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Spatial heterogeneity of air 
pollution statistics in Europe
Hankun He1, Benjamin Schäfer1,2,3* & Christian Beck1,4

Air pollution is one of the leading causes of death globally, and continues to have a detrimental effect 
on our health. In light of these impacts, an extensive range of statistical modelling approaches has 
been devised in order to better understand air pollution statistics. However, the time-varying statistics 
of different types of air pollutants are far from being fully understood. The observed probability 
density functions (PDFs) of concentrations depend very much on the spatial location and on the 
pollutant substance. In this paper, we analyse a large variety of data from 3544 different European 
monitoring sites and show that the PDFs of nitric oxide (NO), nitrogen dioxide ( NO2 ) and particulate 
matter ( PM10 and PM2.5 ) concentrations generically exhibit heavy tails and are asymptotically well 
approximated by q-exponential distributions with a given width parameter � . We observe that the 
power-law parameter q and the width parameter � vary widely for the different spatial locations. For 
each substance, we find different patterns of parameter clouds in the (q, �) plane. These depend on the 
type of pollutants and on the environmental characteristics (urban/suburban/rural/traffic/industrial/
background). This means the effective statistical physics description of air pollution exhibits a strong 
degree of spatial heterogeneity.

Air pollution is among the highest contributors to premature death and disease worldwide, causing a significant 
number of deaths from stroke, lung cancer and heart  diseases1,2. Besides human health, air pollution affects veg-
etation, natural ecosystems, climate change, the built environment and subsequently the  economy3. In Europe, 
air pollution is the single largest environmental health  risk4–6 and its long-term effects are very serious. Although 
emissions and ambient concentrations have fallen steadily in Europe over the past few decades, as stated in 
Refs.7,8, many European countries still exceed European Union’s (EU)  standards7 and World Health Organiza-
tion’s (WHO) guidelines,  see9 for the levels of air pollutants in 2018. Two key air pollutants, namely, particulate 
matter (PM) and nitrogen oxides ( NOx ), pose a considerable threat to the health of citizens. About 55,000 and 
417,000 premature deaths in 41 European countries in 2018 were attributed to NO2 and PM2.5 ,  respectively3. 
Pollutants such as ozone ( O3 ), sulfur dioxide ( SO2 ) and carbon monoxide (CO) negatively affect human health 
as well. Particularly, ground level O3 has been estimated to have caused 20,600 premature deaths in Europe in 
2018; this yearly number has risen by 20% since  20093. In this paper we focus on two of the most dangerous pol-
lutants, NOx and PM, but the methodologies presented in our paper can be similarly applied to other substances.

The impact of air pollution on health does not only depend on the pollutant type but also on the type of 
surrounding environment, i.e. people living next to traffic-heavy roads or industries face higher exposure to air 
pollution. The  EU10 uses environmental surrounding types to classify air quality monitoring sites into traffic, 
industrial, background, urban, suburban and rural, based on predominant emission sources and building density. 
From a policy perspective, this allows for evaluating the effectiveness of measures targeting specific emissions 
sectors and assessing the impact of those associated pollutants which dominate the area surrounding a given 
monitoring station, such as for example traffic or industry (or their absence). Despite progress made by EU and 
UK  policies7,8 addressing all sectors to reduce emissions and protect citizens from pollutants, meeting the emis-
sion reduction commitments by 2030 remains a  challenge11. Similar challenges to satisfy given policies are also 
existing in other parts of the world.

Having a thorough understanding of the time-varying statistics, i.e. of the entire probability density func-
tion (PDF) of air pollution, is crucial for policymakers involved in defining thresholds or reducing overall 
exposure to air pollution. It is also crucial for the construction of suitable statistical physics models. PDFs such 
as gamma, log-normal and Weibull  distributions12 have been widely used for fitting air pollutant concentration 
data. However, these distributions decay approximately like exponential functions at large values, while earlier 
investigations have found heavy tails in air pollution  statistics13, which are not well-described by the above 
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distributions. Some recent  studies14–16 have explored the COVID-19 lockdown effects on air quality (in Europe 
and in megacities such as Delhi), focusing on comparing the PDFs or given moments of the PDFs before and 
during the lockdown. Superstatistical methods, originating from turbulence  modelling17 and applied to many 
 fields18,19, offer a powerful effective approach to describe the dynamics of air pollution assuming the existence 
of well-separated time  scales13. Air pollutants such as NOx have been dealt with success in the superstatistical 
approach, taking into account nonequilibrium situations with fluctuating variance  parameters13. However, this 
approach has been verified for limited data sets only, chosen from the UK (London), and also only for a limited 
set of pollutants, mainly NO and NO2 . On a European scale, and for much larger data sets, it remains unclear 
whether heavy tails are generically observed and whether an effective superstatistical description is applicable. 
This is the topic of this paper.

The above consideration leads us to a problem that is of general interest for statistical physics approaches 
to environmental science. Can we apply standard methods from nonequilibrium statistical physics, such as the 
above-mentioned superstatistical methods, to environmentally relevant time series of pollution concentrations, 
and if yes, how can we extract the corresponding superstatistical parameters from the time series? And how 
spatially heterogeneous are the observed results? What are the values of the relevant superstatistical parameters 
for different air pollutants and different geographical environments? Furthermore, what are typical distributions 
of observed PDF fitting parameters for the large number of sites distributed across the European continent? 
These important types of questions relating to large ensembles of different measuring stations will be dealt with 
in the following.

The paper is organized as follows. First, we introduce our large data set involving 3544 measuring sites. Next, 
we investigate the relation between mean and standard deviation for the observed PDFs to clarify if the PDFs 
can be approximated by simple exponential distributions or if more complicated functions are needed. We then 
systematically investigate the PDFs of all sites, in particular the tail behaviour, and show that the tails are gener-
ally much better described by q-exponential functions with a given width parameter � than by functions such 
as exponential and log-normal, meaning there is generically power-law decay.

Subsequently, we use the maximum likelihood estimation method (MLE) to extract the q and � parameters for 
the best-fitting q-exponential distribution, and present plots of scattered points in the (q, �) plane which exhibit 
interesting patterns for our large number of spatial locations investigated. Our main result is that air pollution 
statistics is extremely heterogeneous, with the local variations of best-fitting parameters spanning many orders of 
magnitudes. Our investigation is the first one that investigated this in a systematic way for very large ensembles of 
different measuring stations. We show that there is a complex pattern structure in the 2-dimensional (q, � ) param-
eter space that depends both on the pollutant type as well as on the classification type of the local surroundings.

Results
The data set considered. In this paper, we aim to conduct a large-scale statistical analysis of air pollut-
ants, typically NOx and PM, on a European scale. Technically, we access our air quality monitoring data from 
a large number of locations in Europe through the interface “Saqgetr”, which is an R package available on the 
Comprehensive R Archive Network (CRAN)20. The vast majority of the accessible data are openly available from 
the European Commission’s Airbase and air quality e-reporting (AQER)  repositories21,22. To utilise the data effi-
ciently, they have been processed into a harmonised form with consistent and careful treatment of the observa-
tions and metadata by Stuart K.  Grange20. Concentration level readings and site environment types are the two 
key quantities we investigate. We import 9698 locations data throughout Europe within the time span of January 
2017 to December 2021, recorded at 1-h intervals. To minimise the influences of seasonal fluctuations in time 
series, we eliminate sites whose data are too short, typically less than 1 year. We also exclude sites where a high 
percentage of measurements falls below the detection limit, since sites with clean air are not our primary analysis 
goal. Furthermore, we filter out sites whose data are corrupted, the used code and further details are described 
in the “Methods” section. We arrive at 3544 sites with data that meet our criteria before we proceed with our 
statistical analysis. Each data set contains at least 8760 (24× 365) data points, up to about 43, 800 (5× 24× 365) 
if the full 5 year period is available.

To provide a general overview of our analysed data, we show all the data sites’ locations in Fig. 1a, as well as 
an example time series of a selected site: Bahnhofstrasse, Weiz in Austria for illustration purposes. Measured 
concentration time series and histograms are shown in Fig. 1b–e, for NO, NO2 , PM10 , and PM2.5 . NOx and PM 
show seasonal cycles, i.e. during winter higher pollutant concentrations are more common. We also observe 
that for this example site the probability density of NO decays at a slower rate to zero than those of the other 
three pollutants. Apparently, typical distributions exhibit some heavy tails, which we will analyze in much more 
detail in the following.

Instead of considering the full distribution of each site’s pollutants, in the following we will concentrate onto 
the tails. One reason for doing so is that we are particularly interested in the statistics of high pollution states, 
which are most damaging and described by the tails of the distribution.

With data sets from 3544 air pollution monitoring sites we require an efficient and context-based automated 
approach of analysing the sites, details are described in the “Methods” section.  References7,10 give more details 
on macro- and micro-scale sampling. In brief, stations are divided into three categories: traffic, industrial, and 
background based on predominant emission sources; the surrounding areas are classified as urban, suburban, 
or rural based on the density/distribution of buildings. Station types are combined with area types to provide 
an overall station classification, and we analyse our data conditioned on this station classification. We use the 
following definitions: “urban traffic”: a site located in close proximity to a busy road in a continuously built-up 
urban area; “suburban/rural industrial”: a site whose pollution level is influenced predominantly by emissions 
from an industrial area or an industrial source in largely built-up or remote areas; “rural background”: a site 
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whose pollution level is influenced by the combined contribution from all sources upwind of the station and 
not in built-up areas. Eventually, seven environmental area types “urban traffic”, “suburban/rural traffic”, “urban 
background”, “suburban background”, “rural background”, “urban industrial” and “suburban/rural industrial” 
are used in our statistical analysis.

Checking exponentiality. Let us first consider the simplest possible hypothesis, namely that pollution 
concentrations follow an exponential distribution. In this case the PDF is given by

For exponential distributions one has the general fact that

Thus, for each of our 3455 measuring stations we can easily test the hypothesis of an exponential distribution 
by plotting mean versus standard deviation for the measured data. If pollutants were to follow an exponential 
distribution, we would expect a clustering along the diagonal in such a plot. Stations with larger � (smaller 
mean and variance) would correspond to cleaner air, and are expected to be found closer to the origin (0, 0) as 
compared to highly polluted locations. Our results are shown in Fig. 2.

The majority of the points are clustered above (b–d) or below (a) the diagonal lines, indicating deviations 
from an exponential distribution. These deviation patterns are different for each of the four substances.

Apparently, the PDFs of NO and NO2 are very different, as the points scatter mainly below (NO) and mainly 
above ( NO2 ) the diagonal. The scattering plots for PM2.5 and PM10 are more centered around the diagonal, but 
there are some unusual PM2.5 states with large standard deviation and low means.

(1)f�(x) =

{

�e−�x x ≥ 0
0 x < 0

.

(2)mean = standard deviation =
1

�
.

Figure 1.  (a) Illustration of the available data sites on a map of Europe, with the red circle labeling our 
example site: Bahnhofstrasse, Weiz, Austria. Measured time series are shown in (b) and (d), the corresponding 
probability densities in (c) and (e). All pollutants display clear seasonality in their trajectories. Maps were 
created using Python 3 and geoplots.
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Generally, connected clusters of the same colors are more pronounced for NO and NO2 as compared to 
PM. This could be attributed to the long-range transport of the PM-particles by moving air. Patterns and spati-
otemporal scales for PM have been extensively discussed previously  in23–26. The transport depends on weather 
conditions and removes the memory to the site where the particles were originally produced. Thus the colors 
are more mixed in our plots. As the weather patterns and the local meteorological features each contribute to 
the transport of PM-particles, the measuring site type has limited impact on the observed PDFs of PM. These 
observations motivate the usage of other statistical fitting functions explored in the next sections.

Fitting power-law tails for the data. As exponential tails apparently do not fit the data well, as illustrated 
by the deviations from the diagonal in Fig. 2, we now propose a different fitting function, motivated by many 
previous investigations in generalized versions of statistical  mechanics27. This is a fitting by a so-called q-expo-
nential, which asymptotically decays with a power-law exponent − 1

q−1 . q-exponentials better describe the high 
concentration tails of our data than other possible candidate distributions, see the detailed demonstration in the 
“Methods” section. The normalized PDF is defined as follows:

where q is the entropic  index27–29, � is a positive width parameter and x, in our case, denotes the air pollut-
ant concentration. Equation (3) contains the exponential distribution as a special case, namely for q = 1 , as 
the q-exponential function, defined as eq(x) = [1+ (1− q)x]

1
1−q , converges to the exponential function in the 

limit q → 1 . For q < 1 , fq,�(x) lives on a finite support and becomes exactly zero above a critical value x, since, 

(3)fq,�(x) = (2− q)�[1− �(1− q)x]
1

1−q for 1− �(1− q)x ≥ 0, x > 0,

Figure 2.  For each of the pollutants and measuring stations, we plot mean versus standard deviation. The 
area type surrounding the measuring station is color-coded. Data do not follow an exponential distribution, as 
evidenced by the fact that the majority of dots do not fall onto the diagonal lines. Different patterns are observed 
for the four different substances NO, NO2 , PM2.5 , PM10 . Green colors (rural stations with clean air) cluster near 
the origin. However, clustering of the same color patches is observed to be stronger for NOx as compared to PM.
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by definition, eq(x) = 0 for 1− �(1− q)x < 0 . In contrast, if q > 1 , 1− �(1− q)x > 0 , then Eq. (3) exhibits 
power-law asymptotic behavior.

The occurrence of q-exponentials with q > 1 in PDFs of complex systems is very well-motivated by super-
statistical  models30,31. In these types of models, one assumes a temporally fluctuating parameter � for local 
exponential distributions as given in Eq. (1). These fluctuations of � take place on a long time scale, much longer 
than local air pollution concentration fluctuations. The marginal distribution, obtained by integration over all 
possible values of � , and describing the long-term behaviour of the air pollution concentration dynamics, is 
then a q-exponential, with

Here �· · · � denotes the expectation with respect to the PDF of � ,  see30 for more details. Strictly speaking, a q-expo-
nential is only obtained exactly if � is Ŵ-distributed, but the general idea of superstatistics is that a parameter q 
can be defined by Eq. (4) for more general distributions different than the Ŵ distribution as well. The concept 
that wind changes and other effects (such as traffic fluctuations) can lead to a superstatistical dynamics for pol-
lution concentrations was first worked out  in13, where further details can be found, in that case for the special 
example of NO and NO2 concentrations as measured in London. Our investigation here is much more general, 
as we include data of thousands of measuring stations, and also investigate PM2.5 and PM10 concentrations.

For all our 3544 measuring stations we extract histograms of the pollution concentration from the measured 
time series, and determine the best-fitting parameters q and � for the given data set. More details on the numeri-
cal procedure are described in the Method section. Our results are shown in Fig. 3.

A truly surprising result of our analysis is the fact that we observe an immensely large range of values of the 
parameter � for the best-fitting q-exponential as given in Eq. (3) for the various measuring stations. Note the 
logarithmic scale of the plots, the parameter � can take on values as small as 10−2 up to values as large as 102 , 
which spans four orders of magnitude. Typical q-values are in the range 0.8–1.4, but there are subtle differences 
between the various substances, with NO reaching large q-values such as 1.6, and NO2 reaching small q-values 
such as 0.6 in the scattering plots. Also the shape of the scattering cloud of points is different for the different 
substances. For example, the typical range of � for PM2.5 and PM10 varies only by a factor 10, whereas for NO 
and NO2 it varies by a factor 103 . The scattering plot data look more spherically symmetric for PM2.5 and PM10 , 
as compared to NO and NO2.

Figure 3a,b, indicate a roughly linear approximate relationship between q and log � for NOx , with most of the 
points corresponding to traffic clustered at the left, while urban/suburban background points are in the middle 
part, and rural background points are scattered widely at the right. The PDF decay rate increases as � increases 

(4)q =
��2�

���2
.

Figure 3.  Best-fitting parameters of q-exponentials. We observe an increasing trend of q versus log � for NO (a) 
and NO2 (b), whereas a more disk-shaped pattern is observed for PM2.5 (c) and PM10 (d). The environmental 
characterizations of the measuring stations are again encoded by colors. Again we observe correlated patches of 
a single given color for NO and NO2 , where for PM2.5 and PM10 the pattern is more mixed.
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from highly polluted urban traffic sites to less polluted rural background areas. For PM2.5 and PM10 , there is a 
different weak uphill relationship between q values and � , as can be seen in Fig. 3c,d. The urban background 
points are reaching small � values such as 0.01 for PM10 , and suburban/rural traffic, suburban/rural industrial 
and rural background points cluster on the right hand side with large � . The attained range of � values is smaller 
as compared to the case of NOx , and the shape of possible values (q, �) as displayed in the Figure is more spheri-
cal. The colors appear to be more randomly mixed.

The stronger colour mixing for PM2.5 and PM10 can again be interpreted by the fact that by air movement 
transport the distributions cannot be uniquely identified with the original environmental types where the PM-
particles were produced. The large scattering of parameters (q, �) shows that for a given substance at a given 
environmental type there is not just one possible distribution, but a large range of possible distributions. These 
distributions may also vary in time, according to the weather conditions. Still, our scattering plots suggest that 
there is a typical range of parameter values for a given environmental type (e.g. lower � and thereby higher mean 
values at urban traffic sites). The fact that there is a broad distribution of parameters is very much in line with the 
basic modelling assumption of superstatistics, in this case however applied to a spatial ensemble of different loca-
tions. There is a strong heterogeneity in space, meaning different spatial measuring locations have quite different 
PDFs. This spatial heterogeneity is a second effect, adding to the temporal heterogeneity of local exponentials, 
which effectively leads to q-exponentials at individual locations as explained above.

Spatial distribution plots of �-values. Finally, we are interested in the PDFs of � values for our fits of 
the various classified locations where the measurements are taken. We compare the summary statistics (such as 
distribution, range and quartiles) of � for the four air pollutants with the aid of so-called violin plots, see Fig. 4. 
Within these, we visualise the distribution of � using density curves, which correspond to the approximate fre-
quency of data.

An interesting result of the violin plots shown in Fig. 4 is that the � distributions extend to very large values, as 
indicated by the long extensions to the right for area types such as urban background, suburban/rural industrial 
and rural background. Additionally, the probability distributions of � (represented by the “shapes” of the violins) 
exhibit nontrivial behaviour for some of the environmental site types. For example, for NO urban industrial sites 
there is a rather unusual pattern with several local maxima and minima. A much more generic pattern, with just 
a single broad maximum, is observed for sites which are suburban/rural industrial, as well as for those with a 
rural background, and this structure is there for all 4 different types of pollutants.

Another intriguing result is that the order of the median rankings (from low to high) for NO and NO2 are 
almost the same, with the exception of a swap between urban industrial and urban background. For PM2.5 
and PM10 there are more swaps. Figure 4c,d, show that for PM2.5 and PM10 the typical values of � are smaller, 
below 0.9. A smaller � indicates a more heavily polluted site. Furthermore, we observe in the case of PM only 
minor differences in the medians of � for different environment categories. The reason for this is that the type 
of environment has a direct effect on NOx concentrations while they have only a minor effect on PM since the 
particles travel and lose the memory of their environmental category. Nevertheless, suburban/rural traffic and 
rural background sites have the largest and second largest medians for � , respectively.

As the environmental type did not emerge as a major factor impacting the distribution of PM, we also consider 
weather conditions, specifically wind speed, as a way to categorize and explain differences in PM distributions. 
National Oceanic and Atmospheric Administration (NOAA) Integrated Surface Database (ISD)32 offers detailed 
surface meteorological data for over 35,000 locations across the globe. The  worldmet33 R package allows us to 
import hourly wind speed data. Each of the 3455 sites analysed is joined with its closest wind speed data for 
pollutant concentration measurement taken at the same time interval. See the Method section for the detailed 
processing steps. This data fusion allows for further classification of sites based on mean wind speed for which 
we utilize Beaufort’s wind force  scale34, i.e. calm &light air/light breeze/gentle breeze/moderate breeze. Excluding 
sites with insufficient data, we obtain 1364 sites classified by wind force scale.

Taking wind speed into account, we conclude that differences in PM distributions are, at least partially, 
explained by different wind speeds, see Fig. 5. The violin plots for NO2 , PM2.5 and PM10 all show a similar pat-
tern: High wind speeds correspond to higher � s, which indicates a higher decay rate at heavy tails and, therefore, 
less pollution. This is coherent to the fact that stronger winds translate to a greater dispersion of particles. NO, 
by contrast, does not display a clear dependence on wind speed.

Discussion and conclusion
The use of q-exponentials for air pollution statistics has been previously advocated by Williams et al.13, however 
that study was special since it was only looking at locations in Greater London, and the substances investigated 
were just NO and NO2 . In this paper, we have extended the statistical analysis to a much larger database, taking 
into account data from 3544 measuring stations, and analysing the statistics of PM2.5 and PM10 , in addition to 
NO and NO2 . Naturally, for this vast amount of data novel methods needed to be developed for the fitting pro-
cedures, and novel graphical representations (scattering plots of parameter tuples) were used to illustrate the 
spatial heterogeneity of the results. Our main findings can be summarized as follows:

Firstly, we have clear evidence that generically PDFs of pollution concentrations do not decay in an exponen-
tial way. A much better fit is given by q-exponentials, which asymtotically decay as a power-law if q > 1 , with 
exponent −1/(q− 1) . Our analysis complements previous work, in which often different distributions have been 
used, including log-normal, gamma and Weibull distributions. Overall, we find that q-exponentials yield a better 
fit of the tails. The q-exponential is also a very plausible physical model, since—in the spirit of superstatistics—it 
simply arises from the agglomeration of many exponential distributions that have temporal fluctuations of the 
effective decay rate. In our investigation we also tested the other candidate distributions mentioned above and 
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found that they sometimes yield a good fit of the low-concentration behaviour, close to the maximum, but not 
of the tail behaviour, see our “Methods” section for details.

Secondly, q and � , as obtained from the optimum fittings of data from 3544 measuring stations, exhibit 
interesting patterns in the (q, �) plane. The shape of these regions is characteristic for each of the 4 substances 
investigated, with big differences between NO, NO2 and the PM statistics. Recall that q contains information 
about the tail, i.e. extreme events and � about the scale and thereby the mean pollution level, i.e. we distinguish 
thereby between regions with low and high average pollution and simultaneously regions with many or few 
extreme events.

Thirdly, environmental types, i.e. the surroundings of the measuring station, play an important role. We 
color-coded these different environments into 7 categories. For NO and NO2 each category occupies a typical 
sub-region in the (q, �) plane, whereas for PM2.5 and PM10 the picture is more mixed. This can be explained by 
the fact that there is transport by moving air for the PM-particles, so that the memory to the environment of 
the station where the actual measurements are done is lost, i.e. these particles may travel quite a long way and 
many of them are not produced locally. The patterns and spatio-temporal scales for PM-dynamics have been 
extensively examined before  in23–26, the transport is dependent on the weather conditions and removes the 
memory of the original source site.

As a next step, it would be desirable to examine correlations between PM and NOx concentrations and to 
include more environmental factors, including for example wind direction and surface temperature. While the 
current paper is focused on the methods, further statistical analysis could support policymakers to produce more 
precise rules and thresholds for individual types of environmental conditions and meteorological conditions, 
taking into account fluctuations and extreme events. Our analysis could also be extended to other substances, 

Figure 4.  The violin plots show the distribution of � for seven environment types as well as the median as a 
white dot, the interquartile range as a thick black bar, and the 95% confidence interval as a thin black bar within 
the colored violin. The environment types were ranked by medians of � from lowest to highest. At each y-axis 
the number of sites evaluated in each category is reported. In the case of NO (a), a rescaling has been applied to 
capture the different scale for rural background (green). Likewise, there is also a rescaling for suburban/rural 
industrial (yellow) and rural background for NO2.
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such as sulfur oxide, carbon oxide and ozone, besides NOx and PM. We stress again that the detailed description 
of the entire pollution spectrum, including the exact behaviour of the tails, seems critical here to better estimate 
the risks of very high pollution situations. Concluding, our analysis shows that there is strong heterogeneity in 
the data, and one needs to be careful because the PDFs vary strongly from one location to another.

Methods
Data processing. We import European air pollution data via “saqgetr”20 R package to analyse air quality 
data—or more generally atmospheric composition data. The package provides users with fast access to thou-
sands of sites’ data from air quality networks, which are supported by Ricardo Energy & Environment. Addition-
ally, we import surface meteorological data from NOAA  ISD32 via the “worldmet”33 R package. The ISD contains 
detailed surface meteorological data for over 35,000 locations across the globe. We import all 9698 pollution 
monitoring sites’ hourly data between 2017 and 2021. For each valid concentration measurement, we import 
the surface meteorological data from the site’s closest weather station. Note that the pollutant station’s nearest 
weather station cannot be farther or equal than 0.1 degrees latitude/longitude in our selection process. We save 
all data as individual .csv files. The raw data contain detailed information about the air pollution monitoring sites 
and their hourly measurements. From them, we select the following information: 

1. Name and site code. Each site has a unique site code for identification and simplification in coding. (E.g. 
“gb0050a” for the Rosia Road in Gibraltar).

2. Longitude and latitude, which are used to show stations’ locations on maps (such as Fig. 1).
3. NO, NO2 , PM2.5 and PM10 pollutants’ hourly concentration data.
4. Station and area types, which are combined for classifying sites.
5. Wind speed data, whose mean is used for classifying sites.

The data sets retrieved with the Saqgetr package contain several problems, for which our solutions are: 

Figure 5.  The scale of wind force has a large effect on air pollutants such as PM2.5 (c), PM10 (d) and NO2 (b). 
NO (a) exhibits limited spatial heterogeneity when wind speeds are low. The violin plots show the distributions 
of � for four wind force scales. At each y-axis the number of sites evaluated in each category is reported. An 
overlaid box plot depicts the interquartile range and the central white dot indicates the median. The latter was 
used for ranking the wind force scale from lowest to highest. PM2.5 , PM10 and NO2 rank in the same order.
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1. We filter out sites with less than one year of NO, NO2 , PM2.5 and PM10 pollution concentration data. We 
need a minimum number of 8760 data points (365 days × 24 h per day) for one pollutant for a meaningful 
statistical analysis and to avoid analysing a single season.

2. Measurements below the detection limit, including some that are even below zero, are usually replaced by 
the detection limit divided by two. We filter out sites with more than 15% of data below the detection limit. 
This is aligned with the recommendations of the US Environmental Protection Agency (US EPA)35, which 
suggests that substitution may be a viable approach when up to 15% of the data cannot be detected. This steps 
is further justified as sites with extremely low pollution are not the main focus of this study.

3. We remove sites whose data is repeating in a single measurement at least 15% of the time. We assume that 
these sites either lack precision in measurement or contain too much corrupted data.

Fitting procedure. The filtered data sets were analysed in Python. First, we plot the PDF of each site’s pol-
lutant concentration level using a log scale. Then, we consider the distributions of the higher concentration tail 
by finding the maximum of the distribution and filtering out the smaller concentration distribution (left of the 
maximum of the distribution). One reason for doing so is that we are particularly interested in the high concen-
tration tail behaviour. As an example, let us discuss the probability densities for low pollution concentrations for 
NO in Amstetten, Austria (Fig. 6a) and for PM2.5 in Riadok, Slovakia (Fig. 6b). We determine the highest point 
of the kernel line estimate and its corresponding concentration level (black vertical line). The underlying density 
distribution of the red line created an increasing slope which we cut off. The underlying density distributions of 
the turquoise line and the higher concentration tail are the main focus of our analysis.

We fit the so-obtained data with q-exponential distributions derived via maximum likelihood estimation 
(MLE), and determine the best-fitting parameters q and � .  Shalizi36 described methods for estimating the param-
eters of the q-exponential using MLE. We carry out the fit, using the scipy.stats.rv_continuous.fit functions of 
the scipy  module37.

While we already demonstrated deviations from exponential distributions in Fig. 2, we now further justify 
the use of q-exponential as our primary fitting method, and explain why it describes high concentration tails 
more effectively than most other fitting functions.

In previous analysis of air pollution, other functions such as log-normal, Weibull, and gamma have been 
widely  employed12,38–41. These functions have a maximum quantitatively similar to the air pollutant concentration 
PDF curve, which also has a peak as shown in Fig. 6. We compare those possible candidate distributions with 
exponential and q-exponential distributions by fitting all five distributions on the concentration data obtained 
for all 3544 sites. For each fitting function, we obtain the optimal fitting parameters via MLE, i.e. maximizing 
the likelihood under the assumption that the data originates from the given distribution. Then, we compute the 
log-likelihood for each distribution so that we can simply compare log-likelihood numbers. The distribution 
with the highest log-likelihood is the best fit. We illustrate this in Fig. 7a, see also github for full technical details.

The q-exponential distributions using MLE fits generally show robust fitting results. The log-likelihood for 
the q-exponential in Fig. 7a is the highest of all the five fittings, making the observations most probable given 
the parameters. Visually, the q-exponential (purple line) with q = 1.482 describes the heavy concentration tails 
better than other fitting methods. Another, quite different, case with q-exponentials outperforming the other fits 
uses London Marylebone site’s NO2 concentration data as an example in Fig. 7b. The q-exponential with q = 0.81 

Figure 6.  Determination of the lower cutoff at peak density (vertical line). We display the empirical PDFs of 
the NO (a) and PM2.5 (b) concentrations. The empirical smoothed PDF estimates the densities of the data before 
(red) and after the peak (turquoise). To evaluate the tails, we only consider concentration values that are larger 
than the peak, see code for details.
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again has the highest log-likelihood fit. When we apply q-exponential fits systematically to all sites, its mean (over 
all sites) log-likelihood is highest among the five considered distributions. Hence, we apply q-exponentials as 
our main method for analysing the tails of air pollution statistics. For more information, see the code on github.

Data availability
Data sets analyzed in the present study can be obtained via the saqgetr package from https:// github. com/ skgra 
nge/ saqge tr. They should be downloaded as csv files and named after their site codes. The code to generate the 
figures in the paper, as well as the implementation of the method for the data sets used in the paper, are available 
at https:// github. com/ hurst 0415/ Spati al- heter ogene ity- of- air- pollu tion- stati stics.
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