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Pupil drift rate indexes groove 
ratings
Connor Spiech1,2*, George Sioros1,3, Tor Endestad1,2, Anne Danielsen1,3 & Bruno Laeng1,2

Groove, understood as an enjoyable compulsion to move to musical rhythms, typically varies along 
an inverted U-curve with increasing rhythmic complexity (e.g., syncopation, pickups). Predictive 
coding accounts posit that moderate complexity drives us to move to reduce sensory prediction errors 
and model the temporal structure. While musicologists generally distinguish the effects of pickups 
(anacruses) and syncopations, their difference remains unexplored in groove. We used pupillometry as 
an index to noradrenergic arousal while subjects listened to and rated drumbeats varying in rhythmic 
complexity. We replicated the inverted U-shaped relationship between rhythmic complexity and 
groove and showed this is modulated by musical ability, based on a psychoacoustic beat perception 
test. The pupil drift rates suggest that groovier rhythms hold attention longer than ones rated less 
groovy. Moreover, we found complementary effects of syncopations and pickups on groove ratings 
and pupil size, respectively, discovering a distinct predictive process related to pickups. We suggest 
that the brain deploys attention to pickups to sharpen subsequent strong beats, augmenting the 
predictive scaffolding’s focus on beats that reduce syncopations’ prediction errors. This interpretation 
is in accordance with groove envisioned as an embodied resolution of precision-weighted prediction 
error.

Theoretical background. The peculiar ability for music to enjoyably compel us to move in synchrony with 
its rhythm has generated considerable academic interest over the  years1–3. This enjoyable urge to move (here-
after referred to as “groove” for simplicity’s sake) to music seems to be linked, at least in part, to the rhythm’s 
 complexity4–7. Recently, this has been framed within predictive coding models of the mind, positing that groove-
induced movements help to resolve sensory ambiguity regarding musical pulse and meter, thus minimizing 
prediction errors stemming from structural deviations like  syncopation8,9. This is proposed to occur along an 
inverted U-shaped  curve10. At low levels of complexity, there is little prediction error to resolve so movement 
isn’t needed to reinforce our metric model since it is already closely aligned with the rhythm. At more mod-
erate levels of complexity, the body can be moved in synchrony with the basic beats of the groove, allowing 
proprioceptive inputs to reinforce the perceived pulse and meter of the rhythm and thus eradicate the sensory 
prediction errors. (Pulse here refers to the tempo in which you would tap your feet to the music, and meter to 
the way in which you would group these beats). In a more phenomenological approach, this body movement has 
been suggested to result in “participatory pleasure” by filling in the expected  beat11. However, in highly complex 
rhythms, meter may become unclear, the prediction about the timing of notes may be weakened, and synchro-
nous movements  hindered12. Therefore, the greatest ‘precision’ in prediction errors (i.e., the most “predictable” 
prediction errors) occurs at moderate levels of metric complexity where these errors can be corrected by moving 
in a process of active  inference8.

The above theory is also compatible with dynamic attending theory (DAT)  accounts13 where active sensing 
(using movement to change sensory inputs) can entrain neural oscillations to relevant parts of the rhythm, 
selectively enhancing or suppressing their processing with  attention14,15. While the elegance and plausibility of 
this account is enticing, strong evidence mapping behavior (i.e., the experience of groove) to neurophysiological 
processes using musically-relevant stimuli has remained elusive.

Pupillometry of groove. If predictive coding underlies the enjoyable urge to move in response to music, 
then some neurophysiological marker of precision-weighted prediction errors should be found alongside the 
experience. One likely candidate is the neurotransmitter norepinephrine which has been hypothesized to 
encode the reliability (i.e., precision) of sensory predictions and enhance the signal-to-noise ratio of incom-
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ing  information16. Pupillometry offers a convenient way to investigate this given its tight correlation to locus 
coeruleus activity, the brain’s primary norepinephrine  producer17–19. Consequently, the pupil dilation response’s 
association with cognitive effort and attention allocation is well-documented20–22 and previous research shows 
that the pupil can index the deployment of attentional  resources23–27. Since actively modulating the precision 
of prediction errors is likely to require  attention28, it stands to reason that this process—if it is crucial to the 
experience of groove—could be observed using pupillometry. Initial findings are encouraging. Bowling, Graf 
Ancochea, Hove, and Fitch recorded greater pupil dilations in response to syncopated (and groovy) rhythms 
compared to unsyncopated (and less groovy)  rhythms29 while Skaansar, Laeng, and Danielsen found that larger 
microtiming asynchronies elicited greater pupil  dilations30. Thus, the question does not seem to be whether 
noradrenergic arousal is related to groove, but rather how it is related to groove and if this is consistent with the 
existing theories.

The present study. We hypothesized that if the experience of groove is associated with an active process 
of suppressing prediction errors, then it should be reflected in stronger pupillometric arousal at moderate levels 
of syncopation where precision-weighted prediction error is highest and active inference is needed (and able) to 
correct it. To accomplish this, we decided to record participants’ pupil responses while listening to drumbeats 
varying in the amount of deviations from isochrony (and thus predictability). They also rated the drumbeats in 
terms of how much they wanted to move, how much they enjoyed them, and how energetic they were. Unique to 
our study, we characterized the deviations from isochrony in two orthogonal ways to investigate groove: events 
on unstressed or weak beats followed by subsequent strong beat events (pickups) and events on unstressed beats 
not followed by subsequent strong beat events (syncopations). The standard musicological definitions of pickups 
(also called anacruses or upbeats) and syncopation (see definitions in Refs.31,32) indicate that each deviation type 
has a different musical function: (a) pickups cue the following strong beat event and then fulfill it; (b) syncopa-
tions break this bond by omitting the strong beat  event32,33. In other words, or psychological terms, pickups 
could be analogous to a priming stimulus prior to a temporal event while a syncopation seems more akin to 
its omission. Such a role of pickups in the experience of groove has been previously  hypothesized5,6 although it 
was not investigated independently of syncopation. We predicted that pickups would elicit weaker pupil dila-
tions than syncopations because syncopations lack a subsequent strong beat, making them more surprising and 
requiring more cognitive resources to suppress. For the purposes of this paper, we treat both pickups and synco-
pation as deviations that increase the rhythmic complexity of our stimuli (relative to rhythms without weak beat 
events) even if they may do so in different ways.

Many studies in cognitive psychology have employed simple drumbeats (e.g., kick-snare-hihat) to investi-
gate rhythmic properties’ relation to  groove4,7,29,34–36. However, these foundational studies tended to be more 
exploratory in nature and so several factors and parameters were uncontrolled, like event order, metric levels, 
perceived musicality, and the potential effect of pickups. To ensure that rhythmic complexity is the driving 
factor behind groove, the order of rhythmic events needs to be consistent in each condition since a kick-snare 
and snare-kick sound are qualitatively different and could therefore impact the urge to move. Moreover, the 
syncopated drumbeats in these studies tend to rely more heavily on faster metric levels whereas their lower or 
unsyncopated counterparts tend to remain at slower subdivisions, that is, subdivisions that are one level higher 
in the metric hierarchy. If these variations are systematic, they may introduce additional cognitive demands (e.g., 
attending to another metrical level) that scale in parallel to the amount of syncopation. Another pitfall is that 
stimuli sound nonmusical or cease to sound musical after being subjected to rigorous manipulation. If certain 
rhythmic conditions systematically sound less musical than others, this could affect the experience of groove and 
create or exaggerate differences that could then falsely be attributed to metric complexity; indeed, experienced 
familiarity with the music has been shown to play a role in  groove34. Finally, while prior groove studies rigorously 
accounted for syncopations, none explicitly examined the predictive role of pickups and its effect on groove.

Because individual differences in beat perception could affect the way subjects model the rhythms, and 
therefore their experience of groove, we also administered the Computerised Adaptive Beat Alignment Test 
(CA-BAT)37,38. With this information, we hoped to extend previous findings that demonstrated a more promi-
nent inverted U-shaped relationship between groove and syncopation in  musicians39 by directly probing beat 
perception abilities that have been linked to synchronizing to high- and low-groove  music40, without necessarily 
identifying such ability with musicianship. Specifically, we expected to find divergent results between high and 
low beat perception performance at the upper end of rhythmic complexity. Since good beat perception would be 
necessary to generate a predictive model of the most complex repeating drumbeat, this should result in greater 
groove ratings for high performers on the CA-BAT but not the low performers.

Methods
Participants. We recruited 30 participants (seven women) with varying degrees of musical experience and 
expertise as assessed by a custom-made questionnaire and the CA-BAT. All participants provided informed con-
sent in accordance with the Declaration of  Helsinki41 and were compensated with a 100 NOK (~ €10) gift card. 
Ethical approval was granted by the Department of Psychology’s internal research ethics committee at the Uni-
versity of Oslo (reference number 8131575). The average age of our sample was 26.8 (range 18–42, SD 5.07 years) 
and the average time spent listening to music was 24.03 h per week (range 1–84, median 21). Eleven of our sub-
jects reported no musical training while the remaining 19 had trained for an average of 8.47 years (range 1–20, 
SD 6.22 years). Of these, 11 of 19 subjects played multiple instruments, with eight playing stringed instruments, 
four percussion, two brass instruments, seven piano, one voice, and five other/electronic instruments for an 
average of 5 h per week (range 0–27, standard deviation 6.59 h). A summary of each subject’s demographics and 
performance can be found in Table 1 of the Supplementary Materials.
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Stimuli. To ensure that our behavioral and pupillometry results reflected rhythmic complexity, each drum-
beat followed the same order of events (alternating kicks and snare hits over a zeitgeber hihat, with an extra 
kick in the second bar) at the same metric level (that of the quaver) using the algorithm proposed by Sioros 
et al.32. Furthermore, we designed each stimulus with musicality in mind, starting with a standard back-beat rock 
drumbeat. It should be stressed here that our operationalization of Rhythmic Complexity narrowly treats any 
deviation from isochrony as an increase in complexity. While differing somewhat from the previously used Syn-
copation  Index7 in that it distinguishes between pickups and syncopations and avoids assigning scalar weights, it 
orders our stimuli in the same manner. How this maps onto psychological perceptions of complexity is an open 
question.

We settled on six different drumbeats: (1) a low complexity pattern with no pickups or syncopations (Low), 
(2) a pattern made moderately complex with pickups (Pickups), (3) a pattern made moderately complex with 
syncopation (Syncopation), (4) a pattern made moderately complex with both pickups and syncopation (Pickups 
and Syncopation), (5) a pattern made highly complex with more pickups and syncopations (High Complexity), 
and (6) a random condition where the event placements were pseudorandom (meeting our control criteria) and 
did not loop (Random). Except for the random condition, each drumbeat consisted of four two-bar patterns at 
100 beats per minute for a total duration of 19.2 s. At the end of each two-bar pattern a kick drum stroke on the 
last eighth note position, that is, a pick-up to the first beat in bar 1, signals the start/end of a new pattern. The 
“random” condition was different from the others in that the pattern was randomly generated and varied with 
each repetition. Notations of each drumbeat are presented in Fig. 1 and sound files can be found here: https:// 
osf. io/ sd5up/? view_ only= fa6bd 354eb 21436 8b77d a9d5f 18abc f1.

All stimuli were composed in Ableton Live, using MaxForLive devices for the automation of transformations, 
and produced in Reaper and then edited to appropriate lengths with  Audacity42.

Procedure. Pupil diameters were continuously sampled at 60 Hz using a SensoMotoric Instruments (SMI) 
RED250 eye tracker mounted beneath a 22-inch LED monitor in a dimly lit room situated 70 cm away from the 
subject. After a five-point (arranged in a cross) calibration and validation procedure, participants were instructed 
to passively listen to each drumbeat and immediately after rate each by how much they felt compelled to move 
(“I did not want to move at all” vs. “I wanted to move a lot” with movement being specified to include tapping 
or nodding), how much they liked the drumbeat (“I did not enjoy it at all” vs. “I enjoyed it a lot”), and how 
energetic the drumbeat sounded (“The drumbeat was very calm” vs. “The drumbeat was very excited”) using 
visual analogue scales that spanned half the width of the monitor with each key press corresponding to a jump 
of seven pixels. This scale granularity was not visible to the subject and the sensitivity was titrated to feel natural 
during piloting. The first two questions were used to measure groove while the last acted as a catch question and 
to control for perceived energetic arousal of the stimuli. During each trial, subjects fixated on a black fixation 
cross presented on a gray background generated with Psychtoolbox-3 for  MATLAB43. The first three seconds of 
fixation were silent, serving as a baseline. Subsequently, a stereo drumbeat stimulus was played at a comfortable 
volume from two Genelec speakers (model 8030 W) flanking the screen with a subwoofer beneath the desk to 
enhance the bass since previous research suggests that it plays an important role in groove and establishing the 
beat for sensorimotor  synchronization44–47. Each stimulus was presented ten times in a pseudorandom order 
such that no stimulus could repeat back to back. Thus, all subjects completed 60 trials and were permitted to take 
self-paced breaks every five trials. After the main portion of the experiment, each participant then completed the 
CA-BAT with the entire experiment lasting about one hour.

Behavioral analysis. All subjects’ ratings of Urge to Move, Enjoyment, and Perceived Arousal were z-scored 
to control for individual differences in the way that subjects used the visual analog scales. The z-scored ratings 
of each trial were averaged for each drumbeat for each subject and then summary statistics were calculated at 
the group level for each drumbeat. To investigate beat perception, we grouped participants into High (N = 15) 

Figure 1.  Musical notation for our drumbeat stimuli. Pickups are circled in blue while syncopations are circled 
in orange.

https://osf.io/sd5up/?view_only=fa6bd354eb214368b77da9d5f18abcf1
https://osf.io/sd5up/?view_only=fa6bd354eb214368b77da9d5f18abcf1
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and Low (N = 15) Performance using a median split on their ability scores from the CA-BAT. The distribution 
of Beat Perception Ability scores as well as its significant correlations with our demographics measures are plot-
ted in Supplementary Figs. 1–3. Differences between the High Complexity and Random drumbeats were com-
pared using a mixed analysis of variance (ANOVA) with Beat Perception Performance group (High or Low) as 
a between-subjects factor and Rhythmic Complexity (High Complexity or Random) as a within-subject factor.

To replicate past findings of an inverted-U relationship between rhythmic complexity and groove, we fit 
mixed effects models to our subjects’ ratings (Urge to Move, Enjoyment, Perceived Arousal). In keeping with 
standard practice, we first fit intercepts-only models with random effects of Subject and Stimulus Repetition 
and compared them to models with Rhythmic Complexity as linear slopes (linear model) as well as linear and 
quadratic slopes (quadratic model). Model comparison was conducted via likelihood ratio tests and both the 
Akaike (AIC) and Bayesian information criterions (BIC)48. Follow-up t-tests using Satterthwaite’s method were 
carried out for best-fitting significant models.

To explore the possibly different effects of pickups and syncopation on perceived groove, we also organ-
ized our first four rhythms in a 2 × 2 design for a repeated measures ANOVA with factors Pickups (Present or 
Absent) vs. Syncopation (Present or Absent). The High Complexity and Random patterns were excluded from 
this analysis because they would unbalance the design. All behavioral plots and analyses were carried out using 
custom scripts in R (version 3.6.049) and functions from the “dplyr”, “readr”, “ggplot2”, “lme4”, “lmerTest”, “effsize”, 
and “ez” packages.

Pupillometry analysis. Data were exported using SMI BeGaze™ to a format suitable for preprocessing and 
analysis using custom scripts in R (version 3.6.049) as well as functions from the “pupillometry”  package50. First, 
the pupil time series for the right eye were locked to the stimuli onsets. Blinks were removed along with the pre-
ceding and succeeding 100 ms to eliminate edge artifacts resulting from partial occlusions of the pupil. Each trial 
was then smoothed using a 500 ms Hann window at 60 Hz and gaps smaller than 750 ms were interpolated with 
cubic splining. Next, the median pupil value from the last 1000 ms of each trial’s baseline period was subtracted 
from the rest of its time series to correct for random trial-to-trial fluctuations in a way that is less contaminated 
by noise than divisive baseline  correction51. Finally, trials with more than 33% missing data were excluded and 
the remaining data was averaged in 100 ms bins for plotting and statistical analysis with the packages “ggplot2” 
and “ez”, respectively. Overall, this left us with 96.94% of valid pupil samples for analysis.

In addition to the pupil traces for individual trials, we were also interested in the rate at which these traces 
decayed since they could represent “decreasing attentional engagement”22. This is of particular importance to us 
because if norepinephrine is involved with suppressing precision-weighted prediction errors, then its firing would 
be more sustained while listening to groovier rhythms. Conversely, attention would disengage more rapidly to 
both simpler rhythms (which do not produce many prediction errors to suppress) and more complex rhythms 
(where prediction errors cannot be suppressed). Thus, for each of the four stimuli repetitions within a trial, we 
calculated the slope between the average pupil size in the first and last beats (300 ms) and took this pupil drift 
rate to represent attentional maintenance (at higher values) or fatigue (at lower values).

Finally, the same repeated measures ANOVA with Pickups (Present or Absent) and Syncopations (Present 
or Absent) as factors was computed with average Pupil Size as the dependent measure. Significant effects were 
then localized to time windows corresponding to the rhythmic manipulations of interest (i.e., the moments sur-
rounding the pickups or the syncopations) by repeating the test in those windows.

Results
Behavioral results. As expected, adding slopes for Rhythmic Complexity improved the model fit for all 
ratings. However, the quadratic slope significantly improved the fit for Urge to Move (χ2(1) = 14.643, p < 0.001) 
and Enjoyment (χ2(1) = 20.774, p < 0.001) while our control question, Perceived Arousal, only trended toward 
a significantly better fit (χ2(1) = 3.429, p = 0.064). Follow-up tests revealed significant negative quadratic (i.e., 
inverted U-shaped) trends for both Urge to Move (b(29) = − 3.167, 95% CI [− 4.643, − 1.691]) and Enjoyment 
(b(29) = − 2.659, 95% CI [− 3.64, − 1.675]), but not Perceived Arousal (b(29) = − 0.694, 95% CI [− 1.432, 0.043]). 
The significant quadratic predictors for Urge to Move and Enjoyment ratings are plotted in Fig. 2a.

Adding Beat Perception group to the mixed effects models yielded similar significant quadratic trends for 
Urge to Move (b(28) = − 3.738, 95% CI [− 5.804, − 1.672]) and Enjoyment (b(28) = − 2.664, 95% CI [− 4.055, 
− 1.27]) that better fit their linear equivalents (Urge to Move: χ2(2) = 15.253, p < 0.001; Enjoyment: χ2(2) = 20.774, 
p < 0.001). However, Beat Perception did not significantly impact any ratings except as an interaction with Enjoy-
ment’s linear trend which thus resulted in a slightly better model fit (χ2(3) = 9.247, p = 0.02). Follow-up tests 
revealed this was driven by the Low Beat Perception Performance group exhibiting a significant negative linear 
trend (b(14) = − 3.618, 95% CI [− 6.044, − 1.193]) that was absent in the High Beat Perception Performance 
group. This indicates that while both High and Low Beat Perception groups showed prominent quadratic trends 
for both Urge to Move and Enjoyment, only the Low Beat Perception Performance group had a significant linear 
trend that improved model fit for Enjoyment. This is plotted in Fig. 2b.

The mixed ANOVA comparing High and Low CA-BAT Performance groups’ Urge to Move ratings to the 
High Complexity and Random drumbeats yielded a marginally significant interaction between the two factors 
(F(1,28) = 4.492, p = 0.043, η2G = 0.022) driven by a small effect in the High Beat Perception Performance group 
(F(1,14) = 5.189, p = 0.039, η2G = 0.077) showing higher ratings for the High Complexity relative to the Random 
drumbeat that was absent in the Low Beat Perception Performance group (F(1,14) = 0.115, p = 0.740, η2G < 0.001). 
For Enjoyment, a similarly marginal increase in ratings for the High Complexity compared to the Random 
drumbeat was found for both High and Low Beat Perception Performance groups (F(1,28) = 5.490, p = 0.026, 
η2G = 0.025) alongside a slightly larger group difference where High Performers rated both drumbeats somewhat 
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higher than Low Performers (F(1,28) = 6.108, p = 0.020, η2G = 0.160). No significant main effects or interactions 
were found for Perceived Arousal. Given the inconsistency between Urge to Move and Enjoyment ratings, these 
results should be taken with some caution.

Using the 2 × 2 design, a two-way repeated measures ANOVAs with within-subjects factors Pickups 
and Syncopation revealed that Syncopation, but not Pickups, significantly boosted ratings of Urge to Move 
(F(1,29) = 4.781, p = 0.037, η2G = 0.045), Enjoyment (F(1,29) = 10.515, p = 0.003, η2G = 0.095), and Perceived 
Arousal (F(1,29) = 8.665, p = 0.006, η2G = 0.085) with no significant interaction between the two factors. These 
results are depicted in the boxplots in Fig. 3 below.

Pupillometry results. Binned and averaged pupil traces of each rhythm with within-subject confidence 
intervals are plotted in Fig. 4. All conditions demonstrate a sudden dilation consistent with the classic stimulus 
onset effect in the first repetition out of four, potentially masking effects of interest. To ensure that our drift rate 
results are untainted by such startle effects, this first repetition window was excluded from further analyses.

The pupil size’s drift rate, representing the degree of attentional maintenance or fatigue, is plotted over the 
remaining three repetitions of the drumbeats in Fig. 5. A repeated measures ANOVA on the pupil drift rate with 
within-subject factors Rhythm and Repetition revealed a significant modest effect of Repetition (F(1,29) = 26.774, 
p < 0.001, η2G = 0.105) and a smaller but significant interaction between the two factors (F(5,145) = 2.434, 
p = 0.038, η2G = 0.044). Post-hoc tests revealed this interaction to be driven by a main effect of Rhythm found 
only in the second repetition (F(4.517,130.994) = 3.104, p = 0.0139, η2G = 0.067, Huynh–Feldt corrected) and a 
trend in the third repetition (F(5,145) = 2.009, p = 0.081, η2G = 0.054). For this reason and from visual inspection 
of the entire pupil trace time series, we chose to focus further analyses on the second repetition alone. Remark-
ably, the pupil’s drift rate during the second repetition mirrors the Urge to Move and Enjoyment ratings in the 
behavioral portion of the experiment. Using the same mixed effects modeling procedure as the behavioral data, 
we found that a quadratic model fits the pupil drift rate data significantly better than a linear model (χ2(1) = 9.721, 

Figure 2.  Quadratic models of the behavioral results across Rhythmic Complexity. (A) Quadratic models 
for Urge to Move, Enjoyment, and Perceived Arousal with individual subject predictors. Urge to Move and 
Enjoyment displayed significant quadratic trends. (B) Groove ratings across Rhythmic Complexity split by 
performance on the CA-BAT. There was a significant interaction between Beat Perception and the linear 
relationship between Rhythmic Complexity for Enjoyment.
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p = 0.002). Follow-up contrasts showed that this quadratic trend for Rhythm was significant (b(148) = − 0.349, 
95% CI [− 0.557, − 0.140]), demonstrating an inverted U-shape. This is depicted in Fig. 6a.

Adding beat perception as a fixed effect like we did with the behavioral data improved model fit for the 
pupil drift rates as well (χ2(2) = 15.939, p < 0.001). Follow-up tests revealed a main effect of the quadratic trend 
(b(146) = − 0.605, 95% CI [− 0.890, − 0.321]) and a significant interaction with Beat Perception (b(146) = 0.513, 
95% CI [0.111, 0.915]). This interaction was driven by a significant quadratic trend that was only present in the 
High Beat Perception Performance group (b(14) = − 0.428, 95% CI [− 0.619, − 0.237]), indicating this group 
exhibited an inverted U-shape while the Low Beat Perception Performance group did not. This is plotted in 
Fig. 6b.

Next, we repeated our analysis of pickups vs. syncopations using average pupil size data on the entire time 
window. Here, a repeated measures ANOVA with the factors pickups (Present or Absent) and syncopation (Pre-
sent or Absent) revealed a significant main effect of pickups (F(1,29) = 4.421, p = 0.044, η2G = 0.011). To confirm 
that this effect was indeed driven by the actual presence of the pickups, we ran this analysis on time windows sur-
rounding the pickups. Given the temporal resolution of the pupil dilation response, we chose 1500 ms windows 
starting with the standard kick and ending 300 ms after the downbeat of the second bar to ensure each window 
had the same number of events (two kicks and a snare). This is illustrated in Fig. 7a. The repeated measures 
ANOVA corroborated this suspicion: there was a significant main effect of Pickups (F(1,29) = 4.626, p = 0.040, 
η2G = 0.013) with no effect of Syncopation or interaction, indicating greater pupil dilations in the two conditions 
with pickups. This is plotted in Fig. 7b.

Discussion
In this study, we aimed to investigate pupillometric arousal in the context of groove and its relation to rhythmic 
complexity using a broad range of rigorously controlled drumbeat stimuli with the novel distinction between 
pickups and syncopations. We replicated previous behavioral results demonstrating an inverted U-shaped rela-
tionship between rhythmic complexity and groove, a relationship that seems less linear with rhythmic expertise 
as assessed by a beat perception test. We found that rhythms rated groovier were associated with more sustained 
attention as measured by the pupil size’s drift rate and that this also mapped onto groove ratings split by beat 
perception ability. Finally, pickups evoked greater pupil dilations while syncopations did not, whereas syncopa-
tions resulted in higher groove ratings while pickups exerted no effect on ratings.

Groove ratings. First and foremost, groove ratings confirmed previous  findings4,5,7,29,34,35. However, our 
results also go beyond replication and add nuance by investigating pickups orthogonally to syncopation. While 

Figure 3.  Ratings with pickups (present or absent) and syncopations (present or absent) analyzed orthogonally. 
The presence of syncopations results in greater ratings of urge to move, enjoyment, and perceived arousal 
regardless of pickups’ presence. Large dots and triangles represent averages. Single asterisk is p < 0.05, two 
asterisks p < 0.01.
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syncopation is certainly one way of manipulating rhythmic expectations, we discovered that their combination 
with pickups, that is, unstressed notes that reinforce the following strong beat (pulse) or the beginning of a new 
measure (meter)31, is what produced maximal groove in our sample of drumbeats, as was previously hypoth-
esized by Sioros et al.5,6. This characterization of groove is in line with both the descriptive musicological model 
proposed by Sioros et al.32 and predictive coding as we will discuss further in the following subsection.

Our analyses using beat perception performance as an individual difference also fit neatly within the predic-
tive coding framework. Qualitatively, High Performers on the CA-BAT displayed inverted-U curves centered 
closer to the moderate levels of rhythmic complexity whereas ow Performers exhibited a significant negative 
linear trend that the High Performers did not. At upper levels of complexity, groove ratings are only enhanced 
by repetition in subjects with high CA-BAT performance, implying that the enjoyable urge to move to rhythms 
is indeed related to global predictions about their structures should they be perceived. Low Performers also 

Figure 4.  Pupil trace plots for all rhythm conditions over time. Ribbons represent within-subject 95% 
confidence intervals. Dashed vertical lines represent the boundaries where the first five rhythms looped. (A) 
Pupil traces for all rhythm conditions plotted against each other. (B) Pupil traces for each individual rhythm 
condition plotted separately for better visibility.
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appeared to find the Low Complexity rhythm groovier than high performers, likely because our Low Complexity 
rhythm was still complex enough to produce prediction errors for them to suppress. The high performance group, 
however, would not have this experience since their global model of the beat is strong enough to automatically 
suppress these smaller errors without the need for active inference. This is supported by studies like those of Mat-
thews et al.39 where experienced musicians displayed more pronounced quadratic effects in their groove ratings. 
These findings, however, should be taken with some caution given the inconsistent and marginal nature of our 
results, especially when comparing ratings of the High Complexity and Random drumbeats between groups. 
Further, using the entire distribution of CA-BAT scores as a linear predictor in our models was not significant, 
likely because our sample size was not particularly large or widely dispersed which may have adversely impacted 
our effect sizes. Thus, more focused work is needed to definitively support these claims.

Attentional maintenance. Our groove ratings were most closely mirrored by the pupil drift rate, sug-
gesting that more sustained attention is associated with greater groove. This relationship persisted, albeit with 
similarly small effect sizes, when subjects were split by their CA-BAT performance as well. This is consistent 
with the hypothesis that an active process of correcting prediction errors with attentional resources underlies 
the enjoyable urge to move to music. We believe that this better maintenance of attention was the product of the 
interplay between pickups and syncopations in our stimuli. This drift, however, seems to approach floor with 
our musical stimuli after around 10 s, indicating that habituation can occur and mask these differences over 
extended periods of time.

Divergent/complementary roles for pickups and syncopations. Analyzing groove ratings and 
pupil size data with syncopations and pickups as separate factors exposed a dissociation where syncopations, 
but not pickups, significantly boosted ratings but pickups, not syncopations, evoked greater pupil dilations. 
While this may seem puzzling at first, in the context of our stimuli and the predictive contexts they created 
together, this can be explained by their different musical functions and the information that they feed to higher-
order predictions about the metric structure. Syncopations, by generating prediction errors that challenge global 
predictions of pulse, create the primary tension that compels us to actively correct them with our movement. 
Pickups, on the other hand, may strengthen global predictions regarding pulse and meter by immediately fulfill-
ing the expectation that events occur on strong beats, that is, they point out important beats by leading up to 
and anticipating them, in accordance with the previous hypotheses of Sioros et al.5,6. This covert deployment of 
attentional resources to the pickups occurs regardless of the presence of syncopations and is thus reflected in 
greater pupil size.

Figure 5.  Pupil drift rates by condition across the remaining three within-trial drumbeat repetitions. Drift rates 
were calculated by averaging the pupil sizes in the first and last three time bins of each repetition with each trial 
and then computing the slope between these two averages. Large dots represent averages.
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To support the arguments above, we linked pupil dilations to the specific window where the pickups manipu-
lation occurred in our stimuli; this effect endured through all repetitions within the trials. Because the time 
window’s onset corresponded to 300 ms before the pickup in the Pickups and Pickups and Syncopation rhythms, 
it seems possible that the pupil may have dilated in anticipation of the beat to strengthen global predictive mod-
els of the metric structure. This explanation adds support to the predictive coding literature where the brain 
is theorized to construct top-down predictions about future sensory experiences that are then used to update 
those  predictions52,53.

Pickups are especially intriguing because they might be thought to reinforce the pulse and meter rather than 
challenge it, and thus compensate for the subversive effect of syncopations which lack the subsequent event on the 
strong  beat33,54. In predictive coding terms, both pickups and syncopations may produce local prediction errors 
since they fall on weak beats (i.e., they violate isochrony), but they propagate different information to higher-
order predictions about the metric structure. Because pickups are paired with strong beat events that confirm 
predictions of the global rhythmic structure, the local prediction errors from the pickups are more precise than 
those arising from the more unexpected syncopations that lack immediate clarification and consequently call 
the global rhythmic structure into question. That is, rather than being perceived as unexpected events, pickups’ 
close proximity to a strong beat event immediately resolves the challenge to isochrony and strengthens the global 
model whereas this challenge goes unchecked for syncopations. Neurophysiologically, the brain may release 
norepinephrine to increase the gain of the picked up strong beat and strengthen the metric model, whereas the 
omission of this strong beat in syncopations needs to be suppressed with movement because it calls the metric 
model into question. Thus, while syncopations generate the metrical uncertainty that may demand resolution 
through movement, pickups strengthen the internal model that could be used to guide movements. These move-
ments are then used to reinforce the metric model itself in a feedback loop.

Limitations and future directions. While we believe our results are consistent with predictive coding, 
the inverted U-shaped relationship found in the groove ratings and pupil drift rate could potentially be a result of 
familiarity since most music composed in the Western musical traditions contains moderate amounts of rhyth-
mic complexity (e.g., a mixture of both pickups and syncopations). Predictive coding elegantly posits that music 

Figure 6.  Quadratic fits for the pupil drift rate across rhythmic complexity for Repetition 2 where the 
significant interaction was found. (A) Quadratic predictor of pupil drift rates by rhythm condition during the 
second repetition of the drum pattern within the trials. Large dots represent averages. (B) Pupil drift rates with 
quadratic predictors by high and low beat perception performance. High performers displayed a significant 
quadratic relationship with rhythmic complexity while low performers did not.
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was composed this way because of predictive processes, but it is entirely possible that this occurred for other 
reasons that then became encultured and familiar. This hypothesis would be consistent with recent evidence 
presented by Sioros et al.6, where algorithmically-generated random syncopation patterns were less effective in 
evoking groove than the original syncopating patterns of the music excerpts that had a similar degree of synco-

Figure 7.  Pupil Size analysis by pickups (Present or Absent) and syncopations (Present or Absent) in 
the window of interest where the pickup manipulation occurred. (A) Window of interest for further 
analysis. Dashed lines represent hihat hits while Ks represent kick drum hits and Ss represent snare 
drum hits. Low = Pickups absent, Syncopations Absent, Pickups = Pickups Present, Syncopations Absent, 
Syncopation = Pickups Absent, Syncopations Present, Pickups and Syncopation = Pickups Present, Syncopations 
Present. (B) Boxplots showing pupil size in the window of interest by Pickups and Syncopation. Large dots and 
triangles represent group averages.
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pation but were created by musicians. We did not assess familiarity in this study because we composed our own 
stimuli (thus, the participants should not have explicitly recognized any of our drumbeats), but cross-cultural 
work should be done to disentangle the effects of enculturation and rhythmic complexity.

An alternative explanation for why pickups elicited greater pupil dilations is that the pickups created phe-
nomenal accents on the subsequent strong  beat55. That is to say, the pickup primed the following beat so that 
it sounded illusorily louder than other notes, which then evoked a dilation in the pupil. Indeed, past psychoa-
coustics research has reported small enhancements in perceived loudness of secondary tones with paired sound 
sequences around the same time interval as our stimuli (300 ms)56,57. Since physical loudness differences have 
been shown to result in greater pupil  dilations58,59, this account seems plausible and indeed we cannot rule out 
this possibility with the data presented here. However, because accents direct attention, we take this interpreta-
tion to be complementary to our own that pickups cue attention to strong beats to emphasize the metric model 
in a sort of attentional  priming60.

Another reason why pickups resulted in greater pupil dilations is potentially because of the number of events. 
Although we controlled for this as best as we could by ensuring that there were equal kick, snare, and hihat hits 
in each condition, it is possible that the pupillary response to syncopations occurs at a longer timescale than 
for pickups. Because syncopations can only be appraised as such after the omitted strong beat has passed, the 
response for syncopations may have extended beyond our window of interest while the more immediate dila-
tion for pickups was captured. While this confound may have been mitigated by the additional 300 ms after the 
downbeat in our window of interest (600 ms after the kick in the syncopated conditions), we nevertheless contend 
that any potential dilation delay is captured by the drift rate analyses.

On a related note, a shortcoming of pupillometry is that the temporal resolution is limited and we cannot 
directly probe the evoked responses to individual pickups and syncopations. Many researchers have cleverly 
found ways to remedy this with  deconvolution61–64. However, as Fink et al.65 note, estimating the delay between 
stimuli and the pupil responses is not always so straightforward and has been shown to differ depending on 
whether motor responses are  required63. Temporal alignment may prove even more difficult when using musical 
stimuli where anticipation changes response latency over time. Moreover, this temporal alignment may also vary 
with different types of musical anticipation (e.g., for syncopations vs. pickups). Fink and colleagues’ forward 
modeling method avoids this issue, but the interpretation shifts from evoked pupil responses to fitting predictive 
models. In order to more directly measure both rhythmic entrainment and quick, evoked responses without 
introducing theoretical assumptions, we plan to record EEG in further investigations of groove for its greater 
temporal resolution. In addition to entrainment, event-related potentials to on- and off-beat notes in different 
rhythmic contexts could elucidate finer differences between pickups and syncopations.

We further plan to extend our behavioral findings regarding the effect of repetition at high levels of rhythmic 
complexity by beat perception ability to lower levels of complexity. Does repeating a rhythm continue to result in 
higher groove ratings for only those with strong beat perception abilities or does it generalize to everyone when 
the beat is easier to perceive? In this way, we can directly modulate global predictions through repetition at every 
level of metric complexity to disentangle pure predictive processes from musicological ones.

Conclusions
To our knowledge, this is the first rigorously controlled study of pupil size changes over a broad range of rhyth-
mic complexity that encompasses both pickups and syncopations in order to investigate the neurophysiological 
correlates of groove. Previous studies either did not fully explore the upper end of complexity or did not clearly 
distinguish the role of pickups. Here we replicate the canonical inverted U-shaped relationship between rhythmic 
complexity and groove ratings, including that this effect is enhanced by musical ability using a psychoacoustic 
test rather than participant demographics. These results seem consistent with the pupil drift rate, suggesting that 
groovier rhythms hold attention longer than ones rated less groovy. Moreover, we found divergent but comple-
mentary effects of syncopations and pickups on groove ratings and pupil size, respectively, extending previous 
findings by discovering a distinct predictive role for pickups. Specifically, while syncopations may demand our 
movement to enforce the metric model, pickups evoke greater pupil dilations and cue our attention to strong 
metric positions without our own movement. This thus lends correlative support to the predictive coding account 
where groove is envisioned as an embodied resolution of precision-weighted prediction  error8,9
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