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Light absorption enhancement 
in thin film GaAs solar cells using 
dielectric nanoparticles
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Cost-effective and lightweight solar cells are currently demanded in strategic fields such as space 
applications or integrated-wearable devices. A reduction of the active layer thickness, producing thin-
film devices, has been a traditional solution to accomplish both requirements. However, this solution 
also reduces the efficiency of the device. For this reason, alternative strategies are being proposed. In 
this work, light trapping effects of an array of semiconductor nanoparticles located on the top surface 
of a thin-film GaAs solar cell are investigated to improve the optical absorption and current density in 
active layer, under the standard AM-1.5 solar spectrum. The numerical results are compared with other 
previous proposals such as an aluminum nanoparticle array, as well as conventional solar cells with and 
without a standard anti-reflective coating (ARC). The inclusion of semiconductor nanoparticles (NPs) 
shows an improved response of the solar cells at different angles of incidence in comparison to solar 
cell with an ARC. Furthermore, the efficiency increases a 10% respect to the aluminum nanoparticles 
(NPs) architecture, and a 21% and a 30% respect to solar cells with and without ARC, respectively.

Solar energy is one of the most relevant and world spread sustainable sources with a mature related technol-
ogy. Consequently, it should be part of the solution to current energetic and climatic problems. However, solar 
cell technology should still adequate its characteristics to market requirements. In this way, the present market 
demands cost-effective and lightweight devices with remarkable power conversion efficiency to provide a massive 
expansion of their use, as well as its integration in mobile and wearable devices1.

Solar devices of the so-called second generation are also known as thin-film devices because of the reduced 
dimensions of their active layer. Unfortunately, a reduction of the semiconductor material not only involves a 
decrease of the cost and the weight but also a dramatic decrease of the conversion efficiency. The consequent 
generation, the third one, came to solve this issue from different approaches2–5. Multi-junction devices with 
several stacked active layers working at different and complementary spectral ranges, or new materials (e.g., 
perovskites) are some of the successful alternatives6,7. Additionally, the control of light arose as an interesting 
strategy to increase the solar cell efficiency by maximizing the amount of light within the active layer. Follow-
ing this idea, optical elements such as textured electrodes8, integrated Bragg reflectors9, diffractive gratings10,11, 
photonic crystals12, resonant nanostructures13,14 or nanoparticles producing up-conversion effects15 have been 
included. In this framework, resonant nanoparticles can confine light into a sub-wavelength volume and scatter 
it with a certain directional control. For this reason, their inclusion in solar cells has been being analyzed since 
several years ago15,16. Depending on the targeted dominant effect, these nanoparticles may be placed on the top, 
inside or at the bottom part of the devices reducing both reflection and parasitic losses, and increasing photon 
absorption. While several works have been mainly focused on plasmonic nanoparticles17–19, their ohmic losses 
and low thermochemical stability20 may reduce the lifetime of the device. In contrast, dielectric resonant nano-
structures are recently being considered21–23.

Moreover, while silicon has still a dominant position in the photovoltaic industry, other different materials 
are also in a mature position for the fabrication of solar cells. This is the case of gallium arsenide (GaAs) which 
presents efficiencies comparable to silicon in single crystalline devices. Additionally, its interesting properties, 
like its high photoelectric conversion efficiency per mass density, make it suitable for thin-film solar cells24. Other 
relevant properties such as its low temperature coefficient and radiation resistance make it also an excellent 
material for space and high-altitude platforms25.

In this work, we demonstrate the successful operation of a thin-film GaAs solar cell that includes resonant 
dielectric nanoparticles on the top surface. These nanoparticles are placed with the aim of reducing the surface 
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reflection but also to efficiently scatter light into the device. A joint effect between the Mie resonances of dielectric 
nanoparticles and the diffractive modes of the arrangement provides the expected management of the incident 
light. A numerical optimization process has been carried out, involving both the material and the geometrical 
properties of the nanostructures, as well as carefully analyzing the spectral profiles of the total reflectance, absorp-
tion rate and the short-circuit current density. The considered optimal device shows a remarkable enhancement 
of the solar cell performance, with a relative increase larger than 20% compared with other solutions used in 
the state of the art, such as an antireflection coatings (ARC)26,27 and plasmonic nanoparticles28–30. Moreover, the 
considered geometry has been designed with the intention of ease the fabrication in contrast to other complex 
shapes like nanopyramids or nanocones.

Setup and methods
A unit cell of the proposed device is shown in Fig. 1. This is a gallium arsenide (GaAs) solar cell, which arrange-
ment, materials, and geometrical parameters are similar to those considered in previous works31,32. The detailed 
description of the different layers can be found in Ref. 32, where experimental samples were characterized. This 
structure has been considered to provide a convenient reference which efficiency has been also evaluated using 
plasmonic nanoparticles31,32. In our particular case, the top surface includes resonant dielectric nanoparticles to 
improve the light trapping inside the solar device.

The different component layers are the following ones, from top to bottom: cylindrical dielectric nanoparticles 
(NP) on the top, which diameter (d), thickness (t) and material will be optimized in this work, a silicon dioxide 
(SiO2) layer of 25 nm acting as a space layer, an indium gallium phosphide (InGaP) window layer of 30 nm, a 
GaAs active layer of 500 nm, a InGaP back-surface-field (BSF) layer of 500 nm, and a GaAs substrate with a large 
thickness in comparison to the other layers. In order to find an optimal optical operation, the period (w) of the 
nanoparticles array will be also varied.

It is important to remark that a realistic solar device requires the insertion of other layers, such as those n- and 
p-doped layers generating such a suitable electric field as to separate the photogenerated carriers32. However, 
their thicknesses and low refractive index contrasts make them negligible in an optical analysis as the one that 
we present here. Nevertheless, we previously checked that this was not an issue by using the refractive indexes 
from reference33 and inserting both layers, not having any effect in the results to be presented from here on. For 
this reason, they are not included in this simplified structure.

We use the finite element method (FEM) implemented by COMSOL Multiphysics © to simulate the optical 
behavior of the device and the absorption rate of each layer. We set periodic boundary conditions (see unit cell 
at Fig. 1a) to model a periodic array of the unit cell while perfect matched layers are set at the top and bottom 
absorbing boundaries. The different media are considered isotropic, with their actual complex refractive indices 
obtained from SOPRA database34.

The internal (IQE) and external (EQE) quantum efficiencies are common parameters to characterize pho-
tovoltaic devices. It is also widely accepted in optical analysis of these devices as the one presented here to 
consider an IQE of 100%. This means that each absorbed photon is supposed to create one electron–hole pair. 
Consequently, the optical performance of the device through this assumption retrieves a value of the EQE that 
must be considered as a maximum one.

Figure 1.   (a) Scheme of the proposed GaAs solar cell with dielectric nanoparticles on the front surface. (b) Top 
view of the device, including labels of the main considered geometrical parameters.
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Another way to characterize the performance of the device is by calculating the short-circuit current density 
(JSC) in the active layers, by using the following integration over the spectral range.

where q is the electron charge, c is the speed of light in vacuum, h is the Planck’s constant, and PAM1.5 is the stand-
ard solar incident irradiance AM1.5G (1000 W/m2). The wavelength-dependent absorbance, WDA(λ) has been 
calculated through the power loss function. To compute it, the absorbed power density in each layer of the device, 
and particularly in the active layer, is divided by the input power, and then integrated over the layer volume.

Finally, and for the sake of comparison, we also consider two other systems: a GaAs solar cell with the 
same geometrical characteristics and materials composition as the previous one but without any light-trapping 
technique, and a GaAs solar cell as this latter one, including a typical antireflection coating (ARC) made of 
magnesium fluoride (MgF2) and zinc sulfide (ZnS). This allows us to contrast our results with those references, 
evaluating the achievements of the proposed system in comparison to other well-known configurations31.

Results and discussion
As it was previously stated, the aim of this work is to maximize the optical performance of a conventional GaAs 
solar cell by taking advantage of the light resonances of dielectric nanoparticles located on top of it. To optimize 
this arrangement, we previously made a search for the adequate geometrical properties; these are the height (t), 
diameter (d), and array period (w) of the nanoparticles. Additionally, different dielectric materials have been also 
considered. After this recursive analysis and comparing its results in terms of absorption and reflection with those 
from previous works31, we observed that the geometrical properties providing the best results within the solar 
spectrum are a diameter (d) of 250 nm, a height (t) of 50 nm and a period w = 350 nm. Regarding the material 
of the nanoparticles, the results limit the choice to two different dielectric materials: TiO2 and AlAs, due to their 
valuable results. For this reason, hereinafter only those two dielectric materials are considered. In the last years, 
there can be found several ways to properly fabricate this kind of ordered arrays in an accurate way, therefore 
the geometrical dimensions feasibility is in accordance with the state of the art35–37.

Figure 2 shows both the absorbance in the active layer (Fig. 2a) and the total reflectance of the device (Fig. 2b), 
as a function of the incident wavelength, of a GaAs solar cell with different configurations and under a normal 
incidence. In particular, these figures show the cases of a conventional GaAs solar cell, a GaAs solar cell with an 
antireflection coating, a GaAs solar cell including plasmonic (Al) nanoparticles like in31, and a GaAs solar cell 
with dielectric nanoparticles on top of it made of either TiO2 or AlAs as proposed in this work. The resonant 
behavior of these dielectric nanoparticles produces a strong light confinement around them. Light is consequently 
reemitted towards their bottom part, thus reducing the reflectance and increasing the amount of light going inside 
the photovoltaic device. The material, size and arrangement of the nanoparticles allow us to select the bandwidth 
where these effects happen, accordingly matching it with the absorption window of the active material.

As it can be seen, all the considered cases provide an increase of the absorbance from 400 to 850 nm as well 
as a reduction of the total reflectance, maximizing the amount of light reaching inside the active layer, and 
consequently increasing the amount of photogenerated electron-holes pairs. However, the results of each tech-
nique are quite diverse. For instance, the inclusion of an ARC improves the optical absorbance mainly at large 

(1)JSC =

∫
q
�

hc
WDA(�) · PAM1.5(�) · d�

Figure 2.   Spectral evolution of (a) the absorbance in the active layer and (b) the total reflectance of a GaAs 
solar cell for five different configurations: a conventional device without photonic strategies, a solar cell 
including an antireflection coating, a device with aluminum plasmonic nanoparticle on top of it and a solar cell 
including dielectric nanoparticle on it (TiO2 or AlAs).
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wavelengths (600–850 nm), as it can be seen in Fig. 2a. It also reduces the total reflectance in this spectral range, 
but its effects are remarkably worse at short wavelengths (Fig. 2b). On the other hand, the inclusion of resonant 
nanoparticles at the top part of the solar device provides an overall increase of the absorbance and a reduction 
of the total reflectance, compared to the conventional case. Nevertheless, we can still highlight remarkable dif-
ferences between the metallic and dielectric cases.

Regarding the active absorbance, it can be seen that dielectric nanoparticles (TiO2 or AlAs) supporting Mie 
resonances38,39 provide a larger boost of the absorbance than that from plasmonic nanostructures (Al), and in a 
wider spectral range. It is worth mentioning that the case of AlAs nanoparticles provides the best results in terms 
of absorbance, mainly due to the improvement of the absorbance in the blue range (400–500 nm), with a value 
up to a 40% higher than the conventional one. In addition, the optical properties of these dielectric materials 
in the solar spectrum produce a noticeable lower light absorption than that of metals (due to a low imaginary 
part of their refractive index), strongly reducing the thermal effects produced in the case of Al nanoparticles. In 
the case of the total reflectance (Fig. 2b), the effects of both metallic and dielectric nanostructures are similar: a 
general reduction of the reflectance compared to the conventional solar cell. Even so, the effects of the dielectric 
particles are again slightly better than those of the metallic ones, in particular in the UV range (< 400 nm) and 
at large wavelengths (> 600 nm).

While the maximum sensitivity of conventional solar cells is produced under a normal incidence, the addition 
of a textured or a nanostructured top surface may also increase the performance of the proposed device under 
non-normal angles of incidence. In this sense, Fig. 3 shows a comparison under different angles of incidence of 
the spectral evolution of both the absorbance (left panel) and the reflectance (right panel) of a conventional solar 
cell, a solar cell including an antireflection coating and our proposed device including dielectric nanoparticles 
on the top surface. Specifically, we consider an incidence of 20°, 40° and 60° as significant examples.

On the whole, the approach using AlAs nanoparticles provides the best results at any non-normal incidence in 
terms of both absorbance in the active layer and total reflectance. In the case of the absorbance (Fig. 3a,c,e), the 
use of these NPs in the top layer provides a smoother spectral response than the ARC case, as it will be explained, 
and similar to that of a conventional solar cell. Moreover, this absorbance is larger than that of the conventional 
one at any wavelength in the range between 400 nm and 850 nm. This enhancement is maintained for all the 
explored angles in the 500-800 nm range. The improvement only decays in the 400–550 nm range at high angles. 
The maximum increase appears at 440 nm and under normal incidence, being around a 44% compared to the 
conventional solar cell and a 33% to the case including an ARC. The maximum enhancement is shifted at larger 
wavelengths at high angular incidence. In this sense, under an incidence of 60° the maximum increase is esti-
mated to be around 80% (630 nm) compared to the conventional cell and an 82% (600 nm) compared to the case 
including an ARC. This effect allows a better performance of the solar cell during a larger number of hours in 
real installations without using solar tracker systems, when the maximum intensity of the solar spectrum shifts 
at red during dawn. Indeed, it is directly related with the total reflectance response in those wavelength inter-
vals (Fig. 3b,d,f), which spectral evolution shows that the minimum reflectance in the case of the solar cell with 
NPs is in the range between 600 and 700 nm. Again, the reflectance is much smaller within the solar spectrum 
than that of the other considered cases. In particular, this is clearly observed at incident angles of 20° and 40° 
(Fig. 3b,d). The case of 60° (Fig. 3f) is far complex because of the interferences produced in the multilayer ARC. 
Additionally, the differences between this minimum and the reflectance at other wavelengths are more prominent 
as the incident angle increases. It is also important to highlight that the reflectance peaks appear at ultraviolet 
wavelengths for the NPs case. These peaks become more noticeable and wider as the incident angle increases, 
producing a lower absorbance of this configuration in the spectral range (400–500 nm). However, these values 
are still better than those of a conventional solar cell.

In contrast to this response, the inclusion of ARC influences the normal incidence response at most. The 
extra layers produce remarkable interferential effects, in both the absorbance and the total reflectance, which 
are more conspicuous as the incident angle increases. This produces a response full of peaks—especially at low 
wavelengths, with mean values lower than the case of the solar cell with nanoparticles. Meanwhile, the behavior 
of the nanostructured solar cell is acceptable, keeping its effect on the improvement of absorbance within the 
solar spectrum.

In order to examine the origin of these effects, Fig. 4 shows the spatial distribution of the electric-field (left) 
and the magnetic-field (right) intensity inside the GaAs layer of the different solar devices that we are compar-
ing. These images show the top region of a unit cell (w = 350 nm) of the device including an air layer of 1 μm, the 
space layer (SiO2, 25 nm), the window layer (InGaP, 30 nm) and the GaAs active layer (500 nm). The BSF layer 
and the substrate are not shown because the interesting behavior is produced in the GaAs layer. While Fig. 4a,b 
correspond to the conventional solar cell, Fig. 4c,d consider a GaAs solar cell with an ARC (120 nm) and Fig. 4e,f 
show the results of the GaAs solar cell with AlAs nanoparticles (diameter 250 nm and height 50 nm). All the 
figures are obtained at an incident wavelength of 620 nm (the one for the most remarkable differences in Fig. 3) 
and under four different incident angles, which are labeled on the bottom part of the figure. To clarify each 
structure a scheme of each cell configuration is included. It is clearly observed how the ARC (Fig. 4c,d) produces 
a larger concentration of light in the device than in the conventional case (Fig. 4a,b). This is more obvious in 
the layers that are above the active one, producing a certain reduction of the reflectance and an increase of the 
light reaching the active material. In contrast, the use of nanostructures on top of the device (Fig. 4e,f) provides 
a larger light confinement and also a more efficient guiding of light towards the active layer. In fact, it can be 
clearly observed that both the electric and the magnetic field are enhanced in this configuration compared to the 
previous cases. This phenomenon is mainly due to resonant effects of the nanoparticles with the incident field. 
The resonant nanoparticles efficiently confine the electromagnetic field and scatter it again towards the bottom 
part (the active region). Moreover, these effects are remarkably insensitive to the incident angle, providing better 
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results than the other two considered cases. This shows up that this solution is a promising way to improve the 
optical performance of solar cells.

Finally, Fig. 5 shows the simulated short-circuit current density (JSC) as a function of the incidence angle. 
As before and with the aim of comparing, this figure includes a conventional GaAs solar cell, the solar cell with 
an ARC and the solar cell with nanoparticles on top of it considering two cases: plasmonic Al nanoparticles, 
and the proposed dielectric AlAs nanoparticles. Again, it can be seen that although ARC improves the electric 
performance of a standard solar cell, the use of nanostructures on the top layer provides a better performance 

Figure 3.   Absorbance in active layer (left) and total reflectance (right) of the device under an incidence of 20° 
in (a,b), of 40° in (c,d) and of 60° in (e,f).
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in a large angular range (JSC is larger than 10 mA/cm2 up to 80° instead of the 70° angle of the ARC case). In this 
case, while metallic Al NPs previously proposed in the literature31, slightly improve the JSC of an ARC solution, 
the proposed AlAs NPs significantly rise the current density in the angular range from 0° to 70°, producing a 
much better response of the solar cell than the other considered cases, also avoiding the thermal effects of the 
plasmonic nanoparticles.

Conclusions
The aim of this work is focused on improving the optical response of GaAs solar cells using simple nanostructures 
(e.g. nanodisks and/or nanocylinders). Following the current state of the art and our previous works, we know 
that resonant nanoparticles, like plasmonic ones, can confine the incident electromagnetic field and scatter it into 
the bottom layer. Consequently, the amount of light inside the active layer increases, providing both an increase 
of the absorption and a decrease of the reflectivity of the solar device. However, the properties of these nanostruc-
tures, their fabrication and integration in the solar cell and its potential effect on the electric properties of the 
device should be carefully analyzed for every case in order to optimize the overall performance of the solar cell.

With this in mind, we have numerically analyzed the case of a GaAs-based solar cell, which use on space mis-
sions is remarkable. The proposed nanostructure is one of the most feasible arrangements from an experimental 
point of view, being composed of nanocylinders or nanodisks, depending on the aspect ratio. Additionally, the 
nanostructure is placed on the top of the device, simplifying its integration, making its fabrication more feasi-
ble, and reducing its influence on the electric properties of the solar cell. Furthermore, we have contrasted the 
numerical results with typical designs in the state-of-the-art, such as a conventional GaAs solar cell, a solar cell 
with an antireflection coating (ARC) and the solar device including plasmonic nanoparticles.

Our optical simulations shows that the use of AlAs nanoparticles is the best and simplest approach to effi-
ciently confine the light, reducing the reflectance and increasing the absorbance of the solar device. This improve-
ment compared to the other considered cases is observed all over the solar spectrum, and under a wide angular 
incidence. In fact, the spatial distribution of the electromagnetic field shows that these nanoparticles can guide 
the incident light into the active layer in a more effective way than an ARC. Specifically, it has been estimated 
that the short-circuit current density (JSC) using AlAs nanoparticles is 19.34 mA/cm2 at normal incidence. This 

Figure 4.   Spatial distribution of the electric and magnetic field intensities in the solar cell. (a) Electric field and 
(b) magnetic field distribution in a conventional solar cell. (c) Electric field and (d) magnetic field distribution 
in a GaAs solar cell including an ARC. (e) Electric field and (f) magnetic field distribution in a GaAs solar cell 
including AlAs nanoparticles on it. All the cases consider four different angular incidences, from left to right: 
normal (0°), 20°, 40° and 60°. The images show a unit cell of the device (w = 350 nm) with an air layer (1 μm) 
on top of it. Only the space (SiO2, 25 nm), window (InGaP, 30 nm) and GaAs (500 nm) layers are shown in the 
reference case. The considered ARC has a thickness of 120 nm and the AlAs nanoparticles have a diameter of 
250 nm and a height of 50 nm.
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is a relative increase of a 30% and a 21% when compared to a conventional GaAs solar cell and a GaAs solar cell 
with an ARC, respectively. Also, the dielectric nature of these nanoparticles avoids the thermal effects of the 
plasmonic nanoparticles (e.g. Al) which might involve harmful effects on the electric performance and/or the 
lifetime of the device.

In summary, this study reveals how the use of semiconductor nanoparticles can improve the optical perfor-
mance of GaAs-based solar cells with no further antireflective coatings inclusion, improving the optical absorb-
ance and reducing the reflectivity by means of light trapping effects, while avoiding unwanted thermal effects.

Data availability
The datasets generated and/or analysed during the current study are not publicly available because they have been 
generated using COMSOL Multiphysics, but are available from the corresponding author on reasonable request.
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