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Bioengineering of CuO porous 
(nano)particles: role of surface 
amination in biological, 
antibacterial, and photocatalytic 
activity
Mojtaba Bagherzadeh1*, Moein Safarkhani1, Amir Mohammad Ghadiri1, Mahsa Kiani1, 
Yousef Fatahi3,4,5, Fahimeh Taghavimandi1, Hossein Daneshgar1, Nikzad Abbariki1, 
Pooyan Makvandi6, Rajender S. Varma7 & Navid Rabiee2,8

Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, 
nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and 
ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there 
are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge 
is to find a comprehensive method that has multifaceted properties. The goal of this study has been 
to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper 
oxide; this modification leads to the preparation of (nano)particles with promising biological and 
photocatalytic applications. The synthesized NPs have been fully characterized, and biological 
activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive 
and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper 
oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated 
(nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a 
considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed 
considerable photocatalytic activity compared to other studies wherein the dye degradation process 
attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under 
dark conditions. The biosynthesized copper oxide (CuO) (nano)particle’s biomedical investigation 
underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction 
media, and impressive biological activity.

Nanoscale metal-based materials has found its equitable place in daily human life, and its impact is quite evident 
in science and  industry1–3. Copper oxide nanoparticle is one of the essential materials with various applications 
in chemical reactions and biochemical processes. Copper oxide and copper-based nanoparticles have shown 
biological activity (e.g., antibacterial, antioxidant, and anticancer) and accordingly is used in biomedical sector 
along with environmental  applications4–7. These compounds are utilized in the tissue  engineering8, gene  therapy9, 
disease  diagnostics10, and target cancer  therapy11–13.
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In nanomedicine, there are numerous advantages in employing plants as natural and renewable resources 
for the green synthesis of metal nanoparticles. Such an ideal approach for the nanofabrication of CuO brings 
value and may pave the way for biomedical applications. In such biological processes, the toxicity of utilized 
reagents for the nanoparticle’s synthesis is relatively low, and natural elements are deployed for reducing, cap-
ping, and stabilizing the metal’s nanoparticles. Natural materials such as plants and agricultural residues and 
waste encompassing compounds like quinines, alkaloids, terpenoids, flavonoids, fatty acids, enzymes, amino 
acids, phenols, and tannins have distinctive roles in the synthesis of nanoparticles. The biological method is 
environmentally friendly and leads to highly efficient and cost-effective synthesis and has been extensively used 
in assorted applications such as drug delivery, gene therapy, nanobiotechnology, medicine, biomedical engineer-
ing, and  pharmacology14–19.

Although chemical and physical synthesis methods have been vastly utilized for the preparation of nano-
particles, being non-eco-friendly, and involving hazardous material usage diminishes their acceptance. In this 
regard, the bioengineered synthesis methods could replace these methods as they exploit plant phytochemicals 
or microbial enzymes. Among biologically synthesized nanoparticles (graphene oxide, iron oxide, zinc oxide, 
platin, selenium, gold, silver), CuO nanoparticles have garnered attention because they comprise a co-factor of 
the plethora of human neuropeptide enzymes, and are involved in immune cell function, anti-oxidant defense, 
and cell signaling  regulation20.

The bioengineering synthesis process can be divided into three main categories (i) using plant and plant 
extract (phyto route), (ii) utilizing microorganisms like actinomycetes, bacteria, yeasts, and fungi (microbial 
pathway), and (iii) usage of templates such as diatoms, viruses, and membrane (bio-template route). The pathway 
utilizing the abundant plant extractives is preferred to other means because of greener attributes and being well 
dispersed, endowed with a faster pace of synthesis and relatively lower cytotoxicity; the plant extracts can provide 
electrons that help reduce the copper salt and also serve as stabilizing  agents21. Some of the major contributions 
to the assembly of CuO nanoparticles via a bioengineered pathway are summarized in Table 1.

In the past few decades, various bacterium and viral disease have been treated with metals/metal oxide 
nanoparticles wherein CuO nanoparticles have displayed considerable antibacterial activities; CuO nanopar-
ticles being highly toxic to the plethora of plant or human bacterial  pathogens49 in view of their high chemical 

Table 1.  Bio-engineeringly synthesized CuO nanoparticles with various plants extract.

Metal salt Plant Size (nm) Features References

CuSO4 Sida acuta Burm 50 Crystalline 22

CuSO4 Adiantum lunulatum Burm 10 Quasi-spherical 23

CuSO4 Bauhinia tomentosa 30 Spherical 24

CuSO4 Piper betle 75 Spherical 25

CuSO4 Enicostemma littorale Blume 30 Spherical 26

CuSO4 Phoenix dactylifera 25 Spherical 27

CuSO4 Aloe barbadensis Mill 20 Spherical 28

CuSO4 Zea mays 50 Spherical 29

CuSO4 Vitis vinifera 35 Spherical 30

CuSO4 Ziziphus mauritiana Lam 35 Spherical 24

CuSO4 Coffea arabica 260 Crystalline 31

CuSO4 Gymnema sylvestre 170 Spherical 24

CuSO4 Glycine max 20 Spherical 32

CuSO4 Zingiber officinale Roscoe 30 Spherical 33

CuSO4 Inula helenium 35 Spherical 34

CuSO4 Syzygium aromaticum 30 Granular nature 35

CuSO4.5H2O Solanum lycopersicum 30 Spherical 36

CuSO4.5H2O Citirus medica 20 Crystalline 37

CuSO4.5H2O Bacopa monnieri 35 Spherical 38

Cu  (NO3)3.6H2O Populus ciliate 55 Spherical 39

Cu  (NO3)2.3H2O Drypetes sepiaria 300 Spherical 40

Cu  (NO3)2.3H2O Abutilon indicum 20 Spherical 41

CuCl2.2H2O Saraca indica 50 Spherical 42

CuCl2.2H2O Psidium guajava 15 Spherical 32

CuCl2.2H2O Ginkgo biloba 20 Spherical 43

Cu  (CH3COO)2.H2O Leucaena leucocephala 12 Spherical 44

Cu  (CH3COO)2.H2O Arachis hypogaea 40 Spherical 45

Cu  (CH3COO)2.H2O Ferulago angulata 45 Spherical 46

Cu  (CH3COO) Eclipta prostrata 40 Spherical 47

Cu  (CH3COO).2H2O Aloe vera 40 Spherical 48
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and biological reactivity, biocompatibility, high surface area, and small  size50. When CuO nanoparticles come 
in contact with bacterium cells with help of amines and carboxylic groups on cell membrane, an effortless entry 
inside the cell occurs with the development of several malfunction  cytotoxicity51. CuO nanoparticles generate 
ROS (reactive oxygen species) that can disrupt the membrane and interfere with cell division, metabolism, and 
DNA replication besides the degradation of ribosomes and mitochondria promoted by CuO nanoparticles-
mediated cytotoxicity. The large redox potential of Cu leads to the generation of the Cu ions and these highly 
toxic ions accumulate the hydroxyl and superoxide radicals (oxidative stress)52. Chtita et al.29 fabricated a CuO 
nanoparticle utilizing Gloriosa superba leaf extract that revealed good inhibitory against Klebsiella aerogenes 
(gram-negative bacteria) and Staphylococcus aureus (gram-positive bacteria)53. Sida acuta leaf extracts has been 
used by Sathiyavimal and colleagues for the fabrication of CuO nanoparticles as they applied these biosynthesized 
compounds in the cotton fabrics against gram-negative and gram-positive bacterium with promising  results22. 
Green synthesized CuO nanoparticles from the precursor, Cu  (CH3COO)2 by Nwaya et al. demonstrated prom-
ising growth inhibitory activity against various species of pathogenic bacteria such as Pseudomonas aeruginosa 
and Bacillus licheniformis29.

One of the new era’s catastrophic problems is water pollution which has been a major concern for society; 
it has garnered much attention for the purification of wastewater. Unique features of nanomaterials make them 
perfect candidates for the degradation of water pollutants like dyes as these photocatalysts are efficient, inex-
pensive, and offer sustainable approach in wastewater treatment. Photocatalysis is based on having a band gap 
between the valence band (VB) and the conduction band (CB). When the excited electrons travel from VB to 
CB, electron–hole  (e−/H+) pairs are generated and transferred to the surface of the catalyst and react with other 
materials such as  O2 and  H2O; In VB and CB,  e− and  H+ are able to generate hydroxyl radical (·OH) and  O2

−, 
respectively which are responsible for the degradation of  pollutants54–56. For example, Iqbal and coworkers syn-
thesized CuO nanoparticles using an aqueous extract of Rhazya stricta and investigated it in the degradation of 
methylene blue (MB) wherein CuO NPs caused 83% degradation of MB after 140 min of  reaction57. Some of the 
unique studies are listed in Table 3.

In this study, we have focused on the synthesis and characterization of CuO (nano)particles utilizing the 
Rosmarinus officinalis leaf extract. Besides, their photocatalytic and biological activity including the cytotoxicity 
and antibacterial assessment against Bacillus as a Gram-positive and Pseudomonas as a Gram-negative bacterium, 
was evaluated.

Materials and methods
Reagents, chemicals, and plant source. All reagents and materials have been of analytical grade and 
purchased from Sigma-Aldrich. The Rosmarinus officinalis was obtained from Kurdistan province in Iran, and 
all of the National Laws and/or protocols have adhered appropriately. Amir Mohamad Ghadiri collected the 
plant samples, and obtained the local permissions. A voucher specimen has been deposited in the herbarium of 
Prof. M. Bagherzadeh’s Lab at the faculty of chemistry of Sharif University of Technology, Tehran, Iran (Deposi-
tion N.O: A.M.G.1581ROSMARI). Although, the plant Rosmarinus officinalis has been well studied in the other 
studies by the GC–MS technique, identifying this plants ingredients need more  studies58,59. The authors confirm 
that all methods were performed in accordance with the relevant guidelines and regulations.

The plant extract preparation. The Rosmarinus officinalis was washed with distilled water and then kept 
at room temperature to  dry20. The powdery form of the dried plant was prepared by grinding, and the fine pul-
verized powder (10 g) was dispersed in deionized water (100 mL) and placed for 15 min on a heater stirrer at 
the boiling point of the solvent and then, set at room temperature for cooling. The Whatman filter paper (grade 
one) used for filtration of the final solution and the prepared extract have been stored for further experiments 
at a 4 °C46,60,61.

Synthesis of CuO (nano)particles. For the synthesis of copper oxide (nano)particles from the leaves of 
Rosmarinus officinalis, 40 mL of extract of Rosmarinus officinalis was transferred to the cupric sulfate solution 
(160 mL, 1 mM), and after a while, the color changed from mild blue to dark one; mixture being agitated at 
25 °C for 24 h. The leaf extract played two crucial roles in this study, as a stabilizing agent and a reducing agent 
wherein the capping of (nano)particles with ketone and aldehyde groups can control the growth, aggregation, 
and also reduction process; plant extract has a huge impact on the shape, size, and morphology of the ensued 
(nano)particles. Based on reported data, higher the concentration of the plant extract, the smaller is the size of 
ensued (nano)particle, which is a consequence of the presence of additional phytoconstituents. The product was 
characterized by different techniques such as FT-IR, UV–Vis, and PXRD (Fig. 1).

For separation of unreacted materials and byproducts from the reaction mixture and the CuO (nano)particles, 
the solution was centrifuged for 25 min at 10,000 rpm and then washed with deionized water and ethanol (three 
times). The copper oxide-dried powder was obtained by freeze-drying. The technique of ultra-centrifugation 
was utilized to separate (nano)particles based on their  size62–64.

Chlorination of copper oxide (nano)particles. Chlorine is one of the most promising ligands in coordi-
nation chemistry, which facilitates further functionalization. Accordingly, 15 mL of thionyl chloride was added 
to the filtered-off product (CuO (nano)particles); additionally, to increase the rate of reaction, 2 mL of DMF was 
added (18 h, yellow solid, argon atmosphere). Then to obtain a dried powder, the solution was kept in the oven 
for 24 h.
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Amination of functionalized copper oxide (nano)particles. Based on the recent studies, the amina-
tion process would invariably lead to lower toxicity and increase the zeta potentials. To accomplish this, 50 mg 
of the chlorinated product of copper oxide (nano)particles were added to 10 mL DMF in 70 °C on stirrer, then 
50 mg of 1,4-phenylenediamine was added to the mixture. The final solution was stirred for 24 h at 70 °C.

Characterization of CuO (nano)particles. The JASCO FT-IR-460 spectrometer has been utilized for 
Fourier transformed infrared spectroscopy (FT-IR) in the field of 400–4000  cm−1. An automated Philips X’Pert 
X-ray diffractometer obtained powder X-ray diffraction (PXRD) spectra with Cu K radiation (40 kV and 30 mA) 
for 2θ values over the range of 10–80. The synthesized (nano)particle morphology and elemental analysis 
(FESEM, EDS, and map) have been observed under an acceleration voltage of 30–250 by a field emission scan-
ning electron microscope (TESCAN MIRA-3). To record the (UV–Vis) spectra at the range of 200–800 nm, the 
Perkin Elmer Lambda 25 has been utilized. The nanoparticle size was screened by (DLS) analysis and (Horiba 
SZ100). The fluorescence spectrometer (PerkinElmer, USA) was utilized for recording (PL analysis).

Antibacterial activity. Antibacterial activities of the compounds against Bacillus cereus and Pseudomonas 
aeruginosa were assessed by the renowned disk diffusion method utilizing Müller Hinton agar and Sabouraud 
Dextrose Agar (SDA). The inhibition zone on the incubation completion has been recorded, and the average 
diameter for every compound was recorded at 400 μg  mL−1, and the dimethyl sulfoxide (DMSO)-based Stock 
solutions of compounds were prepared. Standard antibiotics like penicillin, ampicillin, and gentamicin with 
similar concentrations have been utilized to compare with compound inhibition zone. To minimize the error, 
each test was carried out several times (at least three times). As the effect of the DMSO at the biological screening 
should be clarified, blank studies have been accomplished, and no activity was observed in pure DMSO against 
any bacterial  strains65,66.

Photocatalytic activity. The photocatalytic activity of CuO–NH2 (nano)particles was evaluated in an 
aqueous solution by calculation of methylene blue degradation. For this purpose, the utilized light source was 
a 250-W mercury lamp to prepare visible light with a wavelength of more than 420 nm. An optical glass (400–
800 nm cutoff filter) was used to determine photocatalytic activity. The photocatalytic tests were carried out 
with a 100 mL photoreactor at  STP67. Every analysis was performed using 0.3 g/L of dispersed CuO–NH2 as the 
photocatalyst in the 10 mg/L methylene blue aqueous solution. The mixture was stirred and exposed under irra-
diation simultaneously. To calculate the methylene blue concentration, at the regular steps (exact time interval), 
4 mL of solution was separated and screened at 600 and 670 nm (absorbance wavelength)68,69.

Figure 1.  Schematic illustration for the synthesis of CuO.
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MTT assay. The cytotoxicity of synthesized (nano)materials has been investigated by applying the HEK-293 
cell line. In brief, 100 µL of F12/DMEM was supplemented with ten percent FBS and incubated in a 96-well plate 
seeded with  105 cell density per well. The fresh media of several diluted prepared (nano)particles replaced the 
culture media then newly prepared cells were incubated for 5 h. As mentioned above, the media is replaced with 
fresh media (for 24 h) at the next stage. After four h incubation at STP, the prepared media aspirated and, in 
this stage, generated MTT formazan has been dissolved in Dimethyl sulfoxide. Every well’s absorbance has been 
recorded at 570 nm using a microplate  reader70–73.

Leaves collection permission. The Rosmarinus officinalis have been obtained from Kurdistan province 
in Iran, and all of the National Laws and/or protocols have adhered appropriately. Amir Mohamad Ghadiri col-
lected the plant samples, and obtained local permissions.

Results and discussion
Synthesis and characterization. Considering the FT-IR spectrum (Fig.  2A), the broad bands are 
revealed at ~ 3380  cm−1 representing the hydroxyl group stretching frequency (hydroxyl groups on the surface of 
the CuO (nano)particles). The Cu–O bonds stretching vibration indicator has been  revealed74,75 on the 686  cm−1. 
The peak at 2925  cm−1 proved the presence of carboxylic acid O–H stretching, while another one at 1566  cm−1 is 
for aliphatic nitro compounds. In CuO–Cl spectra, a band at about 870  cm−1 belongs to C–Cl. Also, the peak at 
2421  cm−1 (thiol S–H stretch) is not observed in CuO–NH2 spectra, which showed the replacement of amide and 
thiol on the surface of copper oxide (nano)particles. Additionally, in CuO–NH2 spectra, the bands observed at 
~ 2900  cm−1 is accredited to N–H bonding contributed by 1,4-phenylenediamine on CuO (nano)particles. Their 
stability after photocatalysis process is affirmed by the subsequent FT-IR analysis of CuO–NH2 (nano)particles 
as depicted in the Fig. 2A which is reliable evidence of (nano)particles stability (Table 2)62,76–80.

The structure of the synthesized CuO has been investigated by means of PXRD (Fig. 2B). The six prominent 
characteristic diffraction peaks for CuO are around 2θ = 34.5°, 37.6°, 48.7°, 58.8°, 60.8°, and 69.8°, which cor-
responds to the (002), (111), (202), (202), (113), and (220) crystallographic planes (The prepared copper oxide 
nanoparticle matched with the previously recorded XRD pattern of CuO registered as (JCPDS card No. 04-0784), 
the fcc (face-centered cubic)). In CuO–NH2 (nano)particles’ PXRD spectra, there are other peaks around 2θ = 35°, 
38°, 49°, 59°, 61°, and 69°. In the PXRD spectra, the impurities impact contributes to broadening the peaks. These 
diffraction peaks are in reliable agreement with other studies (Table 2)81–84.

Figure 2.  (A) The FT-IR spectra, (B) the PXRD, (C) the UV–Vis spectra, and (D) the photoluminescence 
spectra of prepared (nano)particles.
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PL spectroscopy has been widely applied to evaluate the rate of recombination of photogenerated elec-
tron–hole pairs on irradiated semiconductor  nanoparticles85. One of the significant points is that the PL inten-
sity has a direct relation with the electron–hole pair recombination rate. In general, it is well known that as the 
PL intensity becomes weaker, the recombination rate in semiconductors decreases; as a result, the lifetime of 
photogenerated charge carriers increases significantly, which causes the better photocatalytic activity of the 
desired photocatalyst. Figure 2D exhibits the PL spectra of CuO, CuO–Cl, and CuO–NH2 nanoparticles at the 
maximum excitation wavelengths of these nanoparticles (Fig. 2C). As can be clearly seen in the figure, the PL 
intensity spectrum of CuO–NH2 NPs is relatively lower than that of CuO–Cl and CuO nanoparticles. Also, the 
PL intensity spectrum of CuO–Cl nanoparticles is relatively lower than that of pure CuO nanoparticles. These 
results clearly illustrate that the electron–hole pair recombination can be significantly reduced by modifying the 
surface of copper oxide nanoparticles with chlorine and amine. The inhibition of electron–hole pair recombina-
tion by the surface amine group leads to a more efficient separation of photo-generated charge carriers, which 
eventually increases the photocatalytic activity of semiconducting NPs. Compared with pure copper oxide NPs 
and chlorinated copper oxide NPs, aminated copper oxide NPs exhibited a remarkable quenching in the PL 
intensity emission signal, which indicates that the amination of copper oxide NPs can lead to better separation 
efficiency of photo-generated charge carriers and consequently enhance the efficiency of photocatalytic activity 
of semiconducting nanoparticles.

The FESEM analysis has been utilized to evaluate the synthesized (nano)particle’s morphology. The 
FESEM images of the synthesized CuO (nano)particles mediated by Rosmarinus officinalis leaf are depicted in 
Fig. 3A1–A3, the aminated CuO (nano)particles being shown in Fig. 3B1–B3. The homogenous size range and 
monodispersed distribution are the features of these biosynthesized copper oxide (nano)particles. Stabilizing 
agents as well as reducing agents can change the morphology and the shape of (nano)particles both of them being 
performed by the plant extract in this case. The ensued data are in agreement with recent descriptions of copper 
oxide  nanoparticles78–80,86–88. The Fig. 3C1–C3 is related to the CuO–NH2 (nano)particles after photocatalysis 
activity which illustrates that the surface morphology of prepared (nano)particles did not change considerably 
relative to the pristine CuO–NH2 surface morphology, which presents compelling evidence of (nano)particle’s 
stability. The DLS results demonstrate that the amination process can lead to increase of the particle size, and it 
could be due to increasing the hydrogen bands (Figs. S5–S7).

Table 2.  The survey on the recent advancements on the biomedical potentials of the CuO nanoparticles. “− “ 
and “+ ” represent the absence and presence of the activity.

Plant
Functional group 
 (cm−1) Shape Size (nm)

UV–Vis
(nm) Antibacterial activity

Diffraction peaks (2θ°)
or Bragg’s reflection Photocatalytic activity ref

Eupatorium odoratum (O–H, 3976) (C–H, 
2936) (C=O, 1618) Spherical 12–30 211, 305 S. aureus, B. cereus, 

E. coli – − 92

Kalopanax pictus (N–H, 3467) (C=C, 
1584) (C–N, 1360) Spherical 26–67 368 – –  + 13

Eichhornia crassipes (O–H, 3314) (N–H, 
1624) (C–O–C, 1217) Spherical 15–30 310 Aspergillus flavus, niger, 

fumigatus – − 74

Oak (3415, O–H) (1654, 
C=O) Quasi-cubic 34 590 –

(110), (− 111), (111), 
(− 202), (020), (202), 
(− 113), (− 311), (220), 
(004)

 + 93

Terminalia catappa L (3209, O–H) (2920, 
C–H) (1557, C=O) Spherical 29–103 215, 260 372 – (110), (112), (202), 

(220), (004)  + 94

Euphorbia pulcherrima (3384, O–H) (1595, 
C=O) Cubic 19 240 –

(110), (002), (111), 
(202), (020), (202), 
(11–3), (31–1), (113), 
(004)

− 95

Rosa canina
(3200–3550, O–H) 
(1670, C=O) (1405, 
C=C)

Spherical 15–25 262 –
(110), (111), (200), 
(202), (020), (202), 
(113), (311), (220), 
(400)

− 44

Calotropis procera (3414, O–H) (2923, 
C–H) (1598, C=C) Cylindrical 46 291, 355 –

(100), (002), (200), 
(202), (020), (202), 
(113), (311), (220), 
(222)

− 89

Sambucus nigra
(3300–3500, O–H) 
(2299, C–H) (1621, 
C=C)

– – 270 – 36, 39, 49, 54, 59, 62, 67, 
69, 73, 75 − 96

Punica granatum (3379, O–H) (1577, 
C=O) Spherical 10–100 282 – 35, 38, 48, 52, 56, 61, 

65, 74  + 97

Aloe barbadensis (3405, O–H) (1538, 
C=C) (944, C–C) Spherical 15–30 265, 285 –

(110), (111), (200), 
(202), (020), (202), 
(113), (311), (220), 
(400)

− 93

Sida Rhombifolia (3439, O–H) (1658, 
C=C) Spherical 10 260, 321 E. coli, Klebsiella pneu-

monia and Pseudomonas
33, 35, 38, 49, 53, 57, 
63, 66, 67  + 44
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The elemental analysis (EDS) and elemental mapping are presented in Fig. 4A–X which revealed that all ele-
ments are well distributed on the (nano)particles’ surface, their percentage changing in considerable concord-
ance with the synthesis steps. The zeta potential of prepared CuO and CuO–NH2 (nano)particles were − 8.4 
and + 5 mV that; this considerable difference, was in good accordance with EDS results (elements’ percentage 
change) (Figs. S3 and S4).

Antibacterial activity. There are some probable mechanisms for antibacterial activity of metal nanopar-
ticles such as disruption of cell membrane, DNA and protein damage, cell substances oxidation, attachment to 
ribosome, generation of ROS (reactive oxygen species), prevention of biofilm production, proton efflux dam-
age, penetrating and then connection of metal ion to the cell’s sulfur and phosphorus which leads to apoptosis 
and connection of metal ion to the thiol group of the cell-surface protein. However, the precise mechanism is 
unknown, the further biological studies are necessary to broaden the available data. The prepared compounds 
have been tested for antibacterial activity against Pseudomonas aeruginosa gram negative species and Bacillus 
cereus as Gram positive. The amination of the CuO (nano)particles leads to ~ 50% increasing in antibacterial 
activity for example, the aminated CuO (nano)particles inhibition zone on Pseudomonas aeruginosa is about 
29 mm while, the inhibition zone of CuO (nano)particles is 20 mm. The solvent and the extract of plant do not 
show momentous activity, it is proven that these compounds show antibacterial activity in comparison with 
that detected for standard antibiotic gentamicin, penicillin, and ampicillin. The results are compared with other 
researches and the collected data is quite considerable (Fig. 5). The ROS generated by CuO NPs can interact 
with bacteria’s cell membrane for penetrating to the cell and this connection can make some malfunction that 
inhibit the bacterial growth and leads to cell death. The smaller the size of (nano)particles, easier is the entry 
without any interference. The abundant functional groups such as amine and carboxyl on the surface of the cell 

Figure 3.  FESEM images of the synthesized CuO: (A1–A3), CuO–NH2: (B1–B3), and CuO–NH2 after 
photocatalysis process: (C1–C3).
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can attract the Cu cations towards the cell. The CuO amination has shown enhancement in antibacterial activ-
ity. The metal–ligand linkage inertness presumably enlarges its protection against enzymatic degradation, cell 
permeability, and  lipophilicity89–91.

Photocatalytic activity. The photocatalysis has been proposed for abatement the environmental pollut-
ants and nowadays it is playing pivotal role as it is relatively non-toxic, efficient, and inexpensive. Three step 
essentially comprise the reactions which occur on the surface of photocatalyst: (i) absorption of the light, (ii) 
disconnection and transfer of photogenerated electrons, (iii) and redox reaction. The main argument about the 
dye degradation mechanism is that oxygen and superoxide radicals are produced from the reaction of pho-
togenerated electrons and hydroxyl radicals which then degrade the methylene blue (MB) dye. The CuO–NH2 
(nano)particles photocatalytic activity have been screened by the degradation of methylene blue. The prepared 
(nano)particles were transferred to the dye-containing solution, and the mixture was irradiated by the lamp, as 
mentioned earlier (visible light)67. The UV–Vis spectra (Fig. 6A) revealed that the dye degradation (decrease in 
maximum absorbance) of MB in the presence of synthesized (nano)particles (CuO–NH2) occurred after 80 min 
with 97.4% efficiency which is significant result among all CuO-based nanoparticles. Based on the outcome of 
studies, the time and the yield of degradation process by aminated CuO were found to be the best (Table 3)98.

In this work, before performing the photocatalysis process in presence of light, we screened CuO–NH2 photo 
degradation efficiency under dark condition (Fig. 6B). Under dark conditions, it caused only ~ 7% degradation 
after 80 min. On the other hand, in the presence of light, more than 97% degradation is recorded thus clarifying 
that the light is responsible for the degradation of methylene  blue99.

Photodegradation process for methylene blue (MB). The plausible photocatalytic mechanism for 
the photodegradation of MB dye by synthesized CuO–NH2 NPs is presented in Fig. 7. Irradiation of visible light 
to the CuO–NH2 NPs’ catalytic surface causes the movement of photoexcited electrons from the VB to the CB 
and produces electron–hole pairs, as displayed in Eq. (1):

(1)CuO+ hν → CuO (h
+

VB
+ e

−

CB
)

Figure 4.  The EDS and mapping analysis of prepared nanoparticles, (A–F) CuO, (G–L) CuO–Cl, (M–R) 
CuO–NH2, and (S–X) CuO–NH2 after photocatalysis activity (CuO–NH2)’. Green: carbon, Red: nitrogen, Gold: 
oxygen, Violet: chlorine, and Blue: copper.
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Figure 5.  Antibacterial activity of the synthesized (A) CuO, (B) CuO–NH2 (nano)particles.

Figure 6.  The CuO–NH2 (nano)particles (A) photocatalytic activity on the methylene blue and (B) the 
efficiency of photodegradation under light or dark condition.
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Furthermore, as light-excited electrons are transferred from the VB to the CB, an equal number of holes are 
created in the VB. The oxidation process for water molecules occurs by the valence band and causes the produc-
tion of active OH free radicals, as displayed in Eq. (2):

In the conduction band, due to the reduction process of the oxygen molecules, superoxide free radicals are 
produced, and finally, these produced radicals are converted into hydroxyl free radicals in several consecutive 
steps, as displayed in Eq. (3)103:

Eventually, the photodegradation of desired dye occurs via the produced active ·OH free radicals, as displayed 
in Eq. (4):

The photodegradation of MB dye entails several steps up to generate the  H2O and  CO2 molecules eventually. 
The photodegradation of organic pollutants is accomplished by powerful oxidants such as ·OH radicals, which 
are shown in Fig. 7104.

Cytotoxicity. It is obvious that the prepared (nano)material’s cellular safety must be considered in advance 
of any potential biomedical appliance. The cytotoxicity of copper oxide nanoparticles has been reported in some 
papers, but the lack of utilization of a green method could increase the cytotoxicity. Based on other studies, the 
cytotoxicity of Rosmarinus officinalis leaf ’s extract was quite low and the cell viability was relatively high. On 
the contrary, the cytotoxicity of CuO (nano)particles is higher and their cell viability is lower. Based on the zeta 
potential results, the surface amination has led to considerable increases in surface potential (Figs. S3 and S4)105. 
It is evident that by making the surface potential more positive, the cytotoxicity of compounds will drastically 
decrease and The MTT assay results of aminated product clearly has affirmed this claim. The more positive 
surface, makes the prepared compound a good candidate for drug and gene delivery. So, the proposed method 
(surface amination) can be utilizable in various nanosystem for biomedical purposes. The cell viability of CuO–

(2)H2O + h
+

VB
→ H

+
+ OH

·

(3)O2 + e
−

CB
→

·
O
−

2
→ HO

·

2 → H2O2 →
−
OH +

·
OH

(4)·
OH + MB → H2O + CO2

Table 3.  Recently reported photocatalytic activity of various plant extract mediated CuO nanoparticles.

Source Dye Time (min) Efficiency (%) References

Visible light Rhodamine B (RB) 180 91 44

Visible light Methylene blue (MB) 150 77 100

Hg lamp λ = 365 Methylene blue (MB) 120 79.11 101

Visible light Crystal violet (CV) 300 97 93

Sunlight UV light Methylene blue (MB) 120 96.9 101

125 W UV lamp Methylene orange (MO) 180 94.4 102

Figure 7.  Schematic for the MB photodegradation mechanism.
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NH2 is conspicuously higher (~ 21%) while the cytotoxicity is considerably lower. The prepared (nano)material’s 
stability and safety has been confirmed by convergent trend results of 24- and 48-h treatment (Fig. 8A,D). Also, 
the heat map graphs are depicting the interrelationship among (nano)materials various concentration and rela-
tive cell viability (Fig. 8B,E). The dose-dependent response of prepared (nano)materials is proved by MTT assay 
with utilized the (nano)materials at varying concentrations namely 0.1, 0.5, 1, 5, 10, 50 µg/mL; Fig. 8C,F depicts 
the IC-50  values73,89,106,107.

Conclusion
The present study focuses on the biosynthesis of aminated copper oxide (nano)particles from Rosmarinus offici-
nalis leaf extract for the first time wherein an inclusive study about the potential biological and photocatalytic 
activity was undertaken. The prepared (nano)particles have been fully characterized and revealed a promising 
photocatalytic activity on degradation of methylene blue dye (~ 97% degradation under light in 80 min and 
just ~ 7% in dark condition and 80 min). These biosynthesized (nano)particles displayed potential antibacterial 
activity as well when screened against Bacillus as a gram-positive and Pseudomonas as a gram-negative bacterium 
(~ 50% increase in antibacterial activity for CuO–NH2 compared to CuO (nano)particles). The encouraging 
results are due to the synthesis technique deployed for the metal oxide nanoparticles and, specifically, the first 
aminated copper oxide (nano)particles with this promising potential. It is quotable that the amination of CuO 
led to considerable increase (Δζ = + 13.4 mV) in zeta potential of prepared (nano)particles. Additionally, the 
MTT assay investigation of the biosynthesized aminated copper oxide (nano)particles revealed that the pro-
posed modification method leads to lower cytotoxicity (~ 21%). Owing to the considerable stability of prepared 
nanoparticles in greener media and based on remarkable results in vitro studies, the impressive ensued biological 
activity are additional attractive features of this study.

Data availability
All data generated or analyzed during this study are included in this published article.
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