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A high‑throughput study of visceral 
organs in CT‑scanned pigs
Øyvind Nordbø1*, Rune Sagevik1, Jørgen Kongsro1, Kevin Mikkelsen1, Arne B. Gjuvsland1,2, 
Ann‑Helen Gaustad1, Dan Olsen1, Espen W. Remme3 & Eli Grindflek1

It has been debated whether intensive selection for growth and carcass yield in pig breeding 
programmes can affect the size of internal organs, and thereby reduce the animal’s ability to handle 
stress and increase the risk of sudden deaths. To explore the respiratory and circulatory system in 
pigs, a deep learning based computational pipeline was built to extract the size of lungs and hearts 
from CT-scan images. This pipeline was applied on CT images from 11,000 boar selection candidates 
acquired during the last decade. Further, heart and lung volumes were analysed genetically and 
correlated with production traits. Both heart and lung volumes were heritable, with h2 estimated to 
0.35 and 0.34, respectively, in Landrace, and 0.28 and 0.4 in Duroc. Both volumes were positively 
correlated with lean meat percentage, and lung volume was negatively genetically correlated with 
growth (rg = − 0.48 ± 0.07 for Landrace and rg = − 0.44 ± 0.07 for Duroc). The main findings suggest that 
the current pig breeding programs could, as an indirect response to selection, affect the size of hearts- 
and lungs. The presented methods can be used to monitor the development of internal organs in the 
future.

Pig breeders have selected pigs for traits like feed efficiency, backfat thickness and daily gain for several decades. 
It has been debated how this has affected the size of visceral organs1–5, and whether the organs have been devel-
oping accordingly, to cope with stressors and disease6.

Stressors (like e.g. transportation) and diseases are some of the causes of sudden deaths in pigs, and are highly 
unwanted due to animal welfare concerns, farmers economy, as well as loss of food and thus increased carbon 
footprint. Sudden death has multifactorial/complex causes7–9, relatively low frequency (e.g. 0.15% in U.S market 
weight pigs)7 and, generally, low heritability10. In addition, sudden deaths occur more often in commercial farms, 
which in most cases have large genetic distance to the breeding nucleus. This makes it even more difficult to 
extract the genetic components and to make any strong genetic progress on survival11.

However, since the circulatory and respiratory systems seem to play important roles for sudden deaths, both 
among finishers6,12 and sows8,13, one strategy could be to develop indicator traits, e.g. quantifying the capacity of 
the heart and lungs. Previous studies2,6 show that heart lesions and abnormalities, like hypertrophy of the ven-
tricular walls are quite common in finishers and growing pigs, even in animals that seem healthy6. More specifi-
cally, van Essen et al.2 observed that some traits describing the circulatory capacity, like cardiac output and stroke 
volume in pigs did not scale proportionally with body weight (BW) according to the allometric scaling laws. In 
addition, they showed that the molecular composition of cardiac tissue was changing towards a less compliant 
tissue with increased body size, which could impair diastolic filling and predispose for diastolic heart failure.

Increased efficiency of selection, as a result of genomic selection14 and increased data quality and quantity15, 
obtained from sensors and associated protocols has facilitated development of broader breeding goals within 
swine breeding during the last decades. This has led to an inclusion of more health and welfare related traits16, 
like disease tolerance17 and survival18 in addition to more traditional traits. When selecting animals for growth 
and carcass yield, it is plausible that also internal organs are affected, as an indirect response to selection, and 
this could potentially influence the animal’s health. However, large datasets on circulatory and respiratory traits 
in pigs do not exist.

The first aim of this study is therefore to develop a pipeline for high-throughput analysis of heart and lung 
size in live pigs. The second aim is to apply this method on a large number of CT-scanned pigs, and to connect 
the genetics of novel circulatory and respiratory traits to traditional production traits in pig breeding, and to find 
how the organs have been developing over generations of selection in the studied pig populations.
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Methods
Animals.  5500 Landrace and 5500 Duroc purebred boars in this study were CT scanned as part of the breed-
ing program between 2010 and 2019 as previously described in detail19. These boars were born and raised to 
about 30 kg in different nucleus herds located in Norway, before they were sent to the boar testing station. The 
boar test includes longitudinal feed and weight recordings, and conformation scoring and CT scanning at the 
end of the test (at 120 kg)20,21.

Ethics approval.  All animals were cared for according to internationally recognized guidelines and laws 
and regulations for keeping pigs in Norway (Regulation for the keeping of pigs in Norway 2003-02-18-175, 2003; 
Animal welfare Act 2009-06-19-97, 2009). The data were collected as part of the breeding program in Norsvin.

Deep learning‑based heart and lung measurements.  The CT-images of each pig consisted of a stack 
of approximately 1200 transversal images with 512 × 512 pixels with a resolution of (0.9355 × 0.9355 mm) and 
with a slice thickness of 1.25 mm. The images covered the entire pig from nose to tail, lying sternally. The pigs 
were sedated during CT scaning19. For segmentation of heart and lungs, a two-step procedure to analyse CT-
images of pigs was developed. First, a classification procedure to select images containing heart and lung, fol-
lowed by a method for segmenting the two organs.

Classification.  A simple convolution neural network (CNN) was trained to classify whether the images 
contained the chest or not. The network, implemented in TensorFlow22, consisted of three convolutional layers 
using a kernel size of 5 × 5, with 64, 128 and 256 filters respectively. To train this network, a continuous sequence 
of images (image no. 300–800 from each pig) was extracted first, since the chest region is a continuous subset 
of these 501 images. All images between the first and last image number in this sequence, containing the lungs, 
were annotated as chest, while the remaining images were annotated as “not chest”. This was done on 25 pigs, 
and the training set consisted of 10,521 images (from 21 pigs) while the validation set consisted of 2004 images 
(from 4 pigs).

The output of this network was the probability for each image to be a part of the chest. To further impose 
the restriction that the chest is constituted by one continuous sequence of images, we applied a decision tree 
regressor23 which best fitted the raw probability data, using three levels (above chest, chest and below chest). 
Images having a subsequent probability above 0.5 were then classified as the chest.

Segmentation.  The sequence of images classified as chest was further analysed by a segmentation CNN. To 
train the segmentation of lungs and hearts, CT images of DICOM format containing the chest were converted 
to .png-files and then annotated using LabelMe 24. Polygons containing the heart (area surrounded by red line in 
Fig. 1a) and the region containing both heart and lungs (area surrounded by green line in a) were annotated on 
1372 images from 29 pigs (between 38 and 71 images containing the chest from each pig).

The heart region was used directly for training the segmentation CNN, while the mask of the lungs was 
subsequently automatically segmented by selecting only pixels with Hounsfield unit (HU) below −40025 from 
the mask containing both lungs and heart (see green region in Fig. 1b). The lungs, heart and background mask 
for these images were then used to train the segmentation CNN. The 1121 images (from 24 pigs) were divided 
randomly, thus, 80% of images (N = 897) were used for training the network and 20% for validation (N = 224). 
Data from remaining 5 pigs (N = 251 images) were used as test set for model.

The training data was fitted into a U-net26, a simple extension of the CNN presented in27, consisting of 6 con-
secutive contracting and expansive modules, instead of 4. After the last expansive module, a last convolutional 

Figure 1.   Manual annotation of CT-image. (a) Polygons covering the heart only (red) and heart and lung area 
combined (green). (b) Final labelling of heart (in blue), the lungs (in green) and background (in red). The region 
coloured in black is not assigned to any class.
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layer with a softmax multi-classificator was applied. The model was trained, using dice coefficeient as loss 
function.

The output of the segmentation network was a pixelwise probability to belong to each of the classes, heart, 
lung, or background. Pixels having a probability of 0.5 or more to belong to one of the classes, were assigned to 
their most probable class. Subsequently, to further improve the segmentation of the heart, connected components 
were used to just include pixels, physically belonging to the largest continuous heart region from the heart class.

Heart and lung phenotypes.  To end up with traits, quantifying the total volume of the heart and the 
lungs, measured in ml., the total number of pixels containing heart and lungs were calculated across all images 
of an individual and subsequently multiplied by the pixel size.

The sequence of CT images from 300 to 800 were classified and segmented, using the classification and seg-
mentation CNNs described above. Heart and lung volumes were further investigated to find out how the organ 
size relates to age and weight at scanning date, using linear regression models (in R28) with age and weight as 
regressors. Further the volumes were analysed to estimate coefficients of the allometric scaling law y = αLWβ29, 
by applying linear regression on log-transformed heart and lung volumes (y) with a log-transformed live weight 
(LW) at scanning as regressor. A regression coefficient β close to one would indicate a proportional relationship 
between the weight of the animal and the size of the intrathoracic organs.

Genetic analysis.  Further on, heart and lung volumes were included in single- and multi-trait genetic anal-
yses within-breed, using best linear unbiased prediction (BLUP)30, using the DMU software31. These analyses 
were conducted using a pedigree that contained all animals with CT-data and five generations of ancestors. 
Founder animals in these pedigrees were grouped by sex and birth year. Animals born in subsequent birth years 
were then clustered into genetic groups, so each group contained at least 50 individuals. This resulted in pedi-
grees containing 11,146 animals and nine genetic groups for Duroc, and 14,184 animals and 17 genetic groups 
for Landrace. The traits were modelled as

with herd year ( HY ) of the boar’s birth, birth month ( BM ), and parity number of the dam ( PN ) as fixed effects. 
The boar’s phenotype for live weight at scanning date ( LW ) as a fixed covariate, and the pen ( pm ), additive genetic 
effect of the animal ( an ) and the residual ( eijklmn ) as random effects. First, univariate analyses were performed, and 
genetic trends were calculated. Secondly, genetic correlations with other relevant traits, taken from the existing 
breeding programme (shown in Table 1) were estimated. For simplicity, and to avoid convergence issues, the 
correlations of random effects for pen across traits were set to zero.

Results
The segmentation of the lung, heart and background regions had high accuracy in the test-cohort of the 251 
images from the five pigs. The overall dice coefficient was 0.992, with higher coefficient for background (0.996) 
than for lungs (0.950) and heart (0.894).

The distribution of heart and lung volume phenotypes (a), (b) and (c) seem to be close to normally distributed. 
The average lung volume of Durocs were about 500 ml less than in Landrace, while the average Duroc heart 
volume was more than 50 ml larger than in Landrace (Fig. 2).

The linear regression models showed that heart volumes were for both lines mainly influenced by body weight 
of the animal (Table 2).

For Duroc, the lung volume was mainly determined by the age of the animal, while for Landrace, the lung 
volume was influenced by both weight and age. Heart volumes were mainly determined by weight for both breeds. 
Correlations between weight and age at scanning were 0.15 for Duroc and 0.17 for Landrace.

(1)yijklmn = HYi + BMj + PNk + γ× LWl + pm + an + eijklmn,

Table 1.   Trait definitions and models for estimation of genetic correlations.

Trait Definition Model

Age40 Age at 40 kg’s Equation (1) − γ× LWl

Growth Average daily gain from 40 to 120 kg’s Equation (1) − γ× LWl

Feed40_120 feed intake 40–120 kg’s Equation (1) − γ× LWl

Yield% Yield % for carcass (incl. head) Equation (1)

Lean% Lean meat % (incl. head) Equation (1)

Prim%B Primal % for belly Equation (1)

Prim%H Primal % for ham Equation (1)

Prim%L Primal % for loin Equation (1)

Prim%S Primal % for shoulder Equation (1)

LoinDepth Loindepth at 100 kg’s Equation (1) − γ× LWl

BackFat Backfat at 100 kg’s Equation (1) − γ× LWl
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When fitting a linear model on live weight vs. heart and lung volumes (all log-transformed) for Landrace, 
the β values were 0.93 (SE = 0.06) and 0.60 (SE = 0.08) for heart and lung volume, respectively. Corresponding 
number for Duroc were 0.76 (SE = 0.07) for heart and 0.33 (SE = 0.07) for lung volume.

The heritabilities for heart and lung volumes for Landrace were 0.35 ± 0.04 and 0.34 ± 0.04 while the corre-
sponding numbers for Duroc were 0.28 ± 0.03 and 0.40 ± 0.04. For Landrace, the genetic correlation between the 
volumes was weak and positive (0.10 ± 0.09), while for Duroc, the correlations were a little stronger (0.34 ± 0.08).

Genetic trends (average estimated breeding values within birth-year) for lung and heart volumes for Duroc 
and Landrace are shown in Fig. 3. The genetic trends were scaled according to the genetic standard deviation 
for the trait and intercept is set to the mean EBV-level of animals born in 2010.

Genetic correlations with other relevant traits for Landrace are shown in Table 3 and corresponding numbers 
for Duroc are shown in Table 4. Cases where absolute value of genetic correlations are smaller than standard 
errors are omitted from these tables.

Discussion
In this paper we have developed a deep learning-based pipeline for extraction of novel intratoractic organ phe-
notypes from CT scanned pigs. This pipeline has been used for a high-throughput analysis of heart and lung 
size for two purebred pig populations. The heart and lung volumes were moderately heritable (h2 0.28–0.4), 
which is in the same range as heritabilities estimated for human heart size32,33 and human lung volume related 
phenotypes34. Such high heritabilities indicate that the proposed computational pipeline is associated with lim-
ited errors, taking the limitations of the current CT acquisition into account (e.g., no ECG-gating, beating heart 
and respiring animals).

Over the last decade, the genetic trends of visceral organs size in Duroc and Landrace have been negative 
(Fig. 3). Especially, the lung volumes of Duroc are relatively smaller (half a genetic standard deviation, or 140 ml) 
at the weight of 120 kg than for ten years ago. This reduction is probably mainly due to its negative genetic cor-
relation to Growth. The Growth seemed to have the strongest genetic correlations to lung size among all tested 
traits, in both breeds. Phenotypically, the growth rate increased by 15% over the last ten years, causing animals 
to reach their scanning weight of 120 kg 3 weeks earlier than a decade ago.

Further, the heart and lung sizes seem to be associated with the level of leanness/fatness of the pigs (Tables 3 
and 4). For both breeds, the overall lean meat percentage (Lean%) was positively correlated to both heart and 
lung size. On the other hand, BackFat was negatively correlated with both these traits. The negative genetic 
correlation between BackFat and heart size is in accordance with the previous findings in pigs1 and opposite of 
observations in human35. However, negative correlations between lung volumes and body fat percentage have, 
like in our study, been found in human36.

Figure 2.   Distribution of heart and lung volumes for Duroc and Landrace pigs predicted from deep learning 
algorithms as bivariate plot (a) and as empirical cumulative distribution functions (ecdf) (in b,c).

Table 2.   Regression coefficients and standard errors for lung and heart volumes for Landrace and Duroc on 
age and weight at scanning date.

Weight at 
scanning (kg)

Age at scanning 
(days)

Reg.coeff SE Reg.coeff SE

Duroc

Lung volume (ml) 0.73 1.75 13.45 0.53

Heart volume (ml) 7.28 0.53 0.01 0.16

Landrace

Lung volume (ml) 8.01 2.33 17.95 0.82

Heart volume (ml) 8.04 0.48 0.54 0.17
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It has been suggested that such a negative correlation between heart size and BackFat could reflect a patho-
physiological change when breeding for leaner pigs37. In this study we see, however, that both the lungs and heart 
volume increase when the BackFat is going down, and to our knowledge, bigger lungs are not associated with 
any pathophysiological state in pigs. Without claiming any causal pathway, it seems to be a clear correspond-
ence between the size of visceral organs and leanness/fatness. Potentially, this could be explained by a positive 
relationship between the size of visceral organs, the respiratory/circulatory capacity, the activity, and leanness of 
the pigs. The potential strength of these correlations should be studied in more detail in the future.

We also observe that the size of the belly (Prim%B) is negatively correlated with lung size. The belly is the 
most fatty part of the primal cuts, and Prim%B is therefore highly genetically correlated to BackFat21.

The lung volumes were on average larger in Landrace than in Duroc, and there might be multiple reasons for 
that: Landrace have been bred for leanness for decades, and as mentioned above, leanness is highly genetically 
correlated with lung size (Tables 3 and 4). In addition, since Landrace has been bred for maternal traits like 
number of teats for many years, it has also increased the number of vertebrae38 and thus length of the body. This 

Figure 3.   Genetic trends of heart and lung volume, scaled according to the genetic standard deviation, σG of the 
trait.

Table 3.   Genetic correlation between heart and lung volumes and other relevant traits for Landrace. 
BackFat  backfat at 100 kg’s, LoinDepth  loindepth at 100 kg’s, Prim%H  primal % for ham, Yield%  yield % 
for carcass (incl. head), Age40  age at 40 kg’s, Prim%B  primal % for belly, Lean%  lean meat % (incl. head), 
Growth  average daily gain from 40 to 120 kg’s, Prim%S primal % for shoulder.

Trait1 Trait2 Corr SE

BackFat HeartSize −0.28 0.08

LoinDepth HeartSize −0.27 0.09

Prim%H HeartSize −0.22 0.07

Yield% HeartSize −0.14 0.09

Age40 HeartSize −0.11 0.09

Prim%B HeartSize 0.12 0.08

Lean% HeartSize 0.17 0.07

Growth LungSize −0.48 0.07

BackFat LungSize −0.35 0.08

Prim%B LungSize −0.34 0.07

Prim%H LungSize 0.11 0.07

Yield% LungSize 0.14 0.08

Prim%S LungSize 0.22 0.08

Age40 LungSize 0.28 0.09

Lean% LungSize 0.46 0.06
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increased body length might also have affected the space available for lungs. The average heart volumes, on the 
other hand, are bigger in Duroc than in Landrace.

The animals in this study were all CT-scanned at similar weight (around 120 kg). Hence, the dataset is not 
optimal to see how organ size scales with body size. When it comes to the volumes of lungs, the results were quite 
far away from scaling factors suggested by theoretical approaches ( β = 1)29,39 and cross-species observations40. 
Especially for Duroc ( β = 0.33) , but also for Landrace ( β = 0.60) , the relationship between body size and lung 
volume are sublinear. Whether these low scaling factors are due to strong artificial selection41, or whether this 
is because lung volumes are more related to age than weight (Table 2), or a combination of these factors, is not 
known. A longitudinal study of lung volumes in growing pigs would shed light on these questions.

The allometric scaling factor for heart volumes, β , was equal to 0.76 for Duroc and 0.93 for Landrace pigs. 
However, the outer volume of the heart is not known to be associated with more relevant traits describing the 
heart capacity, like e.g., stroke volume or left ventricular diastolic volume. Further, when it comes to allomet-
ric scaling laws for outer heart volume, there exists, to our knowledge, not much theory nor measurements. 
Roughly, the outer volume of the heart is equal to the sum of the volume of the heart tissue plus the heart cham-
ber volumes. The ventricular volumes seem to scale linearly with the body weight42,43, but when it comes to the 
weight of the empty heart, there is some ambiguity in the scientific literature, where both factors of 0.752,37 and 
1.042,43 have been reported. Hence, scaling factors for outer heart volume is expected to be either close to one, or 
between 0.75 and 1.0. The estimated factors here, are at least within this range. It should also be mentioned that 
the outer heart volume could e.g. potentially be influenced by hypertrophy of ventricular walls and dilatation of 
ventricular chambers, which is reported to be common in finisher pigs in Canada6. Whether such lesions exist 
among purebred nucleus pigs, is questionable, but compensatory remodelling could potentially give a deviating 
relationship between heart and body size.

Even if the lung volumes of Durocs have been reduced, probably as an indirect response to selection for e.g. 
the studied production traits during the last decade, we do not have any indications that this has implications 
for the animal’s health. Duroc is the most common terminal sire line used in Norway, and the finisher survival 
in Norway has improved the last years44. By studying genetic correlations between lung and heart size and sur-
vival/longevity, preferably with data from commercial environments, we could find out what is the preferrable 
direction of genetic progress of internal organs to improve the robustness. This pipeline is therefore a useful tool 
to monitor the progress of development of internal organs of live animals in a sustainable breeding program.

To improve the interpretation of the results, a refined deep learning model for measuring the lung volume 
would be beneficial. In the current study, only the volume of air inside lungs was investigated. Differentiation 
between anatomical changes in the form of a smaller chest, or connective tissue and pathological conditions 
could be done by assigning the pixels within the manually segmented chest area (green line in Fig. 2a) that do 
not belong to heart or lungs, into an own class (represented by the black regions in Fig. 2b). This class would 
represent the amount of connective tissue, blood vessels, or any pathological condition. Summing this class 
with heart and lung volumes would constitute the whole intrathoracic volume. Another future improvement 
would be to develop new CT-protocols, with e.g., ECG-gating or ability to simultaneously measure respiratory 
phase. This would further increase the potential to extract even more relevant cardiac and respiratory traits in 
live pigs. Inclusion of other internal organs, like liver, kidneys etc. into this pipeline would also be a potential 
extension of this work.

Table 4.   Genetic correlation between heart and lung volumes and other relevant traits for Duroc. 
BackFat  backfat at 100 kg’s, Feed40_120  feed intake 40–120 kg’s, Age40 age at 40 kg’s, Growth average daily 
gain from 40 to 120 kg’s, Lean%  lean meat % (incl. head), Prim%B  primal % for belly, LoinDepth  loindepth at 
100 kg’s, Yield%  yield % for carcass (incl. head), Prim%S primal % for shoulder.

Trait1 Trait2 Corr SE

BackFat HeartSize −0.33 0.08

Feed40_120 HeartSize −0.11 0.08

Growth HeartSize −0.11 0.09

Age40 HeartSize −0.10 0.09

Lean% HeartSize 0.23 0.07

Growth LungSize −0.44 0.07

Prim%B LungSize −0.24 0.07

BackFat LungSize −0.20 0.08

LoinDepth LungSize −0.14 0.08

Feed40_120 LungSize 0.08 0.07

Yield% LungSize 0.13 0.08

Age40 LungSize 0.17 0.08

Prim%S LungSize 0.21 0.07

Lean% LungSize 0.33 0.06
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Conclusion
In this study, we developed a deep learning-based computational pipeline for extracting characteristics of the 
visceral organs in live CT-scanned pigs. This pipeline was applied to 11.000 scanned pigs, and the genetic param-
eter analysis for heart and lung volumes were performed. These traits were moderately heritable (h2 0.28–0.4), 
and both showed a slightly negative genetic trend over the last decade. Especially the lung size of the Duroc 
has been reduced, and this could probably be explained by the relatively strong negative genetic correlation to 
growth. As such, this work provided useful knowledge on how visceral organs develop over time together with 
intensive breeding for production, and a very useful tool to ensure the biological balanced composition of the 
animal in a sustainable breeding program.

Data availability
The data that support the findings of this study are available from Norsvin SA, but restrictions apply to the 
availability of these data, which were used under license for the current study, and thus are not publicly avail-
able. However, data is available from the authors upon reasonable request and with permission of Norsvin SA.
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