco-
nomic Pathways (SSP), forming four new scenarios, i.e., SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5. Compared 
to RCP4.5, SSP2-4.5 had a higher starting point and a slightly slower and relatively mild decline. SSP4-6.0 dif-
fered significantly from RCP6.0 in that  CO2 emissions will peak and decline after 2050 compared to 2080. This 
mitigation strategy compensates higher short-term emissions, although greenhouse gas emissions other than 
carbon dioxide also played an important role. Instead, the  CO2 emissions of SSP5-8.5 are significantly higher 
than those of RCP8.5, with correspondingly larger reductions in non-CO2 emissions. Considering that China 
was the focus of the current research the SSP2-4.5 scenario was adopted under the BCC-CSM2-MR model as 
the predicted climate  variable28–30.

The suitability map was output after the completion of model prediction, and the map was defined as a Geo-
Tiff raster format using the ArcGIS software. The suitability values of CA, mean suitability, and weight mean range 
of 10 to 1000 were obtained when classified by continuous linear values in the ArcGIS software. Each value was 

Figure 1.  ASF occurrence point (The map is made by ArcGIS software and uses the WG-1984 coordinate 
system).
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divided by 1000 to classify fitness values into the following five components, 0 (not suitable), 0.25 (moderately 
suitable), 0.5 (relatively suitable), 0.75 (suitable) and 1 (very suitable)31.

Results
Evaluation of ensemble models and impact of chosen variables. Table 1 depicts average values of 
KAPPA, TSS, and ROC of the thirty models designed in the present study. Considering individual models, the 
RF model had the best performance (TSS = 0.94, AUC = 0.95), followed by GAM (TSS = 0.98, AUC = 0.90) and 
the Maxent model (TSS = 0.83, AUC = 0.95). The worst performance was verified with ANN and SRE as denoted 
by TSS (0.62and 0.68, respectively). Based on the thirty models evaluated, we selected those with a TSS > 0.8 for 
integration to obtain the ensemble model. KAPPA, TSS, and ROC values of ensemble model were determined 
using mean suitability, CA, and weighted mean. The results indicated that the ensemble model phenotype had 
an outstanding performance. (Table 2).

Subsequently, future ten variables were included in ecologic niche models for prediction. In individual models, 
the variable with the highest contribution rate was NDVI (42.19%), followed by mean temperature of wettest 
quarter (35.21%), mean precipitation of warmest quarter (25.85%), and elevation/altitude (19.94%); the contribu-
tion rates of other variables are reported in the supplementary material (supplementary material Table 3). In the 
ensemble model, the contribution rate of NDVI was 47.61%, whereas the contribution rate of mean temperature 
of wettest quarter was 28.85%, mean precipitation of coldest quarter and mean precipitation of warmest quarter 
were 28.85%, 10.85%, and 7.27%, respectively (according to CA), and contribution rates of other variables are 
reported in Table 3. The normalized difference vegetation index, mean temperature of the wettest quarter, mean 
precipitation of coldest quarter, and mean precipitation of warmest quarter were the most important variables 
in the model prediction.

Predicting suitability areas for ASF in China. Disease-adaptive level of the ensemble model was 
expressed as a function of the variables mean suitability level (Fig. 2), committee averaging (Fig. 3), and weighted 
mean suitability level (Fig. 4). That the very suitable areas for ASFV transmission was located on the south-
east coast or central region of China, in particular the southern parts of Liaoning, Hebei, Shandong, Jiangsu, 
Anhui, Hunan, Hubei, Chongqing, and Guizhou provinces; the southern parts of the Inner Mongolia Autono-
mous Region, and Ningxia, Shaanxi, and Shanxi provinces, the eastern parts of Sichuan, Zhejiang provinces, 

Table 1.  performance of a single model used KAPPA, TSS, and ROC.

Evaluation GLM GBM GAM CTA ANN SRE FDA MARS RF Maxent

KAPPA 0.63 0.73 0.82 0.62 0.49 0.73 0.62 0.71 0.79 0.87

AUC 0.92 0.97 0.98 0.92 0.86 0.84 0.91 0.92 0.95 0.95

TSS 0.78 0.82 0.90 0.8 0.62 0.68 0.71 0.75 0.94 0.83

Table 2.  evaluation for ensemble models use KAPPA, TSS, and ROC.

Evaluation Mean suitability CA Weight mean

KAPPA 0.9 0.92 0.91

AUC 0.94 0.92 0.94

TSS 1.0 0.99 1.0

Table 3.  10 variables importance in the ensemble model.

Variable code Mean suitability CA Weighted mean

bio_2 2.71 2.86 2.65

bio_3 3.02 2.76 3.27

bio_8 23.57 28.85 24.09

bio_15 2.40 1.72 2.61

bio_18 9.10 7.27 10.27

bio_19 8.20 10.85 9.28

NDVI 39.84 47.61 38.01

Wind 1.67 2.06 1.81

Srad 3.10 2.67 3.33

Elev 5.96 4.51 5.92
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Figure 2.  The disease-adaptive level of the ensemble model was expressed as the mean suitable. (The map is 
made by ArcGIS10.2 https:// www. esri. com/ and R 4.1.3 software https:// mirro rs. bfsu. edu. cn/ CRAN/).

Figure 3.  The disease-adaptive level of the ensemble model was expressed as the committee averaging (The 
map is made by ArcGIS10.2 https:// www. esri. com/ and R 4.1.3 software https:// mirro rs. bfsu. edu. cn/ CRAN/).

https://www.esri.com/
https://mirrors.bfsu.edu.cn/CRAN/
https://www.esri.com/
https://mirrors.bfsu.edu.cn/CRAN/
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the coastal areas of Fujian, and Guangdong, Guangxi provinces, and most area of Yunnan. Xinjiang, Qinghai, 
Tibet, and the northwestern parts of Inner Mongolia Autonomous Region and Gansu province were considered 
unsuitable for ASFV transmission. The predictions of the model for determining suitability of areas for ASFV 
transmission were broadly consistent with collected data concerning the regions where the disease has been 
previously reported (Fig. 1).

Model uncertainty. The uncertainty of the model was measured by mask clamping (Fig. 5). There are only 
two corresponding values 1 (red) and 0 (blue) in the figure. When the value is closer to 1, it represents the uncer-
tainty of the model prediction. When the value is 0.5, it means that half of the model prediction is certain, and 
half is uncertain. When the value is 0, the model prediction is accurate (27). The clamping mask results indicated 
high uncertainty in the central part of autonomous region of Xinjiang, the northwest of Qinghai province, and a 
small part of Inner Mongolia Autonomous Region. (Supplementary material Fig. 1).

Prediction of future suitable areas for ASFV transmission. The present study forecasted fluctua-
tions in distribution suitability areas of ASFV transmission in China for the periods 2020 to 2040 and 2040 to 
2060. Predictions for suitability area for ASFV transmission indicated a significant reduction in 2040 and 2060. 
However, general spatial suitability for ASFV transmission in 2040 will transfer to the central and northeast 
regions of China according to the model predictions, with the very suitability for ASFV transmission in the area 
of provinces Sichuan, Guizhou, and Chongqing (Fig. 6). By 2060, spatial suitability for ASFV transmission will 
be further reduced, and the very suitable will the few areas of Sichuan, Guizhou, and Chongqing (Fig. 7).

Discussion
ASFV mainly infects wild boars and domestic swine, with soft ticks as its main vectors of  transmission5. In 
particular, it is known that ASFV carried by wild boars can be transmitted to domestic swine by soft  ticks32. 
Despite current efforts on ASF vaccine research, no commercial vaccine is currently available on the market 
 yet33,34. Thus, measures for prevention and control for ASF outbreaks are still necessary. ASF transmission occurs 
in three independent epidemiological cycles: sylvatic, tick-pig, and domestic swine, those cycles including soft 
ticks, wild boars (especially warthog), domestic swine, and porcine-derived  products35. The sylvatic cycle mainly 
occurs in  Africa5; in the tick-pig cycle, soft ticks act as hosts, allowing ASFV to persist in the  environment32,36.

African swine fever is the most significant disease threat to swine globally, and ASF were constantly being 
reported in various countries. In March 2017, ASF emerged in Irkutsk, southeastern Siberia,  Russian37 and in 
August 2018, ASF was described in Shenyang,  China4, which showed that ASFV can be spread across long geo-
graphical distances, probable as a result of human  activity35.

Figure 4.  The disease-adaptive level of the ensemble model was expressed as the weighted mean suitable (The 
map is made by ArcGIS10.2 https:// www. esri. com/ and R 4.1.3 software https:// mirro rs. bfsu. edu. cn/ CRAN/).

https://www.esri.com/
https://mirrors.bfsu.edu.cn/CRAN/
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It is well known that the ecological niche models have been widely used in the field of epidemiology, especially 
for arbovirus as well as endemic, and direct contact  diseases10. The ensemble model avoids the shortcomings 
of a single algorithm to a certain extent, and increases the accuracy of the model’s prediction. In addition, the 
predictive power of the ensemble model was significant than that of every individual models. In the present 
study, we developed an ensemble model (TSS = 1, AUC = 0.94, KAPPA = 0.9), and proved that the model could 
accurately predict the spatial suitability and unsuitable areas for ASFV transmission.

Contribution rates of variables of normalized difference of vegetation index, mean temperature of wettest 
quarter, mean precipitation of coldest quarter, and mean precipitation of warmest quarter were, respectively, 
47.61%, 28.85%, 10.85%, and 7.27% (according to CA); and these four variables accounted for over 80% of 
contribution rates related to variables. Temperature and humidity can affect the survival and transmission rate 
of viruses in the environment. Persistence of dried infectious ASFV on paper are significantly the longest at 
lower environmental temperatures whereas that of dried infectious ASFV on paper is significantly the shortest 
at higher environmental temperature, but that limited by the type of pollutants and ambient  humidity38. ASFV 
in feces could remain infectious longer in 4 °C than 37 °C39. Soil type also affects ASFV stability, and stability 
of infectious ASFV is very low in acidic forest soils but rather high in sandy  soils40. Distribution of vegetation, 
rainfall frequency and abundance, and temperature are all important factors affecting arthropods distribution. 
In addition, survival of soft ticks is strongly related to seasonality. Moreover, temperature and humidity affect 
hatching rate of soft ticks. Generally, distribution occurs at higher rates in spring and autumn, and lower rates 
in summer and  winter41,42. Although the variable soft tick distribution was not included in present study, distri-
bution suitability for soft ticks in China described by Liu Jian et al.43 largely overlaps with suitability for ASFV 
distribution in China described herein.

In addition, most areas revealed herein as suitable for ASFV distribution are located along the southeast coast 
or central region of China, wherein warm climate, abundant rainfall, and rich vegetation are conditions suitable 
for soft ticks’ survival and  multiplication35. The large-scale pig breeding in these areas, the irregular operation 
of relevant practitioners, example the lack of thorough disinfection and personnel isolation after contact with 
ASFV-infected pigs were also one of the important reasons for the spread of the disease. Large-scale and intensive 
pig farming in Guizhou, Ningxia, and other China provinces is still incipient, and most farming are family pig 
farming households. In such conditions, swill inevitably gets mixed and may be contaminated by viruses, and 
intensive contact in pig herds increases risk of direct transmission, which might explain why such regions could 
easily be implicated in ASF  outbreaks37. In addition, the provinces Xinjiang, Qinghai, and Tibet, as well as the 
northwestern parts of the Inner Mongolia Autonomous Region and Gansu were shown to be unsuitable for ASFV 

Figure 5.  Model uncertainty was represented by clamping mask value. 1 (red) represents the uncertainty of the 
prediction model, 0.5 means that half of the model was certain and a half was uncertain, and 0 (blue) indicates 
that the model prediction was deterministic (The map is made by ArcGIS10.2 https:// www. esri. com/ and R 4.1.3 
software https:// mirro rs. bfsu. edu. cn/ CRAN/).

https://www.esri.com/
https://mirrors.bfsu.edu.cn/CRAN/
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Figure 6.  The model predicts areas suitable for ASF from 2020 to 2040 (The map is made by ArcGIS10.2 
https:// www. esri. com/ and R 4.1.3 software https:// mirro rs. bfsu. edu. cn/ CRAN/).

Figure 7.  The model predicts areas suitable for ASF from 2040 to 2060 (The map is made by ArcGIS10.2 
https:// www. esri. com/ and R 4.1.3 software https:// mirro rs. bfsu. edu. cn/ CRAN/).

https://www.esri.com/
https://mirrors.bfsu.edu.cn/CRAN/
https://www.esri.com/
https://mirrors.bfsu.edu.cn/CRAN/
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transmission. These areas have relatively arid climate, and poor vegetation, which are less conducive to soft ticks’ 
survival, was unsuitable for ASFV transmission. At the same time, these provinces do not have large-scale pig 
breeding, which also reduces the risk of ASF transmission. The prediction of the model designed in the present 
study was broadly consistent with data from areas where ASF is commonly being reported, which indicates that 
the model could predict the suitable distribution areas of ASF well.

The predicted results for periods 2020 to 2040 and 2040 to 2060 showed that the suitability areas for ASF in 
China will be reduced and transfer to the central and northeast regions of China, especially in 2060, and areas 
with highest susceptibility will be only the coastal area of Sichuan, Guizhou, and Chongqing. With the future 
climate change, the suitable distribution area of ASF was also decreasing, which is beneficial to the control of 
African swine fever. However, the most prone areas should continue to take reasonable prevention and control 
measures.

Nevertheless, certain uncertainties were still identified in the ensemble model designed in the present study. 
The ensemble model generally provides more accurate prediction compared to individual models, and the need 
to determine which algorithm offers a more accurate prediction is superfluous. However, studies have shown that 
the ensemble model may not result in better performance when compared to the individual models. Neverthe-
less, the ensemble model combines the advantages of a single algorithm with reduced  noise44,45. In the present 
study, the ensemble model outperformed the individual model and successfully described the distribution suit-
ability for ASF. However certain limitations were also observed in the designed ensemble model, e.g., a missed 
outbreak report. Since ASF can spread geographically, future studies should assess whether cases or outbreaks 
of ASF occurring in countries surrounding China might influence ASF distribution in China in the future. 
Furthermore, the potential impact of pseudo-missing values established using SRE on prediction results must 
be assessed. Thus, these limitations of the model must be taken into consideration.

Conclusions
The model designed herein used bioclimatic factors to predict spatial suitability areas for ASF distribution in 
China, and could accurately distinguish between areas which will be suitable and unsuitable for ASF distribu-
tion. Normalized difference vegetation index, mean temperature of wettest quarter, mean precipitation of cold-
est quarter, and mean precipitation of warmest quarter variable contribution rate were most high. Most areas 
revealed herein as suitable for ASF distribution are located in the southeast coast or central region of China, 
wherein environmental conditions are suitable for soft ticks’ survival. In contrast, areas unsuitable for ASFV 
distribution in China as demonstrated by the ensemble model designed herein are associated with arid climate 
and poor vegetation which are less conducive to soft ticks’ survival, hence to ASFV transmission. Collectively, 
the ensemble model designed herein could identify with great accuracy locations more suitable for ASFV trans-
mission in China, being thus useful for conceiving more effective preventive and control measures against ASF 
spread in China.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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