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Musculoskeletal modelling 
and simulation of oil palm fresh 
fruit bunch harvesting
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Alpha Agape Gopalai1,2 & Subbiah Thannirmalai3

Oil palm harvesting is a labor-intensive activity and yet it was rarely investigated. Studies showed 
that complementing human motion analysis with musculoskeletal modelling and simulation can 
provide valuable information about the dynamics of the joints and muscles. Therefore, this study 
aims to be the first to create and evaluate an upper extremity musculoskeletal model of the oil 
palm harvesting motion and to assess the associated Musculoskeletal Disorder (MSD) risk. Tests 
were conducted at a Malaysia oil palm plantation. Six Inertial Measurement Units (IMU) and Surface 
Electromyography (sEMG) were used to collect kinematics of the back, shoulder and elbow joints 
and to measure the muscle activations of longissimus, multifidus, biceps and triceps. The simulated 
joint angles and muscle activations were validated against the commercial motion capture tool and 
sEMG, respectively. The muscle forces, joint moments and activations of rectus abdominis, iliocostalis, 
external oblique, internal oblique and latissimus dorsi were investigated. Findings showed that the 
longissimus, iliocostalis and rectus abdominis were the primary muscles relied on during harvesting. 
The harvesters were exposed to a higher risk of MSD while performing back flexion and back rotation. 
These findings provide insights into the dynamical behavior of the upper extremity muscles and 
joints that can potentially be used to derive ways to improve the ergonomics of oil palm harvesting, 
minimize the MSD risk and to design and develop assistive engineering and technological devices or 
tools for this activity.

Investigating human motion is important in many fields for different purposes, such as improving worker’s 
efficiency, posture and working condition. A comprehensive human motion analysis can provide essential bio-
mechanical characteristics of the joint and muscle1. Motion capture technologies such as the optical Motion 
Capture System (MoCap), Inertial Measurement Unit (IMU) and Electromyography (EMG), are commonly 
used to quantify human motion2. Although these technologies can provide an overall outlook of the motion, 
they have limited capabilities. MoCap and IMU can only determine joint kinematics whereas the EMG can only 
measure muscle activations. Using them together synchronously can be laborious and time consuming—making 
them impractical for field study. Musculoskeletal modelling and simulation can overcome this limitation. It can 
determine the joint kinematics and muscle activations using basic dynamical properties of the motion. It is less 
invasive and can provide important biomechanical information that is impractical to obtain directly.

OpenSim (SimTK, Stanford, CA, USA) and Anybody Modeling System (Anybody, Aalborg, Denmark) are 
some of the popular tools used to perform musculoskeletal modelling and simulation in various activities such as 
walking3, running4, lifting tasks5 and bowling (cricket)6. Both software allow the user to create a musculoskeletal 
model, either building it from scratch or modifying the existing one. The users can also perform relevant compu-
tation, e.g., kinematic analysis, inverse dynamics analysis and static optimization7. However, earlier versions of 
OpenSim only allow the input kinematics data from MoCap. A newer version of OpenSim 4.1, released in 2020, 
added a new feature to process the IMU kinematics data. This feature is important because IMU is small and 
light, easy to set up and can produce comparable results with MoCap8. It also allows the motion to be captured 
outside the laboratory environment. These attributes, in turn, produce a more realistic data that accurately rep-
resent the measured activity. As a result, IMU has been used in various applications including walking, sitting, 
climbing stairs, lifting, pushing and pulling activities9.
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One of the fields where human motion analysis can be beneficial is agriculture. Palm oil has been the fastest-
growing vegetable oil globally since 200410. Despite the increasing global demand of palm oil, most plantation 
activities are performed manually by workers, including the Fresh Fruit Bunch (FFB) harvesting. During FFB 
harvesting, the harvesters need to visually identify and harvest the ripe FFB with a large force repeatedly in 
an awkward posture11, exposing them to a higher risk of Musculoskeletal Disorder (MSD)12–16. Qualitative 
approaches such as questionnaires12,13, interviews12,14, Rapid Entire Body Assessment (REBA)15 and Rapid Upper 
Limb Assessment (RULA)16 were employed to investigate this activity. A recent study reported in11 quantitatively 
examine the FFB harvesting using IMU and EMG. Although the existing studies sufficiently pointed out that 
the harvesters are facing MSD risk, most biomechanical parameters of the harvesters remain unclear. The lack 
of detailed quantitative assessment on harvester motion forms a barricade to strategies that can improve the 
ergonomics of the harvesting motion and mitigate the MSD risk.

A computational model that can represent the harvesting motion has the potential to (1) elucidate the under-
lying biomechanical characteristics, (2) investigate the MSD risk associated with FFB harvesting and (3) serve 
as the fundamentals to improve the posture and mitigate or reduce the MSD risk. To date, no FFB harvesting 
musculoskeletal model has been developed and validated. Therefore, this study aims to create an upper extremity 
musculoskeletal model that can represent the FFB harvesting motion and can be used to investigate the kin-
ematics behavior of the back, shoulder and elbow, and their muscle activations. To validate this model, the joint 
angles of the back, shoulder and elbow were investigated and compared with results estimated by the commercial 
motion capture software. The muscle activations of the longissimus, multifidus, biceps and triceps were evaluated 
against the measurements collected using surface Electromyography (sEMG). Lastly, this study investigates the 
quality of the posture using the method proposed in17 and evaluates the MSD risk.

Methodology
Musculoskeletal model and simulation.  A full-body musculoskeletal model created by Erica et al.18 
was modified to produce a model that is suitable for FFB harvesting activity. The original model has 30 body 
segments, 238 musculotendon actuators, 29 degrees of freedom and eight upper extremity Hill-type muscle 
groups, including the multifidus, rectus abdominis, psoas major, internal obliques, external obliques, quadratus 
lumborum, latissimus dorsi and erector spinae (longissimus and iliocostalis) muscles. The thoracic and cervical 
parts of the spine, ribcage, head and scapula were modelled as a rigid body, called the torso, with spherical joints 
between six intervertebral joints (T12-L1, L1-L2, L2-L3, L3-L4, L4-L5, L5-S1). The vertebrae followed a spinal 
rhythm that distributes the trunk motion over these six intervertebral joints through linear kinematic coordinate 
coupling constraints18. Three main modifications were made to the model as listed below:

1.	 The original Range of Motion (ROM) of shoulder and elbow joints were much greater than the Normative 
Range of Motion (NROM); hence they were altered to the NROM19, as shown in Table 1. This modification 
prevents an awkward posture from being generated in OpenSim.

2.	 Hill-type biceps and triceps muscles were added. The muscle architectural parameters were adopted from an 
existing upper-extremity OpenSim model by Daniel et al.20, used in pulling and pushing tasks. The Optical 
Muscle Fibre Length (OMFL), Tendon Slack Length (TSL) and Pennation Angle (PA) of biceps and triceps 
were sourced from a cadaver study of21. The TSL of biceps was modified to preserve its operating ranges at 
the proximal joint it crosses22. The Peak Force (PF) was obtained based on the measured muscle volumes 
of23 and isometric strength of24. Overall, these parameters (OMFL, PF, TSL, PA) were based on the data of 
young male adults from different literatures21,23,24 and were reported as follows:

3.	 OMFL: 11.6 cm (biceps long), 13.2 cm (biceps short), 13.4 cm (triceps long), 11.4 cm (triceps lateral), 11.4 cm 
(triceps medial)

4.	 PF: 525.1 N (biceps long), 316.8 N (biceps short), 771.8 N (triceps long), 717.5 N (triceps lateral), 717.5 N 
(triceps medial)

5.	 TSL: 27.8 cm (biceps long), 20.0 cm (biceps short), 14.3 cm (triceps long), 9.8 cm (triceps lateral), 9.1 cm 
(triceps medial)

6.	 PA: 0° (biceps long), 0° (biceps short), 12° (triceps long), 9° (triceps lateral), 9° (triceps medial)22

Table 1.   ROM of the back, shoulder and elbow of the Erica et al.’s model and the proposed model (FE 
Flexion–Extension, LB Lateral Bending, AA Adduction-Abduction).

Joint Motions

Erica et al.’s model18 joint angle (Degree) The proposed model joint angle (Degree)

Minimum Maximum Minimum Maximum

Back FE  − 80 (Flexion) 26 (Extension)  − 80 (Flexion) 26 (Extension)

Back LB  − 25 (Left) 25 (Right)  − 25 (Left) 25 (Right)

Back Rotation  − 56 (Left) 56 (Right)  − 56 (Left) 56 (Right)

Shoulder FE  − 90 (Extension) 180 (Flexion)  − 50 (Extension) 180 (Flexion)

Shoulder AA  − 180 (Abduction) 90 (Adduction)  − 180 (Abduction) 0 (Adduction)

Shoulder Rotation  − 140 (Internal rotation) 100 (External rotation)  − 80 (Internal rotation) 60 (External rotation)

Elbow FE  − 10 (Extension) 160 (Flexion) 0 (Extension) 140 (Flexion)
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7.	 Reserve actuators were added to the back joint (L5-S1), shoulder joints and elbow joints to provide extra 
actuation when the muscles cannot generate sufficient accelerations at a certain time. The optimal force of 
the reserve actuator (FRA) must be low enough to ensure that the muscles are the main contributor to the 
net joint moments (i.e., the joint moment produced by the summed or net effect of all the structures)1,25. 
However, there is no recommended FRA for harvesting activity. Hence, five different FRA values: 10 N, 20 N, 
30 N, 40 N and 50 N were investigated. They were used to perform the inverse dynamics and calculate the 
net joint moments. Static optimization was performed to determine the reserve actuator moments. The peak 
reserve actuator moments at different FRA were normalized to the peak net joint moments. The results are 
presented in Table 2. The peak residual forces (FX, FY, FZ) and peak residual moments (MX, MY, MZ) were 
added to the table. Since the normalized peak reserve actuator moments has to be less than 10%26, only the 
FRA of 30 N, 40 N and 50 N were selected to estimate the muscle activation.

Two assumptions were made in this study. The first assumption is that the exerted harvesting force of 303.5 N 
is the sum of the pulling force produced by the harvesters (300 N27) and the weight of the harvesting tool 
(3.5 N28). The second assumption is that the harvesting force was equally distributed to the left and right hands. 
Hence, an external force of 151.75 N was added to each hand. The exerted harvesting force was found in27, 
which investigated the force and energy required to perform the harvesting motion with a test jig. The authors 
then performed a functional test on their prototype magnetic oil palm cutter at an oil palm plantation and the 
harvesting force was found to be reasonable to harvest the fruit27. The weight of the harvesting tool was obtained 
in28 because it is the harvesting tool used by the harvesters in this study.

Inverse kinematics was performed to calculate the joint angle using orientations measured by the IMU. This 
joint angle is denoted as θOS. Static optimization was then used to estimate the muscle activation. It resolves 
the net joint moment into individual muscle force at each instant while minimizing the sum of squared muscle 
activation29. It is the most conventional approach to calculate muscle activation in a dynamic activity due to its 
robustness, higher efficiency and independence from the experimental EMG30. The simulated activations of all 
the muscle fascicles for each muscle were added together18. For example, the estimated muscle activation of the 
longissimus is the total activations of the lumbar and thoracic components of the longissimus thoracis. The same 
applies to the multifidus, biceps and triceps.

Experiment.  The experiment was conducted at a Malaysia oil palm plantation. It involved six experienced 
right-handed male oil palm FFB harvesters (33.5 ± 6.0 years old, 168.83 ± 4.74 cm, 56.83 ± 4.26 kg). They pro-
vided written consent after they were briefed on the experiment objectives and procedures. Informed written 
consent for publication was obtained. This study was reviewed and approved by Monash University Human 
Research Ethics Committee (MUHREC).

Six IMU sensors (APDM OPAL, Portland, OR, USA) were placed on the harvesters’ sternum, lumbar, upper 
arms and wrists, as shown in Fig. 1a. EMG electrodes (Biosignalplux, Lisbon, Portugal) were placed on the right 
side of the upper extremities to measure the muscle activations of the biceps, triceps, multifidus and longissimus 
with reference electrode at the C7 region (Fig. 1b and c). The locations of IMU sensors and EMG electrodes were 
based on the recommendations of the sensor proprietary software, Moveo Explorer31 and SENIAM convention32, 
respectively. Both sensors were synchronized using an external trigger. The sampling frequency of IMU and 

Table 2.   Average normalized peak reserve actuator moments of different joint motions (n = 6), peak residual 
forces and peak residual moments at five different FRA.

FRA 10 N 20 N 30 N 40 N 50 N

Average normalized peak reserve actuator moments of differ-
ent joint motions (%)

Back FE 26.83 13.32 8.80 6.61 5.18

Back LB 8.46 4.24 2.83 2.32 1.73

Back Rotation 18.05 8.93 5.56 5.22 3.00

Shoulder FE 6.49 3.34 2.24 1.42 1.36

Shoulder AA 6.71 3.69 2.50 3.29 1.51

Shoulder Rotation 7.95 4.02 2.62 2.34 1.54

Elbow FE 9.05 4.53 3.02 1.70 1.81

Peak residual forces (N)

FX 134.48 67.24 44.83 44.68 26.90

FY 127.48 63.74 42.49 32.60 25.50

FZ 144.01 72.01 48.00 16.83 28.80

Peak residual moments (Nm)

MX 112.69 56.35 37.56 22.12 22.54

MY 29.06 14.53 9.69 7.32 5.81

MZ 100.43 50.62 34.03 31.82 20.40
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EMG sensors were 128 Hz and 1000 Hz, respectively. The harvesters were requested to stand upright and remain 
stationary for three seconds for sensor calibration. They then performed the harvesting activity for one minute. 
The harvesters only harvested FFB from trees with a height between 3 and 5 m for consistency purposes. A video 
camera was used to record the harvesting activity.

The IMU data were filtered with a 4th order Butterworth low-pass filter with a cut-off frequency of 6 Hz. The 
EMG data were processed using codes written in MATLAB (Mathworks, Nantucket, MA, USA). The data were 
filtered with a band-pass filter with 20 Hz and 450 Hz cut-off frequencies. They were then full-wave rectified and 
smoothened using a moving-average filter with a window size of 1000 ms33. Peak Dynamic Method was applied 
to normalize the EMG data of each muscle to the maximum muscle activation of each harvester. This method 
replaces the conventional Maximum Voluntary Contraction (MVC) normalization method34 because of the 
remoteness of the plantation sites, which made it challenging to acquire the muscle MVC.

From the recorded video footage, it can be observed that the harvesting process is complex. The harvester 
needs to move around the tree, identify the ripe FFB and cut the fronds, that might interrupt the FFB harvesting. 
The harvester then positions the sickle on the FFB stalk and pull the sickle downward to cut the stalk, as shown 
in Fig. 2. For a more accurate and representative analysis, the IMU and EMG data for each harvesting motion 
of different time lengths were extracted, linearly interpolated and averaged to produce a harvesting motion with 
the same timeframe35.

Model validation.  The joint angle θos was compared and validated with the joint angle obtained from the 
IMU proprietary software, Moveo Explorer. The Pearson Correlation Coefficient (R) was calculated to deter-
mine the strength of association between them. The closer the R to zero, the weaker the strength of association. 

Figure 1.   Location of (a) IMU sensors on the harvester, (b) EMG electrodes on muscles of interest from 
posterior view and (c) right side view, with reference electrode at the C7 region.

Figure 2.   A sequence of the harvesting motion.
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Root Mean Square Error (RMSE) was also calculated to identify the error between them. A smaller RMSE value 
indicates a smaller difference between them. However, there is no clear guideline on the acceptable R and RMSE 
values. Hence, they were compared with the recent work36, which covers the range of R and RMSE that show 
good to excellent validity.

For comparison purposes, the muscle activations measured by EMG were resampled to 128 Hz to match 
the IMU sampling rate. They were then normalized to the maximum muscle activation of each harvester. The 
simulated normalized muscle activations were then compared and validated with experimental data. The R and 
Mean Absolute Error (MAE) were calculated and compared with studies37,38, that categorize the range of R and 
MAE into different qualities of correlation, shown in Table 3.

Quality of harvesting posture.  Other than the joint angle and muscle activation, the harvesting model 
was also used to compute the joint moment, muscle force and muscle activation of the other muscles that were 
not measured during the experiment i.e., rectus abdominis, iliocostalis, external oblique, internal oblique and 
latissimus dorsi. The peak joint moments were normalized to each harvester’s body weight, averaged and tabu-
lated. Higher joint moment indicates that the harvester faces a higher risk of MSD when performing that joint 
motion, and vice versa. To identify the active muscle used during harvesting, the normalized peak muscle activa-
tions and the normalized peak muscle forces at different FRA of 30 N, 40 N and 50 N were calculated, expressed 
in percentage and then ranked accordingly.

The maximum ROM of each joint was identified to determine the potential stressful joint motion. The Dis-
comfort Value (DV)17 was used as a measure to identify the quality of the harvesting posture. It uses the ROM of 
the joint to determine the DV and then classifies it into different levels of perceived discomfort that correspond to 
the good, so-so and poor postures. Different joint motions have different DV. The relationship between NROM, 
DV and quality of posture for the back flexion is shown in Table 4. For example, if the ROM of the harvester’s 
back flexion is 39° and the NROM of this motion is 80°19, the harvester’s back flexion will be equal to 48.75% 
of the NROM and will have a DV value of 22.08, which is associated with a so-so posture. A higher DV value 
corresponds to a higher risk of MSD and indicates that the joint experiences greater stress. These results were 
evaluated together with the simulated muscle activation, muscle force and joint moment to identify the muscle or 
joint that has a higher risk of MSD.

Result and analysis
Simulation results.  A sequence of the simulated harvesting motion is shown in Fig. 3. It can be observed 
that the following motions were performed during harvesting: back flexion, back lateral bending to the right, 
back rotation to the right, shoulder extension (left, right), shoulder adduction (left), shoulder internal rotation 
(left), shoulder abduction (right), shoulder external rotation (right), elbow flexion (left) and elbow extension 
(right). It took approximately 0.3 s to execute this movement. The extremely short duration of harvesting motion 
suggests that the harvesters exerted a very large force to cut the stalk to harvest the fruit. If this motion is per-
formed repetitively, it exposes them to the greater risk of MSD.

Table 5 shows the average R and RMSE of the back, shoulder and elbow joint angles (Rθ, RMSEθ). These values 
correlate well with the good to excellent validity discussed in36. The Rθ and RMSEθ of all the joint motions were 
well within the acceptable range. These results serve as solid evidence that the proposed musculoskeletal model 
can produce comparable results with the commercial IMU-based motion capture software.

Table 3.   Different qualities of correlation of the muscle activation37,38.

Value Quality of correlation

R

0.9–1.0 Very high

0.7–0.9 High

0.5–0.7 Moderate

0.3–0.5 Low

0.0–0.3 Negligible

MAE

 < 0.10 Excellent

0.10–0.20 Good

 > 0.20 Poor

Table 4.   A relationship between the back flexion NROM, DV and quality of postures17,19.

NROM DV Quality of postures

0%  < 22.08 Good

25–75% 22.08–65.13 So-so

100%  > 65.13 Poor
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Figure 3.   A sequence of the simulated harvesting motion of a harvester.

Table 5.   The average R and RMSE of the back, shoulder and elbow joint angles (Rθ, RMSEθ) and the good to 
excellent Rθ and RMSEθ in36 (FE Flexion–Extension, LB Lateral Bending, AA Adduction-Abduction).

Motion Rθ Good to excellent Rθ in36 RMSEθ Good to excellent RMSEθ in36

Back

FE 0.98 0.72–0.99 2.64° 1.80°–5.90°

LB 0.85 0.72–0.99 2.46° 1.80°–5.90°

Rotation 0.95 0.72–0.99 1.84° 1.80°–5.90°

Shoulder (dominant side)

FE 0.99 0.69–1.00 9.94°  ≤ 15.00°

AA 0.88 0.69–1.00 8.15°  < 20.00°

Rotation 0.90 0.69–1.00 11.11° 1.00°–60.00°

Shoulder (non-dominant side)

FE 1.00 0.69–1.00 11.51°  ≤ 15.00°

AA 0.81 0.69–1.00 13.76°  < 20.00°

Rotation 0.84 0.69–1.00 14.15° 1.00°–60.00°

Elbow (dominant side)

FE 0.86 0.85–0.99 11.87° 0.20°–30.60°

Elbow (non-dominant side)

FE 0.99 0.85–0.99 20.22° 0.20°–30.60°

Table 6.   The average R and MAE of the muscle activations for the longissimus, multifidus, biceps and triceps 
between OpenSim and EMG (RMA, MAEMA) at different FRA.

Muscle

RMA at different FRA

30 N 40 N 50 N

Longissimus 0.86 0.84 0.87

Multifidus 0.87 0.67 0.87

Biceps 0.72 0.68 0.66

Triceps 0.72 0.77 0.78

Muscle

MAEMA at different FRA

30 N 40 N 50 N

Longissimus 0.10 0.13 0.10

Multifidus 0.13 0.13 0.14

Biceps 0.24 0.24 0.23

Triceps 0.13 0.18 0.18
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Table 6 shows the average R and MAE (RMA, MAEMA) of the muscle activation of the longissimus, multifidus, 
biceps and triceps at different FRA. Longissimus and triceps showed high correlations of RMA and good correla-
tions of MAEMA at all FRA. Multifidus showed moderate (FRA = 40 N) to high (FRA = 30 N, 50 N) correlations of 
RMA and good correlation of MAEMA at all FRA. Biceps showed moderate (FRA = 40 N, 50 N) to high (FRA = 30 N) 
correlations of RMA and poor correlation of MAEMA at all FRA. Overall, the simulated activations of the longis-
simus and triceps showed good correlations with the EMG data at all FRA. On the other hand, biceps showed the 
best correlation when the FRA was 30 N, whereas multifidus showed the worst correlation when the FRA was 40 N.

Generally, it is more difficult to obtain a good correlation in the muscle activation between simulation results 
and experimental data compared to joint angle. It is because many parameters may affect muscle activation in 
a simulated environment. These parameters include the estimated joint angle, harvesting force, muscle archi-
tectural parameter and reserve actuator. Moreover, the limitations of sEMG, such as movement artefact, also 
may contribute to the discrepancies. On the other hand, only the limitations of IMU and the length of the body 
segment may affect the estimated joint angle. Hence, the recommended values of R to represent good validity 
are generally lower for muscle activation than for joint angle.

Figure 4 shows the average normalized peak muscle activation of the harvesters when FRA were 30 N, 40 N 
and 50 N. Higher activation value indicated that the muscle was more active than the others during harvesting. 
Despite the small differences in the rankings, some similar patterns can be observed. The rectus abdominis was 
the most active muscle, whereas the triceps was the least active muscle. The external oblique, internal oblique, 
longissimus and iliocostalis were more actively used than multifidus when performing the back motions. These 
findings revealed that rectus abdominis was actively used during harvesting, followed by internal oblique, exter-
nal oblique, longissimus and iliocostalis.

Figure 5 shows the average normalized peak muscle force when FRA were 30 N, 40 N and 50 N. Similar ranking 
was found at all FRA, as follows: Iliocostalis, longissimus, rectus abdominis, internal oblique, multifidus, external 
oblique, latissimus dorsi, biceps, triceps. The iliocostalis, longissimus and rectus abdominis showed significant 
muscle forces, indicating a higher risk of MSD on these muscles.

Table 7 shows the average peak joint moment during harvesting. The back lateral bending produced the great-
est joint moment, followed by the back flexion, dominant shoulder extension and back rotation. These four joint 
motions displayed notable joint moments, suggesting a higher risk of MSD when performing these movements.

Harvesting posture quality and potential risk of MSD.  Table 8 shows the percentage of harvesters 
with poor, so-so and good postures for different types of back, shoulder and elbow joint motions. The muscles 
responsible for each joint motion were included. Some or all harvesters showed so-so postures at the back flex-
ion (33.33%), back rotation (100.00%), dominant shoulder rotation (33.33%), non-dominant shoulder flexion 
(66.67%), non-dominant shoulder rotation (33.33%) and both elbow flexions (100%). No poor posture was 
observed during harvesting. The joint motion with so-so posture indicates the potential of stressful joint motion, 
indicating the risk of MSD.

The joint angle, joint moment, muscle activation and muscle force provide essential information about the 
potential MSD risk of the harvester from different perspectives. To fully understand and identify the MSD risk 
during harvesting, the joint motion and muscle that potentially face MSD risk were compiled and illustrated in 
Fig. 6. It can be confirmed that the harvesters face higher MSD risk when performing back flexion and back 
rotation. The muscles responsible for these two motions are rectus abdominis, and the iliocostalis and the lon-
gissimus, respectively.

Figure 4.   Average normalized peak muscle activations of harvesters at different FRA – 30 N, 40 N and 50 N.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8010  | https://doi.org/10.1038/s41598-022-12088-6

www.nature.com/scientificreports/

Discussions
This study created a musculoskeletal model to investigate the harvesting motion. This model was adopted from a 
recent model by Erica et al.18, which was the first validated lifting model in OpenSim. The lifting motion requires 
the model to frequently flex the trunk and lift the object. Hence, the back muscles of the Erica et al. model were 
ensured to be strong enough to perform the lifting motion. This advantage made it preferred for the harvesting 
model because many qualitative studies reported that the FFB harvesters complained of low back pain12,13,16, 
indicating that strong back muscles were required during harvesting. Moreover, many current OpenSim models 
assume the trunk as one rigid body, such as the full-body models by Rajagopal et al.40 and Hamner et al.41, which 
is not true in reality and may not fully represent the dynamic behavior of the trunk. The trunk in the Erica et al. 
model was made of several rigid body segments, including each lumbar vertebrae (L1–L5), pelvis and torso18. 
This trunk structure is considered more accurate because the trunk of a real human is a chain of interconnected 
vertebrae, pelvis and scapula1. On the other hand, the biceps and triceps of the simulated harvester were added 
from another latest validated model by Daniel et al.20, which performed pushing and pulling tasks at different 
elevation angles. These muscles were added because the harvesting motion involves pulling motion, similar to 
the pulling task.

This study demonstrated a novel approach to investigate the worker’s behavior in harvesting oil palm FFB. 
Wearable IMU allows the motion to be captured in the oil palm plantation without sophisticated setup and 
calibration. It is also proven to be cheaper, lighter and does not suffer from marker occlusion, making it an ideal 

Figure 5.   Average normalized peak muscle forces of the harvesters at different FRA – 30 N, 40 N and 50 N.

Table 7.   Average peak joint moment during harvesting.

Motion Average peak joint moment (Nm/kg)

Back

Flexion 13.69

Lateral bending to the right 19.02

Rotation to the right 5.23

Shoulder (dominant)

Extension 5.98

Abduction 1.46

Rotation 0.58

Shoulder (non-dominant)

Extension 0.79

Adduction 1.17

Rotation 1.81

Elbow (dominant)

Elbow extension 0.79

Elbow (non-dominant)

Elbow extension 0.37
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alternative for outdoor applications42. The comparison between simulation and experimental results shows good 
to excellent correlations. This suggests that OpenSim can be a valid tool to determine the kinematic behavior of 
the FFB harvester’s upper extremity.

Although not directly comparable, the Rθ and RMSEθ reported in this study were close to those reported 
in other studies43,44. Rodriogo Perez et al.43 investigated simple shoulder, elbow and wrist joint motions using 
IMU sensors and validated them with MoCap. The shoulder AA (R = 0.718) showed the lowest correlation when 
compared to shoulder FE (R = 0.994) and shoulder rotation (R = 0.995). This finding is consistent with the current 
study, suggesting that it is difficult to obtain a higher correlation result for shoulder AA, even for simple motions. 
The authors then investigated the motions when the subjects served water from a jar. In this case, the shoulder 
rotation (R = 0.853) showed the lowest correlation when compared to shoulder FE (R = 0.996) and shoulder AA 
(R = 0.908)43. Jim Richards also pointed out that many papers focused on sagittal plane joint angles rather than 
the coronal and transverse planes33. These results support our findings, which show that shoulder FE has the 
highest correlation compared to other shoulder motions.

In another study44, Brice Bouvier et al. investigated simple elbow FE motions using IMU sensors. They vali-
dated their results against MoCap data and found RMSE value of 24°. A recent systematic review demonstrated 
that the validity of joint motion decreases when the level of complexity of the motion increases36. This implies 
that if the Rθ and RMSEθ are similar or better than those studies with simple motions, then it can be deduced 
that the findings are acceptable. Since the RMSEθ of elbow FE reported in this study (Dominant: RMSEθ = 11.87°; 
Non-dominant: RMSEθ = 20.22°) are less than the RMSE reported in44, therefore the results are satisfactory.

This study has also provided a unique mean to investigate the muscle activation of the oil palm FFB harvesting 
motion using musculoskeletal model. The muscle activations were validated with sEMG, which is the standard 
used in human motion analysis30,45. Other validation methods such as comparison with similar studies are 
impossible because very limited studies investigated the muscle behavior of FFB harvesters with EMG11. From 
Table 6, the normalized activations of the back muscles (longissimus and multifidus) showed a high correlation 
in RMA and a good correlation in MAEMA when FRA were 30 N and 50 N. These findings concur with previous 
studies in lifting tasks18,46 and daily living activities46, which obtained high similarity results for the back muscles 
between the OpenSim muscle activations and EMG.

For the arm muscles, the triceps demonstrated a high correlation in RMA and a good correlation in MAEMA. 
The biceps demonstrated a high correlation in RMA and a poor correlation in MAEMA when FRA was 30 N. Three 
possible reasons may explain the poor correlation of biceps. Firstly, higher speed can result in higher deviations 
than lower speed47. The harvesters must exert alarge force at a very high speed to harvest the fruit48. Since the 
biceps is the primary muscle to perform this motion11,49, it is reasonable that the biceps showed higher MAEMA 
values when compared to other muscles. Secondly, Roberto Bortoletto et al. proved that different FRA could 
affect the simulated muscle activation in OpenSim50. From Table 6, it can be observed that the multifidus and 
longissimus showed the best correlation of RMA and MAEMA when the FRA were 30 N and 50 N, respectively. The 
biceps showed the highest RMA when FRA was 30 N, whereas it showed the lowest MAEMA when FRA was 50 N. 
The triceps showed the highest RMA when FRA was 50 N, whereas it showed the lowest MAEMA when FRA was 
30 N. These findings are valuable and important because currently there is no recommended value of FRA for 
harvesting activity in OpenSim. Thirdly, the muscle architectural parameters of the simulated harvester may not 
represent the muscle architectural parameters of the real harvesters.

The potential risk of MSD that harvesters face during oil palm FFB harvesting were discussed based on the 
joint angle, muscle activation, muscle force and joint moment obtained with OpenSim. It was found that the 

Table 8.   Percentage of harvesters with poor, so-so and good postures for different types of back, shoulder and 
elbow joint motions (n = 6)and their associated muscles39.

Motion Muscle Poor posture (%) So-so posture (%) Good posture (%)

Back

Flexion Rectus abdominis 0.00 33.33 66.67

LB Longissimus, multifidus, iliocostalis, internal oblique, 
external oblique

0.00 0.00 100.00

Rotation 0.00 100.00 0.00

Shoulder (dominant side)

Flexion Biceps 0.00 0.00 100.00

Adduction Triceps, latissimus dorsi 0.00 0.00 100.00

Rotation Infraspinatus, teres minor, teres major, latissimus dorsi 0.00 33.33 66.67

Shoulder (non-dominant side)

Flexion Biceps 0.00 66.67 33.33

Adduction Triceps, latissimus dorsi 0.00 0.00 100.00

Rotation Infraspinatus, teres minor, teres major, latissimus dorsi 0.00 33.33 66.67

Elbow (dominant side)

Flexion Biceps 0.00 100.00 0.00

Elbow (non-dominant side)

Flexion Biceps 0.00 100.00 0.00
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back flexion and back rotation were the stressful joint motions during harvesting. Repetitive joint motion may 
lead to degenerative osteoarthritis51. During harvesting, the back muscles (longissimus, iliocostalis and rectus 
abdominis) were actively used. It was reported in51 that the overuse of muscle might cause myalgia. These findings 
are consistent with many qualitative studies on harvesters. Through questionnaires and direct interviews, many 
harvesters reported discomforts on their lower back12,13,16,52. Studies that used the direct observation assessment 
method found that the harvesters were facing a prevalence of MSD on their backs16,49,52.

Figure 6.   Muscles and joint motions that potentially face MSD risk.
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Many qualitative studies reported that the harvesters suffered from low back pain. A few possible reasons can 
explain this issue. First, it was found that after a long duration of repeated back flexion, the stiffness of the spine 
decreased. The deformation of the intervertebral disc and the stretching of the ligaments in the spine generated 
a change in the loading pattern, leading to low back pain53. Second, during the flexions of the back and shoulder, 
the moment arms of the body segments increase, causing the joint moment and compensatory tension in the 
back muscles to increase. It is due to the extremely small moment arms of the back muscles; hence a large force 
is required to counteract the joint moment53. Lastly, it was known that the passive moment (i.e., moment due to 
passive structures such as ligaments, fascia and cartilage) increases exponentially when a joint is approaching 
the ROM of flexion1. A large increase of passive moment might also lead to low back pain in the harvesters. All 
these evidence supported our findings, which proved that the back flexion was the stressful joint motion during 
harvesting.

This study has several limitations. The muscle architectural parameters of the musculoskeletal model, such 
as the force–length relationship of muscle and tendon, may not represent the muscle architectural parameters 
of the harvesters30,37,47. Moreover, the assumption that the harvesting force was 303.5 N may not represent the 
actual harvesting force for each harvester. The harvesting force is also influenced by factors such as the frond 
maturity, cutting angle, speed of cutting and the sharpness of the cutting edge of the harvesting tools54. It is sug-
gested that a mock harvesting environment can be prepared indoors. A more controlled environment will allow 
the other measurements such as MoCap and force sensor to improve the accuracy of the results. It has to bear 
in mind that although all these limitations limit the extent of interpretation, they do not invalidate the results1. 
The discrepancies between OpenSim and sEMG might be caused by the limitation of sEMG. There might be 
crosstalks and movement artefacts from neighbouring muscles55,56, especially during fast motions30. The small 
recording region of the sEMG electrodes on a particular muscle may not represent the whole muscle’s activation30. 
The fine-wire EMG would be a more direct and accurate approach to validate the simulation results. However, 
it is invasive and is not practical for field study30.

To the best of our knowledge, it is the first study investigating FFB harvesting with musculoskeletal model-
ling and simulation. The joint angles and muscle activations were validated with field measurements to confirm 
the accuracy of the simulation results. Additionally, the computed findings provide additional biomechanical 
parameters that are impossible to obtain through any direct measurement or qualitative assessment. Conse-
quently, these findings are beneficial to the designers of the wearable exoskeleton to identify the exact muscles 
and joints to improve the harvester’s strength during harvesting. This study also provides detailed insights to 
researchers in different areas dealing with computational biomechanical modelling, postural optimization and 
ergonomic assessments.

Conclusion
This study created and evaluated an upper extremity musculoskeletal model for FFB harvesting. The joint angles 
were validated against the commercial IMU-based motion capture software, whereas the muscle activations 
were benchmarked against the EMG data. The findings concur with previous qualitative studies that suggested 
the harvesters are exposed to the ergonomic risk of MSD, particularly the back flexion and back rotation. The 
muscles actively used during harvesting were the longissimus, iliocostalis and rectus abdominis. These findings 
can provide essential information for future studies that focus on the ergonomics of the harvesting activity and 
the design and development of a wearable device to assist the harvester.
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