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Midfrontal theta power encodes 
the value of haptic delay
Haneen Alsuradi1, Wanjoo Park2 & Mohamad Eid2*

The use of haptic technologies in modern life scenarios is becoming the new normal particularly in 
rehabilitation, medical training, and entertainment applications. An evident challenge in haptic 
telepresence systems is the delay in haptic information. How humans perceive delayed visual 
and audio information has been extensively studied, however, the same for haptically delayed 
environments remains largely unknown. Here, we develop a visuo-haptic experimental setting 
that simulates pick and place task and involves continuous haptic feedback stimulation with four 
possible haptic delay levels. The setting is built using a haptic device and a computer screen. We 
use electroencephalography (EEG) to study the neural correlates that could be used to identify the 
amount of the experienced haptic delay. EEG data were collected from 34 participants. Results 
revealed that midfrontal theta oscillation plays a pivotal role in quantifying the amount of haptic delay 
while parietal alpha showed a significant modulation that encodes the presence of haptic delay. Based 
on the available literature, these results suggest that the amount of haptic delay is proportional to the 
neural activation that is associated with conflict detection and resolution as well as for multi-sensory 
divided attention.

The introduction of haptic feedback in human–machine interaction systems, such as teleoperation or virtual 
reality, leads to the potential for timing issues caused by transmission over a computer network or limited 
computational  resources1. Haptic delay is the temporal mismatch between the actual haptic feedback event and 
the expected one. The impact of haptic delay is well studied; it is known that haptic delay leads to deteriorated 
performance and the potential to compromise the stability of the haptic  interface2. For instance, delayed haptic 
feedback can seriously disrupt the task completion time in  manipulation3, quality of  teleoperation4, and the 
perception of physical properties such as stiffness and  friction5.

The ability of humans to recognize haptic delays may vary substantially based on the application and the type 
of haptic interaction (vibrotactile versus force feedback, discrete versus continuous force feedback, and passive 
versus active interaction)6. A previous study showed that discrete haptic feedback is noticed as delayed if the 
delay exceeded 110  ms6. In a collaborative virtual environment where haptic data is transmitted bi-directionally, 
haptic feedback delay could be perceived starting from around 50  ms7. It has also been reported that humans 
do not perceive delays below 30 ms during continuous haptic  interaction8. In a recent study, the effect of haptic 
delay for tasks relying on continuous haptic feedback is examined through a human–robot interaction  paradigm9. 
Results demonstrated that subjects could recognize haptic delays starting from 20 ms, and at 60 ms and beyond, 
they clearly perceive the effect of the delay. Understanding the human experience of haptic delay is essential for 
designing haptic technologies, particularly those intended for use over a computer network.

The integration of neuroscience and haptics inspired an emerging field, named neurohaptics, that strives 
to understand the complex neural representations provoked in response to touch  stimulation10. Brain imaging 
techniques such as fMRI and EEG have the potential to measure brain activities associated with haptic delay 
to provide neural, real-time assessment of the haptic  delay10,11. EEG imaging seems superior due to its compat-
ibility with electronic devices, relatively low cost, and high temporal  resolution10. Previous studies on delay 
perception with EEG focused primarily on visual  delay12,13. In addition, previous literature has unraveled the 
functional roles that the central and midfrontal areas in the brain, and in particular the theta frequency band, 
play in conflict analysis at the stimulus/response  level14,15, at the semantic/cognitive  level16,17 and during cross-
modal prediction error  processing18.

To our knowledge, the neural correlates associated with the amount of haptic delay have not been well studied. 
A few studies on visual-motor incongruency reported that theta synchronization at the midfrontal cortex reflects 
conflict monitoring and resolution to modality mismatch concerning self-initiated motor  movement19 or visual 
stimuli involving a motor  response20,21. Theta oscillation was reported to be more pronounced under incongru-
ent cross-modal stimulation as compared to congruent stimulation under visuotactile matching  paradigm22. In 
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a similar study, incongruent stimulation induced a significantly greater theta band activity during 300–500 ms 
after  stimulation23. A recent study revealed that theta power oscillation was significantly higher at the midfrontal 
cortex under the presence of haptic delay during passive and active tasks relying on discrete haptic  feedback24. 
However, the study focused on the detection of haptic delay in a discrete haptic feedback task.

In this work, we consider the impact of the amount of haptic delay during single (as compared to dual- or 
multi-tasks), active task that involve continuous haptic feedback. We study EEG correlates associated with vary-
ing levels of haptic delays, including D0 (0 ms, no delay), D1 (120 ms), D2 (250 ms), and D3 (400 ms). The four 
haptic delays are selected through a pilot study based on a (1 up–1 down) staircase method: D1 and D2 are one 
standard deviation below and above the detection threshold, respectively, and D3 is three standard deviations 
above the detection threshold found through the pilot study. Event-related spectral perturbation (ERSP) in the 
theta and alpha bands are investigated in the central and midfrontal areas to determine the effect of the amount 
of haptic delay. Neural results are complemented with behavioral data.

Methods
Participants. Thirty-four subjects have been invited to participate in the experiment (17 females), where the 
majority of them (97%) are undergraduate students aged between 18 and 25 years. All participants were right-
handed and used their right hand to complete the task. Exclusion criteria include participants below the age of 18 
and/or left-handed with reported traumatic brain injuries, neural abnormalities, and/or muscle atrophy. Around 
82% of the participants had no prior experience using a haptic device. The protocol followed in this study was 
approved by New York University Abu Dhabi Institutional Review Board (IRB: # HRPP-2021-17) and was in 
accordance with the Declaration of Helsinki, following its guidelines and regulations. All participants signed 
an informed consent form in accordance with the IRB ethics before enrolling in this study. Each participant 
received an Amazon voucher worth 30 dollars (USD) for their participation. Several preventive and cautionary 
measures were taken to protect participants from COVID-19, such as: maintaining physical distancing, adher-
ing to surgical masks and gloves before any interaction with the participants, disinfecting the haptic device after 
every use and completing a symptom check form to ensure participants are symptoms free.

Experimental setup and task. Participants performed a simulated pick and drop task in which the user 
was asked to grab a cylindrical-shaped object with their right hand and release it in a bucket using a haptic device 
(Geomagic Touch, 3D systems, United States). Figure 1a shows one of the participants correctly holding the 
stylus of the haptic device along with the experimental setup. Both haptic and visual feedbacks were provided; 
the visual feedback was delivered through the computer screen while the haptic feedback was delivered through 
the haptic device. The stylus of the haptic device is used to control the movement of a stick shown on the screen, 
which is in turn used to grab the object. The object is grabbed by pressing a button at the end of the stylus; once 
the object is grabbed, force feedback that is equal to the object’s weight is delivered. The haptic feedback is ena-
bled as long as the button is pressed. The object should be carried towards the bucket and released by releasing 
the button on the stylus. Once the button is released, the object falls down visually on the screen. However, the 
force feedback continues to be enabled for an additional period of time, depending on the condition. We refer to 

Figure 1.  A 64-channels EEG cap is placed on the participant’s head. Wet electrodes are connected to the 
EEG amplifier. The participant controls the movement of the stick shown on the screen to pick up the object 
using the haptic device. The participant holds the stylus of the haptic device with their right hand to control the 
movement of the stick shown on the screen. The participant’s thumb is placed on the button integrated into the 
stylus, making themselves ready to pick up the object. A keypad was placed in front of the participant to answer 
whether they felt a delay after every trial. The participant is trained on using the haptic device with minimal 
body movement to avoid excessive EEG artifacts. (b) A screenshot of the assigned task showing the object, 
bucket, and stick used for picking up the object.
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this period of time as a haptic delay. Four different levels of haptic delay are provided (D0 = 0 ms, D1 = 120 ms, 
D2 = 250 ms, D3 = 400 ms). Those delay levels were obtained after conducting a pilot study. Figure 1b shows a 
screenshot of the designed task. Participants were trained on using the haptic device with minimal body move-
ment to avoid excessive motor EEG artifacts. Once the participant was ready, ten runs were conducted. Each 
run consisted of 16 grab and release trials (four different levels of haptic delay × four repetitions) sequenced in 
a counterbalanced order by a Latin square to avoid order or sequence effects. The ten runs were separated by 
nine breaks with durations that are participant dependant. Those breaks were essential to avoid boredom and 
lack of attention during the experiment. The complete experiment took between 45 min and 1 h including the 
time needed to prepare the setup and place the electrodes. Overall, each participant performed 160 trials divided 
equally between the the four delay conditions.

Each participant had a release score which reflected the number of trials the participant successfully released 
the object inside the bucket. Recording this score ensures that participants perform the task with vigilance and 
care, as typically done in a real-life scenario. At the end of each trial, participants were prompted to rate the level 
of the delay they experienced in the previous trial through a keypad in a binary fashion (felt delay or did not 
feel delay). Participants were not informed of the actual number of delay levels they would experience during 
the experiment. Out of these answers, the detection ratio will be calculated to estimate the psychometric func-
tion of the haptic delay. A single trial consisted of a 0.5 s rest period during which a blank screen was presented, 
followed by a single grab and release move; Fig. 2 shows the sequence of events in a single trial. In addition, 
participants were asked to fill a post-experiment questionnaire to capture their perceptual experience. The task 
was developed using Unity game engine version 2018.4.5f1 (Unity technologies, United States) and Openhaptics 
Unity toolkit (3D Systems, United States).

Pilot study. A pilot study was conducted to identify the haptic delay levels for the experiment. The aim was 
to choose delay levels that could form a proper psychometric function for the haptic delay. A psychometric func-
tion is a model used in detection and discrimination tasks to model the relationship between perceived stimulus 
(i.e., amount of haptic delay) and its detection rate. A properly designed experiment should lead to an S-shaped 
psychometric function. If the chosen haptic delay levels are far beyond the detection threshold, subjects will 
always perceive the haptic delay leading to a horizontal line function (constant). A proper choice of haptic delay 
levels should yield a psychometric function centered around the detection threshold. Nine participants took part 
in the pilot study. The study consisted of two sessions, each having 20 trials; each trial follows the same sequence 
of events shown in Fig. 2. We followed a bottom-up approach in the first session such that the first trial had zero 
haptic delay. In the second session, we followed an up-bottom approach such that the first trial had a haptic delay 
of 600 ms. We chose the staircase method (1-up 1-down) with adaptive step  size25 to control the variations of 
haptic delay after each trial. The initial step size was set to 80 ms. After every inflection point, we reduced the 
step size by 20 ms. The haptic delay of the last five trials is recorded and averaged for each session and partici-
pant. This delay is an estimation of the 50% point on a psychometric function. In the bottom-up session, the 
mean of the twentieth trial delay was 150 ms with a standard deviation of 50 ms, while in the up-bottom session, 
the mean of the twentieth trial delay was 220 ms with a standard deviation of 80 ms. The grand average of both 
means is M = 185 ms, and the grand average of both standard deviations is SD = 65 ms. Thus, and based on this 
result, we chose the delay levels as below:

D0 : 0ms (probability to feel delay < 5%)

D1 : M − SD = 185− 65 = 120ms (probability to feel delay < 30%)

D2 : M + SD = 185+ 65 = 250ms (probability to feel delay < 70%)

D3 : M + 3× SD = 185+ (65× 3) = 380ms (probability to feel delay > 95%)

Figure 2.  Schematic representation of the experimental task. Once the object is released, the haptic feedback 
represented by the object’s weight continues to be enabled under the presence of haptic delay. This delay could 
be either 120 ms, 250 ms, or 400 ms. Under the absence of haptic delay, the haptic feedback is disabled once 
the object is released, and thus, the visual and haptic modalities are in synchrony. After every trial, participants 
indicated whether they felt a delay or not.
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We intended to have the fourth level always perceivable (100% detection rate) and hence decided to increase 
the fourth level to 400 ms.

EEG data acquisition. EEG data were recorded during the experimental session at a sampling rate of 1 
kHz using BrainAmps amplifier (BrainAmps Standard, Brain Products, Germany). The Brain Vision Recorder 
software (BVR; Version 1.21.0201 Brain Products, Germany) was used to control the acquisition process and 
monitor the connection quality of the electrodes. We used a 64 Ag/AgCL based active electrodes with built-in 
readout circuitry, including noise cancellation and amplification. We followed the 10–20 international position-
ing system for placing the EEG cap on participants’ heads such that the Cz electrode lies at the vertex of the head. 
The ground electrode was placed at the FPz location, while the online reference was placed at FCz. To ensure 
high-quality signal recordings, we maintained a connection impedance between the electrode and the scalp 
below 15 k � for all the electrodes.

EEG data pre-processing. Pre-processing and analysis of the data were performed offline using MATLAB 
release 2021a (MathWorks, United States) and EEGLAB toolbox (v14.1.2)26. A sinc FIR filter that uses a Ham-
ming window was used to filter the data between 0.1 and 50 Hz. A notch filter was further used to suppress 
power line noise centered around 50 Hz. The Artifact Subspace Reconstruction (ASR)27 method was applied 
on the EEG data to remove high-amplitude artifacts such as muscular activity, eye blinks, and movements and 
to detect and reject highly contaminated channels. The following parameters were used for the ASR method 
(argflatline = 10, arghighpass = [0.025 0.075], argchannel = 0.8, argnoisy = 4, argburst = 20, argwindow = ‘off ’). 
EEG data were then re-referenced using the Common Average Referencing (CAR)  method28, and the data of the 
online reference FCz were retained.

The time between pick up and release ( � ) was calculated for each trial signifying their length. Very short 
trials indicate that the participant picked and released the object right away, probably by mistake. A well-trained 
subject can take between at least 2 and 3 s to complete the pick and release task. Thus, very short trials were not 
acceptable, and those with � ≤ 1 second were rejected. The rest of the trials were then epoched from − 2 to 2.7 
s around the actual release of the object event. Independent component analysis (ICA) was further applied to 
isolate and remove any remaining ocular and muscular artifacts.

Electrodes, bands and time-windows selection. We based our selection of electrodes, time windows, 
and frequency bands on the currently available literature Based on our previous  study24, we found that there is 
a statistically significant difference in the theta band at the midfrontal cortex between synchronous stimulation 
(visual and haptic) and delayed haptic  stimulation24. In addition, supporting literature is found on the role that 
midfrontal and central theta plays in multisensory attention and conflict processing, and  resolution29. Most of 
the literature work focuses on analyzing data from the FCz electrode, and its  surrounding20,30. Therefore, in this 
work, we examine theta band at the midfrontal region of interest (ROI) comprising the following electrodes: 
FC1, FCz, FC2, F1, Fz, F2. We also found some evidence in the literature on the role alpha de-synchronizat ion 
plays in sensory information processing and cross-modal matching in the parietal  region31,32. We consider the 
following electrodes in the parietal ROI to examine alpha de-synchronization: P1, Pz, P2. In addition to the cog-
nitive correlates, we examine sensory correlates at the cortical area that processes sensorimotor stimuli, namely 
the contralateral sensorimotor ROI. The impact of the haptic delay is examined, particularly in the beta band. 
Beta band power is normally modulated during movement, and post-movement of the  limbs33. We focus our 
analysis on FC1, FC3, C1, C3, CP1, CP3 electrodes as they lie over the sensorimotor cortex, and they are known 
to best capture the movement-related neural  activation34,35. All topography plots shown in the manuscript are 
averaged over time-windows identified where the neural activation is found to be maximal.

EEG data analysis. Epoched data was spatially filtered using the surface Laplacian transform (m-constant: 
4, head radius: 10 cm, smoothing constant: 10−5 ) using functions in the CSD toolbox in MATLAB (version 
1.1)36. It has been shown that applying CSD transform on epoched data improves the resolution of spatio-tem-
poral features of the EEG  data37,38. For the ERSP realization, the filtered epoched data was transformed to the 
time–frequency domain using Morlet wavelet transformation with a cycle range that increases logarithmically 
from 4 to 10 to maintain a high resolution at higher frequencies. We used 50 frequencies logarithmically spaced 
between 1 and 50 Hz; the logarithmic scale was used to highlight the low-frequency activation which is the 
focus of this study. The power of the transformed signals is then calculated by squaring their amplitude. Epochs 
of the same condition were then averaged. In other words, the mean was used as a central tendency measure to 
represent the ERSP data of each participant. Decibel conversion was used to normalize the power time series. 
The dB correction was done on the trial-average basis such that the condition-average baseline is used. Finally, 
the power of theta (3–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) was extracted, which are the bands of our 
interest. We consider the time window between 0 and 1000 ms for the theta, alpha, and beta-band oscillations. 
The choice of the baseline under the complex setting of the experimental paradigm was not very straightforward. 
The rest period is not precisely before the release event and the time between the rest period and the release event 
is user dependent. The time period before the release event is not exactly neutral, however, the task timeline right 
before the release event is identical across conditions; thus we could use it as a baseline to highlight the effect of 
the haptic delay only. Other studies in the literature which had complex experimental protocols used baselines 
right before the onset despite the fact they were not completely  neutral24,39,40. We chose the time period that 
is − 900 to − 200 ms before the button release event as a baseline period for dB normalization for the follow-
ing reasons: (1) away from the onset to avoid the temporal smoothing inherent in wavelet  transform41; (2) long 
enough to accommodate a few cycles of the lowest frequency under consideration (i.e.: 3 Hz)42; (3) far from the 
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edges of the epoch (epoch length is − 2 to 2.7 s around the onset)42. (4) Contained between the minimum grab 
and release duration (1000 ms).

Statistical analyses. Randomization tests are ideal for EEG data statistical analysis since they make no 
assumptions on the data distribution. This feature is particularly useful in the biomedical field, where group 
sizes are typically small. Another advantage is that randomization tests are more generic as they do not rely on 
a particular test statistic on which the statistical inference is based upon (i.e., F-statistic, t-statistic or z-score)43. 
For these reasons, we used nonparametric randomization-based ANOVA method to compare group differences. 
All p values associated with EEG data in this manuscript described as statistically significant are less than or 
equal to 0.05 (2-tailed). For ERSPs, statistical analysis was carried out by first splitting the time window of inter-
est to 50 equally sized intervals (each is 20 ms). The neural correlates of interest were averaged per interval, and 
the statistical inference was conducted on each of the time bins to identify any statistically significant difference 
between the conditions. We first identify the time intervals during which statistically significant neural activa-
tion is found across the four conditions. If any of the conditions differ significantly from the overall group mean, 
then the test shall report a significant statistical difference for that interval. Then, we compare each pair of con-
ditions. In total, we conducted 12 tests to compare every pair of conditions for the theta, alpha, and beta bands 
oscillations. The analysis is conducted on the group level such that trials from the same participants are averaged 
and are considered as a single point in the sample. Sensory and cognitive correlates were split into 20 ms time 
windows, and oscillations were averaged out within every time bin. To correct for multiple comparisons and to 
limit type 1 error, we corrected all reported p values using the false discovery rate (FDR)  method44. The number 
of comparisons equals the number of time bins used during the statistical analysis, which is 50 for the ERSP 
analysis. Throughout the manuscript, we report the corrected p values as well as the time range during which the 
statistically significant difference was found.

Statistical analysis on the behavioral data involved using randomization-based ANOVA test to verify if there 
is any statistically significant difference found in the proportion of detection between pairs of all conditions. All 
p values in this manuscript associated with behavioral data described as statistically significant are less than or 
equal to 0.005 (2-tailed).

Results
Behavioral data and questionnaire. Participants were asked after each trial whether they could perceive 
a haptic delay. The detection proportions of all subjects and trials were calculated per condition and can be seen 
plotted in Fig. 3a. To estimate the psychometric function of the haptic delay, we used Weibull cumulative dis-
tribution function commonly used for this  purpose45,46. We could estimate the 50% detection threshold of the 
haptic delay from the estimated psychometric function. The 50% detection threshold is defined as the shortest 
delay that can be detected half the time on the psychometric function. At a 0.5 detection rate, the delay is around 
85 ms, which is the estimated threshold. The error bars represent the standard error of the mean. Participants 
performed the task with vigilance as can be seen from Fig. 3b. All participants completed at least 140 trials out 
of 160 successfully in a sense they released the object inside the bucket.

Additionally, participants had to answer a post-experiment questionnaire to capture their subjective experi-
ence. As part of the questionnaire’s questions, participants attempted to guess the number of delay levels they 
had experienced during the experiment (no choices are provided). Results showed that 18 % reported they 

Figure 3.  (a) The proportion of detected trials per condition are plotted and fit to a Weibull function forming 
a psychometric function for the haptic delay. The 50% detection threshold is estimated and marked to be 
around 85 ms. Error bars represent the standard error of the mean. (b) Boxplot showing the trials completed 
successfully by participants. A successful trial is identified by placing the object inside the bucket.
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experienced three levels, 44 % reported they experienced four levels, 32 % reported they experienced five levels, 
and 6 % reported they experienced more than five levels. Overall, 95 % of participants reported they could dis-
tinguish between the different haptic delay levels and they were attentive to whether a haptic delay was perceived. 
We used randomization-based ANOVA test to compare the proportion of detection for the different pairs of 
delay conditions highlighted in Fig.3a. There was found a statistically significant difference in the proportion of 
detection between all the pairs of conditions [ p ≤ 0.005, randomization-based ANOVA test].

Midfrontal theta oscillation. A modulation in the midfrontal theta power is observed when a haptic delay 
is introduced. Figure 4a shows the ERSP dynamics of the theta band for the four conditions under consideration 
at the midfrontal ROI. An examination of the time–frequency EEG data at the midfrontal ROI, highlighted in 
Fig. 4c, revealed theta band synchronization in all four conditions with varying intensity and frequency ranges. 
Both intensity and frequency range increase with the increase of haptic delay. When no delay is introduced (syn-
chronous condition), theta synchronization is barely detected at the low theta range ( ≤ 5 Hz). On the contrary, 
theta synchronization was clearly observed with longer delays for D3 (3–8 Hz) and for D1 and D2 as well ( ≤ 6 
Hz). Temporally, theta synchronization peaks between 400 and 1000 ms for all the four conditions. The peak-
ing behavior of theta synchronization, shown in Fig. 4b differs from one condition to the other. The duration at 
which there is statistically significant difference between the conditions is highlighted in Fig. 4b ( p ≤ 0.05, ran-
domization-based ANOVA test, FDR corrected; trange = [300–1000 ms]). Table 1 lists the time-intervals where a 
statistically significant difference was found ( p < 0.05) between each pair of conditions.

Parietal alpha oscillation. Alpha power at the parietal ROI is observed to be modulated under the pres-
ence of haptic delay. Figure 5a shows the ERSP dynamics of alpha power for the four conditions. Descriptively, 
alpha desynchronization is stronger in the synchronous condition, that is in the absence of delay, compared to 
the cases where haptic delay is present. On the contrary, there seems to be no difference in alpha desynchroniza-
tion among the different delay conditions. The time course of alpha power suggests that desynchronization peaks 
between 300 and 700 ms regardless of the condition. Statistically speaking, the duration at which there is a sta-
tistically significant difference between the conditions is highlighted in Fig. 5b ( p ≤ 0.05, randomization-based 
ANOVA test, FDR corrected; trange = [340–800 ms]). From Table 2, we infer that there is no significant difference 

Figure 4.  Time–frequency representation of theta band correlates at the midfrontal ROI (a) ERSP dynamics of 
the EEG data in the midfrontal ROI averaged over trials and subjects per condition. The dashed red line shows 
the event of the haptic feedback disable. Topography plots are obtained by averaging power in the window of 
400–900 ms where the maximal effect of midfrontal theta is observed. (b) Time-course of the theta power under 
the four delay conditions. Highlighted region signifies the time interval during which a statistically significant 
difference is found between the four conditions ( p ≤ 0.05, randomization-based ANOVA test, FDR corrected; 
trange = [300–1000 ms]). (c) Channels included in the theta band analysis at the midfrontal ROI.
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in alpha desynchronization between the different delay conditions. At the same time, there is a significant differ-
ence between each of the delay levels and the synchronous condition. In other words, there is a binary effect on 
the alpha power such that when a haptic delay is introduced, a decrease in alpha desynchronization is observed. 
The electrodes used in this analysis as part of the parietal ROI are highlighted in Fig. 5c.

Table 1.  Time intervals where a statistically significant difference was found between the time-course of theta 
power of the different delay conditions [p < 0.05, randomization-based ANOVA test, FDR corrected].

Condition D1 D2 (ms) D3 

D0 0–220 ms and 660–1000 ms 280–1000 0–260 ms and 480–1000 ms

D1 – 160–1000 420–1000 ms

D2 – – 0–420 ms

Figure 5.  Time–frequency representation of alpha band correlates at the parietal ROI (a) ERSP dynamics of 
the EEG data in the parietal ROI averaged over trials and subjects per condition. The dashed red line shows 
the event of the haptic feedback disable. Topography plots are obtained by averaging power in the window of 
300–700 ms where the maximal effect of alpha desynchronization is observed. (b) Time-course of the alpha 
power under the four delay conditions. Highlighted region signifies the time interval during which a statistically 
significant difference is found between the four conditions ( p ≤ 0.05, randomization-based ANOVA test, FDR 
corrected; trange = [340–800 ms]). (c) Channels included in the alpha band analysis at the parietal ROI.

Table 2.  Time intervals where a statistically significant difference was found between the time-course of alpha 
power of the different delay conditions [p < 0.05, randomization-based ANOVA test, FDR corrected].

Condition D1 (ms) D2 D3

D0 540–760 320–1000 ms 420–580 ms

D1 – p > 0.05 p > 0.05

D2 – – p > 0.05
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Sensorimotor beta oscillation. Post the release of the object, beta synchronization is observed under all 
the delay conditions. Figure 6a shows the time–frequency representation of beta power at the sensorimotor ROI 
which is highlighted in Fig. 6c. As can be observed from Fig. 6a, beta synchronization is clear at the contralateral 
sensorimotor region. It can be seen from Fig. 6a,b that there is an increase in the beta power that occurs twice 
during the time course of the trial; we call this effect a compounded beta synchronization, particularly clear at 
D2 and D3 conditions. Compounded beta synchronization consists of two consecutive synchronizations and 
thus the name. The first increase in beta power occurs shortly after the onset (thumb release) while the second 
increase is tied to the haptic release event. It is observed from Fig. 6a that the second increase in beta oscillation 
is time-locked to the disable of the haptic feedback (dashed line) and tied to the amount of haptic delay. Apart 
from the delay observed in the second beta synchonization, no other type of modulation is observed in the beta 
power or the rate of power increase.

Discussion
This work investigated the neural correlates associated with the amount of haptic delay during continuous 
haptic feedback as part of a simulated pick and place task. The main findings were that parietal alpha showed 
a significant modulation that encodes the presence of haptic delay whereas midfrontal theta oscillation plays a 
pivotal role in quantifying the amount of haptic delay. In the following, we discuss the implications of each of 
these modulations and their role in encoding the presence and amount of the haptic delay.

Based on the behavioral data in Fig. 3a, some participants falsely perceived a delay when there was actually 
not (synchronous condition). Similarly, at a delay of 400 ms, which is way beyond the 50% detection threshold, 
some participants occasionally reported not feeling a delay. Both of these cases show that participants, rarely, had 
perceptual illusions. In this regard, perceptual illusions have been reported to occur due to prior  expectations47 
or lack of  attention48. Given the nature of EEG-based studies and the task repetition involved, it is inevitable that 
participants attention could be diverted in a few trials causing illusory perception. We counteracted this effect 
by questioning the participant at the end of every trial whether they perceived a haptic delay. This is to ensure 
that participants are paying attention to the parameter under study (delay) and they are not skipping trials. We 
also offered a sufficient number of breaks during the experiment to minimize fatigue and  boredom49. Statisti-
cally speaking, it was found that there is a significant difference between the proportion of detection across all 

Figure 6.  Time–frequency representation of the sensory correlates at the sensorimotor ROI. (a) ERSP 
dynamics of the EEG data in the sensorimotor ROI averaged over trials and subjects per condition. The dashed 
red line shows the event of the haptic feedback disable. Topography plots are obtained by averaging power in the 
window of 400+delay–600+delay ms where the maximal effect of beta rebound is observed. (b) Time-course of 
the beta power under the four delay conditions. The compounded beta rebound can be observed particularly 
clear at D2 and D3. (c) Channels included in the sensory correlates analysis at the sensorimotor ROI.
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the pairs of delay conditions. This shows that participants tended to identify perceptual differences between the 
conditions from a behavioral perspective.

From a neural perspective on the other hand, statistically significant differences were also found in the theta 
band power across all the pairs of conditions. In a previous  study24, we found that midfrontal theta power encodes 
the presence of haptic delay under discrete haptic feedback settings. In particular, the study found spectral leakage 
in the theta effect under delayed-discrete haptic feedback condition during an active movement task, where the 
introduced delay was 220 ms. In the current study, the activation is contained within the theta band under the 
synchronous and delayed conditions regardless of the amount of the delay. One possible explanation is the dif-
ference in the nature of the haptic delay. In this study, the introduced delay was in the disabling of the continuous 
haptic feedback, whereas in the cited study, the introduced delay was in the enabling of a discrete haptic feedback. 
In this light, it is tempting to state that the nature of the haptic feedback (discrete vs. continuous) and the nature 
of the delay (enable vs. disable) could play a role in the spectral component of the midfrontal theta activation.

In line with previous  findings50, we found a neural feature that is associated with the detection of haptic 
delay during continuous haptic interaction. A significant difference in the alpha desynchronization was only 
observed between the pairs of synchronous condition (D0) and every other delay condition (D1–D3). A very 
interesting implication of this result is the possible relation between the increased alpha power and visuomotor 
prediction error (PE). In a visumotor task that involves visual errors with respect to a motor movement, Savoie 
et al.32 showed that an increase in parietal alpha power is associated with visuomotor PE. Despite some similarity 
between the two studies, a notable difference is that the current study tackles the mismatch between the predicted 
and actual motor consequences of the visual stimulus. This could indicate that whether the mismatch is detected 
in the visual modality or the haptic/motor modality, the neural manifestation in the parietal alpha seems similar.

In the sensorimotor contralateral ROI, beta activation was temporally modulated with the different levels of 
haptic delay (see Fig. 6a,b). Event-related desynchronisation (ERD) is observed before active and during active 
and passive movements of  limbs51 while event-related synchronisation (ERS) is observed upon the termination 
of the movement regardless of its  type33; this particular type of synchronization is commonly referred to as post-
movement beta rebound (PMBR). PMBR is generally identified by a pronounced increase in beta power within 
1 second upon movement  termination33. Analyzing the participant’s hand movement during a single trial of the 
task, there are two movements involved; the first is the active movement performed upon releasing the object 
(moving the thumb up from the stylus) which occurs at t = 0. Upon the termination of the thumb movement, 
a clear ERS is observed around the same time under all conditions. The second movement is a passive one in 
which an upward force feedback is applied on the participant’s hand when the object is released. This second 
force occurs at either t = 0 ms, t = 120 ms, t = 250 ms, or t = 400 ms depending on the delay condition. The ERD 
is observed during the occurrence of this force feedback, followed by a PMBR upon the passive movement termi-
nation. This explains the valley feature observed in Fig. 6b which is delayed proportionally with the introduced 
delay. Considering the time-period before the haptic release as a baseline, we could assume that the increase in 
beta power right after is indeed a beta rebound  phenomenon33,52,53. Interestingly, the increase in beta oscillations 
(second rebound) caused by haptic feedback appeared to be greater than the increase in beta oscillations (first 
beta rebound) caused by the cessation of the actual motor task (dragging and dropping an object). More research 
is needed to determine whether beta rebound is a phenomenon that occurs simply after a physical motor task 
is performed or a phenomenon that occurs when the completion of motor performance is cognitively detected.

One limitation of this study is that all the delay conditions were set to predefined constant values. In other 
terms, variance of delay or jitter effect is not considered in the current study. Given the significant impact of 
jitter on the quality of user  experience54, future work should examine neural correlates associated with jitter. 
Furthermore, given that all participants were recruited from one age group (18–25 years old), the results are not 
generalizable to other age groups (given how haptic perception varies across age  groups55).

Data availability
The EEG dataset analysed and discussed in this work can be obtained from the following link on OSF: https:// 
osf. io/ fdzns/.
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