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Cell‑controlled dynamic surfaces 
for skeletal stem cell growth 
and differentiation
Hilary J. Anderson1, Jugal Kishore Sahoo2,8, Julia Wells3, Sebastiaan van Nuffel4,9, 
Hala S. Dhowre4,10, Richard O. C. Oreffo3, Mischa Zelzer4, Rein V. Ulijn5,6,7 & 
Matthew J. Dalby1*

Skeletal stem cells (SSCs, or mesenchymal stromal cells typically referred to as mesenchymal stem 
cells from the bone marrow) are a dynamic progenitor population that can enter quiescence, self-
renew or differentiate depending on regenerative demand and cues from their niche environment. 
However, ex vivo, in culture, they are grown typically on hard polystyrene surfaces, and this leads to 
rapid loss of the SSC phenotype. While materials are being developed that can control SSC growth and 
differentiation, very few examples of dynamic interfaces that reflect the plastic nature of the stem 
cells have, to date, been developed. Achieving such interfaces is challenging because of competing 
needs: growing SSCs require lower cell adhesion and intracellular tension while differentiation to, 
for example, bone-forming osteoblasts requires increased adhesion and intracellular tension. We 
previously reported a dynamic interface where the cell adhesion tripeptide arginine-glycine-aspartic 
acid (RGD) was presented to the cells upon activation by user-added elastase that cleaved a bulky 
blocking group hiding RGD from the cells. This allowed for a growth phase while the blocking group 
was in place and the cells could only form smaller adhesions, followed by an osteoblast differentiation 
phase that was induced after elastase was added which triggered exposure of RGD and subsequent 
cell adhesion and contraction. Here, we aimed to develop an autonomous system where the surface is 
activated according to the need of the cell by using matrix metalloprotease (MMP) cleavable peptide 
sequences to remove the blocking group with the hypothesis that the SSCs would produce higher 
levels of MMP as the cells reached confluence. The current studies demonstrate that SSCs produce 
active MMP-2 that can cleave functional groups on a surface. We also demonstrate that SSCs can grow 
on the uncleaved surface and, with time, produce osteogenic marker proteins on the MMP-responsive 
surface. These studies demonstrate the concept for cell-controlled surfaces that can modulate 
adhesion and phenotype with significant implications for stem cell phenotype modulation.

Skeletal stem cells (SSCs, also referred to as mesenchymal stromal cells or mesenchymal stem cells, MSCs) 
are dynamic cells that can undergo expansion through self-renewal and differentiation along the adipogenic, 
chondrogenic, reticular and osteogenic lineages1. MSCs have been stated to be available from several locations 
including bone marrow, adipose tissue and olfactory mucosa2,3; the best characterised being the bone marrow 
SSCs. In their niches, SSCs rely on information from the extracellular matrix and other cells in order to remain 
quiescent to protect them from DNA damage, self-renew to expand the SSC population or differentiate to drive 
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regeneration4. In vitro, typically grown on hard polystyrene, the information SSCs rely on to self-renew is absent 
and consequently, SSCs rapidly differentiate, lose their phenotype and express a fibroblast phenotype5,6.

Surface strategies to maintain SSC phenotype are emerging, for example, nanotopograhical patterns that 
promote SSC growth without loss of phenotype6. These surfaces act to reduce SSC adhesion formation compared 
to planar surfaces resulting in changes in mitogen related signalling (e.g., extracellular signal-related kinase, 
ERK1/2, and c-jun n-terminal kinase, Jnk)7–9. Integrins, transmembrane receptors that form cell adhesions and 
that ligate to peptide motifs in the extracellular matrix, such as RGD, link to signalling proteins such as focal 
adhesion kinase, FAK, and the actin cytoskeleton to effect phenotype-linked signalling pathways10–12. These 
mitogens are well known for their roles in SSC differentiation along with Rho A kinase signalling to facilitate 
adipogenesis where lack of spreading results in low levels of mitogen stimulation and lack of intracellular tension 
or to drive osteogenesis through mitogen activation of transcription factors such as runt related transcription 
factor 2 (RUNX2) and adhesion-driven spreading providing high levels of intracellular tension13–15.

If it is assumed SSCs have cytoskeletal tension-related phenotypes, adipocytes represent very low tension, 
fibroblasts intermediate tension and osteoblasts high-tension. It is emerging that SSC self-renewal occurs with 
slightly reduced tension from the fibroblast phenotype6,9. This is sensible as SSCs have similar morphology to 
fibroblasts as opposed to adipocytes or osteoblasts, originally being defined as fibroblast colony-forming units16. 
In fact, the morphology-tension difference between a fibroblast and the SSC in culture is modest and yet has a 
significant impact between growing fibroblasts and a major regenerative stem cell type6,9. To maintain the SSC 
phenotype, the mitogens appear to regulate the cell cycle in a manner that reduces the SSC ability to differen-
tiate. For example, phosphorylated retinoblastoma protein, a negative regulator of cell cycle associated with 
RUNX2 activation, is down-regulated compared to differentiating SSCs and cyclin dependant kinase 6, a positive 
regulator of cell cycle that reduces cellular BMP-2 (bone morphogenetic protein) sensitivity, is up-regulated in 
self-renewing SSCs8,17,18.

As reported by Stein and Lian in 1993, as well as contemporary studies, growth is reduced to allow for 
SSC differentiation19,20. This means that differentiated progeny, such as adipocytes and osteoblasts tend to be 
slow-growing, while self-renewing SSCs proliferate rapidly, like fibroblasts8,9. However, it is these differentiated 
progenies that are required in large numbers to enable clinical therapy. Bone, for example, is the second most 
transplanted tissue after blood and bone graft is in short supply21. Graft can be harvested from donor sites as 
autograft, but the amount is limited and there is associated donor site pain and morbidity22,23. Allograft is neces-
sarily decellularised and so lacks ‘the biology’ (i.e. the cells) needed to affect efficient repair21. Tissue engineering 
using osteoblasts represents a future vision, where lab-grown osteoblasts are cultured on an osteogenic scaffold 
material with appropriate biological and biomechanical cues24–26.

Thus, there is a need to move away from using plastic cultureware designed for the growth of fastidious cell 
lines27 to strategies designed specifically for stem cell populations to facilitate cell growth and differentiation. 
These strategies may take the form of 3D gels or microbeads27, but here, we will focus on a novel surface func-
tionalisation strategy. Specifically, we will focus on a strategy designed to promote, initially, SSC self-renewal, 
cell number expansion, and subsequently bone-specific differentiation to produce a regenerative cell type where 
there is clinical need. Furthermore, a central goal is the development of an autonomous, cell-controlled platform, 
rather than a user-controlled, manner.

A growing number of studies have identified dynamic materials for SSC culture. For example, photoactive 
hydrogels illustrate that while growth control remains poor in such systems, there is potential for targeting 
osteogenesis from SSCs over short culture times28. Electro-active surfaces29–31 and protein responsive materials32 
are also reported. However, these studies rely on non-biocompatible chemistries and the application of conduct-
ing materials/electrochemical potentials that may affect cell response. Degradation33 and stress relaxation34 of 
viscoelastic hydrogels also form further strategies that can dynamically tune the SSC phenotype; however, these 
properties can be hard to control. We have adapted a surface-based strategy that has previously been described 
to use enzymatic activation to provide a natural stimulus under user-control to trigger changes in material 
properties, with advantages of biocompatibility and selectivity35. This surface approach was based on solid-phase 
peptide synthesis (SPPS) directly onto the solid surface, which was used to create an enzyme cleavable sequence 
to reveal the cell-adhesive tripeptide, RGD, to SSCs. The sequence A↓ARGD (arrow denotes elastase cleavage 
site) was capped with the bulky blocking group Fmoc (fluorenylmethyloxycarbonyl) shown to prevent sterically 
access to the RGD underneath (Todd et al.,36https://​pubs.​rsc.​org/​en/​conte​nt/​artic​lelan​ding/​2007/​sm/​b6182​56a/​
unauth) and subsequently with PEG [ref] and covalently bound to glass substrates using a polyethylene glycol 
(PEG) linker. It was noted that with Fmoc (or PEG) in place, the SSCs produced smaller adhesions, generated 
less myosin-induced intracellular tension, and retained markers of stem cell phenotype. However, when the 
blocking group was cleaved with elastase, the SSCs produced osteoblast-specific super-mature adhesions (cell 
adhesions > 5 µm long)37, increased myosin phosphorylation and differentiated along the osteoblast lineage38.

The current studies detail the development of a cell-controlled surface, where AA is replaced by a peptide 
linker sensitive to matrix metalloprotease (MMP) action. The hypothesis under test was that accumulation of 
MMPs, such as MMP-2 typically expressed by SSCs as the cells approach confluence39, could cleave the blocking 
group to expose RGD (Fig. 1a). We note that in the previous work38 the Fmoc blocking group could become 
biofouled, preventing AA cleavage and so the antifouling PEG group has been used as a blocker.

SSC MMP profile and design of the surface.  Following the culture of SSCs (Stro-1+ve adherent cells 
from human bone marrow with stem cell characteristics shown by both enriched CFU-F formation and in vivo 
bone formation40,41) on tissue culture plastic, the cell supernatant was collected for MMP analysis. First, an 
MMP protein array was used after 3 weeks of culture to show that MMP-2 was expressed in abundance (Fig. 1b). 
MMP-2 is collagenase that can be expressed by SSCs39,42. We note that MMP-9 expression is also noted in SSCs 

https://pubs.rsc.org/en/content/articlelanding/2007/sm/b618256a/unauth
https://pubs.rsc.org/en/content/articlelanding/2007/sm/b618256a/unauth
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in the literature39,42 and so both MMP-2 and MMP-9 expression was quantified by ELISA over a 6-week time-
course. MMP-2 was expressed constantly (Fig. 1c) while MMP-9 expression was noted with time (Fig. 1d). It 
is important to note that MMPs can be expressed in both inactive and active forms and thus zymography was 
used to quantify MMP-2 and 9 activity after 3 weeks of culture. Results showed only MMP-2 was significantly 
expressed in an active form compared to that found in cell culture media (Fig. 1e). Thus, as MMP-2 is expressed 
by the SSCs in active form, we decided to design a cleavage sequence that was responsive to MMP-2 activity.

To define the peptide sequence of the scissile bond we used the MEROPS database43 that indicated that the 
MMP-2 sequence preference consisted of an 8-amino acid peptide sequence (P4–P4′). For the P1 and P1′ cleav-
age site, the database indicated a preference for small amino acids with G or A equally likely at P1, however, 
literature reports consistently state that L is favoured at P1′ (1387 citations) (Supplementary Fig. S1, Fig. 1f). We 
thus designed a peptide cleavage sequence with RGD incorporated at the prime side that would remain on the 
coverslip post-MMP activity; the final GPAG↓LRGD sequence has been cited almost 1500 times as being MMP2 
sensitive (Fig. 1g). Coverslips were fabricated to present PEG-GPAG↓LRGD-PEG-glass to the cells (surfaces with 
this complete sequence are denoted as DIGE-D for digestible with RGD).

To fabricate the cell culture surfaces, glass coverslips were cleaned, silanised and a PEG linker attached. The 
peptide sequence was built using Fmoc-protected amino acids grafted from the bottom-up and the complete 

Figure 1.   Selecting MMPs and cleavage sequence. (a) Schematic of the SSC cleavable surface concept with 
MMP-driven removal of PEG revealing RGD to the cells. (b) After 3 weeks of culture, MMP protein array 
was performed by densitometry measurements of the array membranes demonstrating high levels of MMP-2 
expression (n = 3). (c,d) ELISA showed constant expression of MMP-2 and increasing expression of MMP-9 
with time (n = 3). (e) Zymography was used to show that only MMP-2 was expressed by the SSCs in active form 
after 3 weeks of culture (n = 3). (f) MERPOS data gave consensus of an 8-amino acid sequence with a strong 
preference for L at P1′; allowing us to design a GPAG↓LRGD sequence for MMP-2 cleavage that would leave 
RGD on the coverslip. (g) GPAG↓LRGD sequence is highly cited as being MMP responsive For (b–e), results 
are mean ± SD, statistics by ANOVA and Tukey test where *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 
If stars are not shown on the graphs in (b–e), it denotes no significant difference was observed between the 
treatment and relevant control.
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sequence was hidden beneath a second PEG chain. Fluorescence spectroscopy, detecting the presence or absence 
of Fmoc44 (Fig. 2a), and water contact angle (WCA) measurements, again detecting the presence or absence of 
the hydrophobic Fmoc group (Fig. 2b) was used to follow the synthesis of the MMP-2 cleavable surface (Fig. 2c).

In addition to WCA and fluorescence spectroscopy, time of flight secondary ion mass spectrometry 
(TOF–SIMS) was used to detect the presence of the amino acids used to build the MMP-2 responsive peptide 
sequence on the coverslips (Fig. 2d). On the peptide surface, ions related to all six amino acids (Ala, Gly, Asp, 
Arg, Pro and Leu) and the PEG chain were detected. The intensity of the Si+ ion considerably decreases after 
peptide attachment, indicating that the sample surface has been modified. While some of the amino acid-related 
ions were also present on the control sample (clean glass), all ions but that associated with Ala (C2H6O+) showed 
a significant increase in intensity after peptide modification. Detection of the C2H6O+ ion on the control sample 

Figure 2.   Characterisation of solid-phase peptide synthesis (SPPS) dynamic surface. (a) Surface fluorescence 
spectroscopy following addition/removal of the Fmoc group (Fmoc peak seen at ~ 315 nm) during synthesis. (b) 
Contact angle measurement following addition (red)/removal (blue) of the Fmoc group during synthesis and 
the final PEG-capped peptide sequence (green) (graph shows mean ± SD, 50 images per dataset with 15 datasets 
taken across 3 substrates (n = 3)). (c) Scheme showing complete RGD surface with MMP cleavable group and 
PEG blocker before and after MMP cleavage. (d) Tof–SIMS data showing that expected amino acids (G, P, A, 
L, R and D) and PEG were present post-synthesis. Together, this data indicates complete PEG-GPAGLRGD 
synthesis.
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and the resulting lack in a distinct increase of the intensity of that ion on the peptide sample can be explained by 
the fact that the (C2H6O+) ion is a generic ion that can also originate from adventitious carbon contaminations. 
Amino acids and the PEG group were present after the synthesis (Fig. 2d). Moreover, the distribution of these ion 
intensities over a larger surface area is largely homogenous, demonstrating that the surface modification is rea-
sonably uniform across the coverslip. Following our previously developed protocol34, the monitoring of sequential 
attachment of amino acids by fluorescence and WCA measurements and the confirmation of the overall surface 
chemistry by ToF–SIMS combined confirm the correct peptide sequence has been prepared on the surface.

Looking at the effect of adding serum-free media spiked with either MMP-2 or MMP-9 (20 ng/mL and 
0.25 ng/mL respectively), noting the scissile bonds can be MMP promiscuous and still having an interest in the 
high levels of MMP-9, albeit inactive as seen in Fig. 1d, TOF–SIMS showed a reduction in the P and A amino 
acids as well as the capping PEG group compared when both MMP-2 and 9 were added to the full peptide 
sequence suggesting successful cleavage (§ cleaved compared to $ uncleaved) (Supplementary Fig. S2). Figure 3a,b 
show the removal of PEG by exogenous MMP-2 and MMP-9.

Figure 1c,d showed that ~ 10 ng/mL of endogenous MMP-2 and ~ 0.4 ng/mL of endogenous MMP-9 were 
expressed by the SSCs in culture. To test if these levels could cleave the scissile bond in the peptide sequence in 
serum-containing conditions (i.e., where competitor proteins may be present for the MMPs to act upon), media 
collected after 3 weeks of the culture of the SSCs on glass was added to the sequence before TOF–SIMS analysis. 
The supernatant treated surface could be seen to have reduced PEG signal intensity indicating successful PEG 
blocking group removal albeit at reduced efficiency compared to the use of exogenous MMPs in serum-free 
conditions (Fig. 3c). We note that we also see protein adsorption from this sample, so the quantification must 
be interpreted with some caution (Supplementary Fig. S3).

SSC biocompatibility and adhesion.  To understand the biocompatibility of the surface and cell adhe-
sion to the surface, we performed some short-term experiments with a range of glass, RGD (high cell adhesion) 
and RGE (low cell adhesion) controls as shown in Table 1.

It was observed that after 24 h of culture, SSCs were viable on all the surfaces, but SSCs displayed reduced cell 
spreading (measurement of cell area) on RGE containing surfaces reflecting the low adhesivity of the RGE group 
(Fig. 4a,b). After 24 h of SSC culture, we observed the cytoskeleton proteins tubulin and vimentin, involved in 
cell metabolic activity, and observed/measured focal adhesion size (Fig. 4b). Tubulin microtubules and vimentin 
intermediate filaments reflected the cell area data with a propensity for enhanced cell spreading displaying organ-
ised tubules and filaments on RGD containing surfaces. Vinculin staining revealed that cells could form adhesions 
on all the surfaces, including RGE containing surfaces (Fig. 4b,c). However, measurement of adhesion length 
and sub-classified as focal complex (small, transient adhesions < 2 µm long), focal adhesions (stable adhesions 

Figure 3.   MMPs can cleave PEG from the peptide and reveal RGD. (a,b) Tof–SIMS data showing removal of 
the PEG group with the addition of MMPs-2 and 9 in more detail. (c) Treatment of the DIGE-D surface with 
SSC supernatant containing 10 ng/mL of MMP-2 (active) and 0.4 ng/mL of MMP-9 (latent) resulted in some 
cleavage of PEG.

Table 1.   Surfaces used for cell culture experiments.

Abbreviation Sample

Glass Glass coverslip

PEG-RGD RGD attached to glass via PEG linker (glass-PEG-RGD)

LRGD Pre-cleaved with exogenous 1 mg/mL MMP-2

DIGE-D Full length, MMP-2 digestible, sequence (PEG-GPAG↓LRGD-PEG-glass)

PEG-RGE RGE attached to glass via PEG linker (glass-PEG-RGD)

LRGE Pre-cleaved with exogenous 1 mg/mL MMP-2

DIGE-E Full length, MMP-2 digestible, sequence (PEG-GPAG↓LRGE-PEG-glass)
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Figure 4.   SSC biocompatibility. (a) Cell area measurements after 24 h of culture on the samples showing that 
RGD containing surfaces and DIGE-E supported similar cell spreading compared to glass while LRGE, where 
the RGE was exposed, reduced SSC spreading (n = 15). (b) Viability, proliferation and cytoskeletal analysis 
showed high cell viability on all surfaces. Growth and cytoskeletal organisation were reduced on the LRGE 
surface and PEG-RGE surface where the RGE group was exposed. (c) Focal adhesions were categorised as FC 
(< 2 µm), FA (2–5 µm) and SMAdh (> 5 µm) and expressed as % total adhesions (n = 15). The main difference 
to indicate cells responding to the PEG cleavage was seen in the SMAdhs, where LRGD and DIGE-D gave the 
largest differences to the RGE containing surfaces. (d) Alamar blue and MTT metabolic assays showing no 
differences (n = 3). Graphs show mean ± SD, statistics by ANOVA and Tukey test where *p < 0.05, **p < 0.01, 
***p < 0.001 and ****p < 0.0001. If stars are not shown on the graphs, it denotes no significant difference was 
observed between the treatment and relevant control. Please note that SSCs purchased from Promocell GMBH 
rather than stro-1+ve cells were used to create this figure.
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2–5 µm long) and super-mature adhesions (very large adhesions required to support osteogenesis, > 5 µm long), 
indicated that the cleaved LRGD sample contained the most super-mature adhesions with RGE containing 
surfaces supporting the fewest super-mature adhesions per cell (Fig. 4c).

After 1 week of culture on the surfaces, alamar blue reduction and MTT assays were used to calculate cell 
metabolic activity as a measure of growth. There were no differences between surfaces implying similar cell 
numbers (Fig. 4d,e). Again, bromodeoxyuridine (BrdU) incorporation after 1 week showed S-phase cells present 
on all materials (Fig. 4b).

Taken together, this data suggests a cell adhesion lag phase on RGE containing surfaces illustrating that 
initial cell response is quite different depending on sample, but that the cells can spread and proliferate to levels 
comparable to cells on the glass control, with time.

SSC phenotype.  To study phenotype, SSCs were cultured on the full substrates (GPAG↓LRGD, DIGE-D, 
GPAG↓LRGE and DIG-E) for up to 6 weeks. First, we looked at Stro-1 expression, as a SSC marker, after 4 weeks 
of culture. In cell western analysis showed that Stro-1 expression reduced on all samples, glass control, DIGE-D 
and DIGE-E, similarly with time (Fig. 5a). This indicates that the DIGE-D sample does not encourage lineage 
commitment at early stages of culture and that the SSCs should respond to the osteogenic RGD45 when revealed.

SSCs were then examined for osteogenic marker proteins alkaline phosphatase (ALP), osteopontin (OPN) 
and osteocalcin (OCN)19 after 4 and 6 weeks of SSC culture on the surfaces. At 4 weeks, no difference was seen 
between any of the samples indicating no onset of osteogenesis (Fig. 5b). At 6 weeks, however, an increase in 
OPN was noted, importantly, only on the DIGE-D surface (Fig. 5c). This indicates potential osteogenesis on 
the MMP-2 cleavable, RGD containing sample over that observed on glass or RGE containing controls, where 
fibroblastic phenotypical drift is hypothesised.

Next, qPCR was used to examine for OPN expression in SSCs at 4 and 6 weeks cultured on the LRGD and 
MMP-2 responsive DIGE-D surfaces compared to PEG controls. It was observed again that at 4 weeks there was 
no expression of OPN. However, after 6 weeks of culture, significantly greater OPN expression was noted on 
DIGD-D compared to LRGD and PEG (Fig. 5d). This result agrees with data presented in Ref.38 that illustrates 
that when elastase is used to cleave the blocking group to reveal RGD, enhanced osteogenesis is noted compared 
to use of RGD alone; i.e. the reveal of RGD enhanced osteogenic commitment. Looking at marker transcripts for 
other lineages, it was noted that the DIGE-D surface is osteospecific (Supplementary Fig. S4).

Summary.  We have designed an MMP-responsive surface for SSC culture. Using exogenous, active, MMPs, 
we show that the PEG blocking group can be efficiently cleaved to reveal RGD. The current studies further show 
that MMPs released during SSC culture can cleave the surface, but much less efficiently. This is likely because the 
SSCs were observed to express low levels, ~ 10 ng and ~ 0.4 ng of MMP-2 and-9 respectively, with only MMP-2 
in the active form resulting in incomplete removal of PEG.

When SSCs were cultured on the solid phase peptide synthesis (SPPS) fabricated surfaces, comparable viabil-
ity, metabolic activity and growth was seen as for SSCs cultured on the glass coverslip control. Use of RGE rather 
than RGD resulted in reduced cell adhesion and spreading showing that RGD was present in the DIGE-D for cells 
to respond to; on RGE blocked with PEG, SSCs could adhere and grow. Expression of Stro-1 with time in culture 
showed a similar profile on DIGE-D to glass control. Thus, while SSC phenotype was not actively enhanced by the 
designed surface, the surface was not detrimental to SSC phenotype. Typically, under osteogenic conditions, SSCs 
that will differentiate along the osteoblastic lineage take approximately 3–4 weeks to express mature osteoblast 
markers such as osteopontin and osteocalcin19,20. In the current studies, approximately 6 weeks of culture was 
required to observe expression of these markers on the DIGE-D surface. This suggests a delayed expression as 
the cells switched the surface from ‘grow’ to ‘differentiate’.

We have produced a surface that permits SSC growth followed by SSC differentiation when the cells produce 
sufficient MMP-2. Clearly optimisation is required. We propose that the RGD groups need to be better hidden 
to enhance retention of SSC phenotype relative to glass during the growth phase. Subsequently, optimisation of 
cleavage is required to allow enough PEG to be cleaved to drive robust osteogenesis. Further, while low adhesion 
controls did reduce adhesion and spreading, cells could take hold and grow. These studies demonstrate that our 
future vision of cell-triggered surfaces is feasible and warrants further exploration.

Materials and methods
Surface synthesis.  Surfaces were synthesised using SPPS (Solid phase peptide synthesis) as in Ref.38 (Todd 
et  al. 36). Briefly, glass coverslips were sonicated in acetone, ethanol, methanol, deionised water (dH2O) for 
10 min each and allowed to dry in a fume hood. The dried coverslips were acid cleaned in piranha solution 
(H2O2: H2SO4, 3:7) for 1 h. Coverslips were then rinsed in deionised water (dH2O) until the solution was neu-
tralised, and coverslips were rinsed individually in 3× dH2O before drying with nitrogen. As per Piehler et al. 
surfaces were silanised by immersing the coverslips in GOPTS ((3-glycidyloxypropyl) trimethoxysilane, Sigma 
Aldrich, UK) at 37  °C for 1 h followed by washing 3× in acetone and drying overnight at 75  °C in an oven. 
PEG26-NH2 (Polypure, Norway) was melted onto the silanised surface at 75  °C for 48 h to create an amine-
functionalised monolayer. Excess PEG26-NH2 was removed by washing the surfaces 3× with dH2O and dried 
under nitrogen. To build up the peptide chain, the first Fmoc protected amino acid (20 mM, Sigma Aldrich, 
UK) was coupled to PEG26 diamine in a solution of EHICA (ethyl(hydroxyimino)cyanoacetate, 0.4 mmol) and 
DIC (N,N′-diisopropyl-carbodiimide, 0.4 mmol) per 10 mL of anhydrous DMF (N,N-dimethylformamide) (all 
reagents from Sigma Aldrich, UK). Samples were treated for 2 h under agitation.

Samples were then rinsed in DMF, ethanol, methanol and DMF for 10 min each under agitation. For the 
conjugation of subsequent amino acids, the Fmoc protecting group (of the bound amino acid) was removed 
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Figure 5.   SSC phenotype on DIGE-D surface. (a) In cell western (ICW) data for Stro-1 showing no difference 
between SSCs cultured on glass control and DIGE-D and DIG-E surfaces showing that cells express similar 
levels of this SSC marker on the SPPS test and control surfaces when the RGD/RGE is hidden by the PEG 
blocking group. (b,c) ICW data for alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OCN) 
after 4 weeks (b) and 6 weeks (c) of culture. No differences were noted between samples at 4 weeks, but at 
6 weeks, higher levels of OCN expression were noted in SSCs on the DIGE-D surface. (d) QPCR for OPN 
transcripts after 4 and 6 weeks of MSC culture on PEG, LRGD and DIGE-D surfaces. At 4 weeks no change 
was seen. However, at 6 weeks, the DIGE-D MMP-responsive surface supported significantly greater OPN 
expression. Graphs show mean ± SD, n = 3, statistics by ANOVA and Tukey test where *p < 0.05, **p < 0.01, 
***p < 0.001 and ****p < 0.0001. If stars are not shown on the graphs, it denotes no significant difference was 
observed between the treatment and relevant control.
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using piperidine (20% in DMF, Sigma Aldrich, UK) for 2 h under agitation then washed in DMF, ethanol, 
methanol and DMF for 10 min. The next Fmoc protected amino acid was added and the last two steps were 
repeated until the sequence was complete. The Fmoc protecting group was removed from the final peptide then 
PEG (O-methyl-O′-succinyl polyethylene glycol 2.000, Sigma Aldrich, UK) was added to the terminal amino 
acid prior to removal of side chains. The side chain protecting groups on the aspartic acid (O-tert-butyl, OtBu) 
and the arginine (pentamethyldihydrobenzofuran-5-sulfonyl, Pbf) were removed with a 90% solution of aque-
ous TFA (trifluoroacetic acid, Sigma Aldrich, UK) for 4 h. Samples were then washed and stored in a desiccator 
until further use.

Fluorescent spectroscopy.  Coverslips were saved after Fmoc protected amino acid addition and after 
deprotection by piperidine to indicate all stages of SPPS. Coverslips were dried and mounted onto a microscope 
slide and fluorescence spectra recorded with a JASCO FP-6500 spectrophotometer using a technique that was 
specifically developed for SPPS coverslips by Zelzer et al.44. Coverslips were angled a 30° from the incident light 
and exposed to an emission spectra = 270 nm and excitation spectra = 320 nm with a slit width of 20 nm (light 
source and detector).

Water contact angle measurement.  Water contact angle measurements were carried out using the ses-
sile drop technique (3 µL droplets, spotted 5 times per coverslip in triplicate). Angle recording as was conducted 
using a Theta optical tensiometer (Biolin Scientific, Stockholm Sweden).

Tof SIMS.  ToF–SIMS was carried out using an ION-TOF TOF–SIMS IV instrument (Münster, Germany), 
equipped with a Bi liquid metal ion gun (LMIG). The primary ion beam was directed at the sample under an 
angle of 45° in relation to the normal; 25 keV Bi3+ primary ions were used in all measurements. Charging of the 
sample was compensated using low-energetic electrons from the flood gun. Large scale (3 mm × 3 mm; 304 × 304 
pixels) and small scale (380 µm × 380 µm, 256 × 256 pixels) images were obtained in positive polarity for each 
sample (1 shot per pixel). Positive ion mass spectra were calibrated with m/z 15 (CH3

+), 29 (C2H5
+), 41 (C3H5

+) 
67 (C5H7

+) and 91 (C7H7
+). A peak search was performed to identify ions indicative for amino acids according 

to data previously reported in the literature (Wagner and Castner46). For semi-quantitative comparison of ion 
intensities, the large-scale images were divided into four regions of interest (ROIs) of 1.5 mm × 1.5 mm from 
which intensities of ions of interest were generated. Spectra used for peak shape comparison were extracted from 
the small-scale images.

Cell culture.  STRO-1 Selected SSCs. STRO-1 + SSCs were derived from waste human bone marrow samples 
obtained from haematologically normal patients undergoing hip replacement surgery at Southampton General 
Hospital and Spire Southampton Hospital following informed consent. Use of samples was approved by the 
University of Southampton local ethics committee (NRES number: 194/99/1, LREC number: 31875) and all 
methods were performed in accordance with the relevant guidelines and regulations. Cells were aspirated from 
trabecular bone marrow samples and centrifuged at 250×g for 4 min at 4 °C. The cell pellet was resuspended 
inα-MEM and passed through a 70 μm pore nylon mesh (BD Biosciences). Red blood cells were removed by 
centrifugation with lymphoprep gradient solution (Robbins Scientific) and the remaining cells in the buffy layer 
resuspended in 10  mL of blocking solution (4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid, HEPES) 
saline solution with 5% v/v fetal calf serum, 5% v/v human serum, and 1% w/v bovine serum albumin (BSA). 
Afterward, the cells were incubated with a STRO-1 antibody in hybridoma supernatant (hybridoma courtesy of 
Dr Beresford, University of Bath) and flushed with magnetic cell separation buffer (Miltenyi Biotec) to remove 
any excess antibody. The cells were incubated with human anti-IgM magnetic microbeads (Miltenyi Biotec, UK) 
and added to a magnetic column; the eluent was collected as the STRO-1− fraction. After being washed with 
MACs buffer without the magnetic field, the eluted cell population was collected as the STRO-1+ fraction. Skele-
tal MSCs purchased from Promocell GBMH were used for cytoskeletal staining and focal adhesion experiments.

For all experiments, SSCs were cultured in complete DMEM–DMEM (Sigma-Aldrich, UK) supplemented 
with 10% FBS (Sigma), 1% sodium pyruvate (11 mg/mL, Sigma), 1% Gibco MEM NEAA (amino acids, Thermo 
Fisher Scientific, UK) and 2% antibiotics (6.74 U/mL penicillin–streptomycin, 0.2 µg/mL fungizone) and main-
tained at 37 °C in 5% CO2. To detach the SSCs, cells were rinsed in HEPES saline, then incubated with 5 mL of 
10% trypsin in versene (37 °C in 5% CO2) until detached. 5 mL culture media was added to halt the action of 
the trypsin, the resulting cell suspension was transferred to into 15 mL falcon tube and centrifuged for 4 min at 
1400×g to sediment cells.

Prior to cell seeding, functionalised coverslips were incubated in 70% ethanol for 10 min then air dried. 
After centrifuging, cells were counted using a haemocytometer then seeded at 1000 cells/cm2 in 1 mL culture 
media. Coverslips were incubated for the time stated with media changes performed twice weekly. For MMP 
experiments, to maintain presence of cell secreted MMPs, 500 µL media was removed from the well and topped 
up with a fresh 500 µL.

MMP arrays.  Cells were cultured in complete DMEM on coverslips for 3 weeks after which the cell superna-
tant was pooled (n = 3) and stored at − 80 °C until further use. The experiment was carried out as outlined in the 
manufacturer’s instructions (Abcam Human MMP Antibody Array), where 1 mL of undiluted pooled sample 
was added to the membrane and incubated overnight. The protein of interest was captured by antibody array 
chips (“spots”), biotin-conjugated antibodies and then labelled streptavidin for detection. The membranes were 
analysed with an Azure c500 Infrared Western Blot Imaging System and analysed using Fiji software (ImageJ 
derivative, free download from NIH). Pixel density was calculated for each spot and then averaged.
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Zymography.  Supernatant was collected from cell culture on functionalised coverslips stored at − 80  °C 
prior to zymogram analysis. Supernatant was then mixed 1:1 with zymogram sample buffer (loading buffer, 
BioRad, UK) and 20 µL was loaded into each well of precast gelatin and casein gels (BioRad, UK). Precision Plus 
Protein ™ Dual Colour Standards (BioRad, UK) were used as molecular standards (10 µL loaded per gel). The gels 
were run at 200 V in running buffer (10% Tris/Glycine/SDS running buffer diluted PBS) for 60 min in the Cri-
terion™ gels until the bands reached the bottom. Gels were soaked in zymogram renature buffer (10% renature 
buffer in PBS, BioRad UK) using gentle agitation for 45 min with buffer changes at 15 and 30 min. The gels were 
then incubated in zymogram development buffer (10% development buffer in PBS) overnight at 37 °C. After-
wards, gels were stained in 0.5% (w/v) Coomassie Brilliant Blue R-250 in 4% methanol 10% acetic acid at room 
temperature for 60 min with gentle agitation. The Coomassie Blue solution was replaced with destain solution 
(4% methanol/10% acetic acid in PBS), which was replaced with 3 changes every 15 min (at room temperature) 
until bands were visible. Gels were imaged using a fusion Fx, Vilber Lourmat and bands were quantified using 
Fiji software (ImageJ derivative, free download from NIH).

ELISA.  MMP-2 (Life Technologies, UK) and MMP-9 (Invitrogen, UK) ELISAs were carried out as per the 
manufacturers instruction. For each ELISA, samples of DMEM were included as controls and cell supernatant 
was diluted 1/10 with standard diluent. For MMP-2 ELISA, an additional positive control was also included of 
0.1 mg/mL MMP-2 spiked (Sigma Aldrich, USA) serum free media (complete DMEM without FBS addition). 
ELISA plates were read at 450 nm using Clariostar microplate reader (BMG Labtech, Germany).

Viability.  Live/dead.  Cells were stained after 24 h using 1 µL of calcein and 1 µl ethidium homodimer-1 
(both Invitrogen, UK), which was added to 1 mL of cell culture media (DMEM). 100 µL of solution was added to 
controls for 30 min (37 °C, 5% CO2). The coverslips were then inverted and placed on microscope slides. Slides 
were then imaged using a Zeiss Axiophot fluorescence microscope with an Evolution QEi digital monochro-
matic CCD camera and Q-capture imaging software.

MTT.  SSCs were cultured for 1 week. Samples were rinsed in 1× PBS. A 5 mg/mL solution of MTT powder 
(Sigma Aldrich, UK) in 1× PBS was added to the samples 1:10 in DMEM. The cells were placed on a shaking 
plate for 5 min then incubated under standard conditions (37 °C, 5% CO2) for 5 h. The media was removed and 
the cells were washed twice in cold PBS. 200 µL of dimethyl sulfoxide (DMSO, Sigma Aldrich, UK) was added, 
then the cells were shaken for 5 min. The solution was transferred to a new 96 well plate and analysed using a 
Clariostar microplate reader (BMG Labtech, Germany).

Alamar blue.  SSCs were cultured for 1 week under standard conditions. Alamar blue solution (BioRad, UK) 
was mixed 1:10 in DMEM then 600 µL was added to each coverslip then incubated for 6 h (30 °C, 5% CO2). 
3 × 200 µL of solution (supernatant) was transferred to a 96 well plate and analysed using a Thermo-Scientific 
Multiskan FC microplate reader.

Cytoskeletal/BrdU staining.  SSCs were seeded on surfaces for 24 h Samples were washed with PBS and 
fixed with 10% v/v formaldehyde/PBS for 15 min at 37 °C. Cells were permeabilized at 4 °C for 5 min (30 mM 
sucrose, 50  mM NaCl, 3  mM MgCl2·6H2O, 20  mM HEPES, and 0.5% v/v Triton X-100 in PBS adjusted to 
pH 7.2), and nonspecific binding epitopes were blocked with 1% w/v BSA/PBS for 15 min at 37 °C (this step 
was omitted for anti-BrdU staining). Primary antibodies (tubulin, vinculin and vimentin, all mouse monoclo-
nal from Sigma Aldrich UK) were made up at 1:150 dilution in PBS/BSA with rhodamine –phalloidin (1:500; 
Molecular Probes) and incubated for 1 h at 37 °C, after which time they were washed in 0.5% v/v Tween 20/
PBS (PBST, 3 × 5 min under gentle agitation) to minimize background labelling. Note that for BrdU staining, 
mouse monoclonal anti-BrdU (clone BU-1, 1:100 in nuclease solution, prepared according to the manufacturer’s 
instructionsin kit RPN202; GE Healthcare) was used and rhodamine − phalloidin was added with the secondary 
rather than the primary antibody.

Horse biotinylated anti-mouse IgG (1:50; Vector Laboratories) in BSA/PBS was added to samples and incu-
bated for 1 h at 37 °C. After the washing stages, samples were incubated for 30 min at 4 °C with fluoresceinisothio-
cyanate streptavidin (FITC; 1:50; Vector Laboratories) in BSA/PBS followed by a final washing stage. Coverslips 
were placed on glass slides in 4′,6-diamidino-2-phenylindole mountant (Vector Laboratories). Images taken 
using a Zeiss Axiophot fluorescence microscope with an Evolution QEi digital monochromatic CCD camera 
and Q-capture imaging software.

In cell western (ICW) analysis.  Supernatant was removed from the wells and samples were rinsed in 
PBS. Cells were then fixed with 10% v/v formaldehyde/PBS for 15 min at 37 °C and permeabilised at 4 °C for 
4 min. Permeablisation buffer (30 mM sucrose, 50 mM NaCl, 3 mM MgCl2·6H2O, 20 mM HEPES, and 0.5% 
v/v Triton X-100 in PBS adjusted to pH 7.2) was removed and milk protein (1% milk protein in 1× PBS) was 
added at 37 °C for 1.5 h on a shaker after which, stro-1, ALP, OCN and OPN primary antibodies (mouse mono-
clonal, 1/100, Santa Cruz, UK) in PBS/BSA was added and incubated at 37 °C for 2.5 h. Samples were washed 
5 × 5 min in tween, then the secondary antibody with a 680 nm infrared dye (1/800) and CellTag™ (1/500) (both 
diluted in milk protein, both Licor, UK) were added for 1 h at room temperature. Washing was carried out on 
a shaker 5× in tween for 5 min each at room temperature. Coverslips were removed and dried on white paper 
then inverted into a new 24 well plate. ICW was performed using a LI-COR Odyssey plate reader and data was 
analysed using Odyssey SA software.
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Quantitative PCR.  RNA was extracted using the Qiagen RNeasy extraction kit (including a DNAse step) 
according to the manufacturers instructions (Qiagen, Hilden, Germany). The RNA concentration was quanti-
fied using Nanodrop, and normalized for each sample. cDNA was prepared by reverse transcription using the 
Qiagen Quantitect kit. 12 µL of the normalised dilutions for each RNA sample were added to a 0.2 mL (200 µL) 
reverse transcription PCR–Cup. To each of the samples 2 µL gDNA wipeout buffer was added. Following this 
each sample was run at 42 °C for 2 min, on a thermal cycler in order to remove any DNA present in the samples. 
Following the removal of the innate DNA, 6 µL of a stock solution (containing Qiagen reverse transcription 
buffer reagents) was then added to each reverse transcription cup, to give a total volume of 20 µL. Reverse tran-
scription of the RNA into cDNA was performed by controlling temperature from 42 (15 min) to 93 (3 min) to 
4 °C (hold) to allow PCR quantification using the relative comparable method. The Quantifast SYBR green qPCR 
kit (Qiagen) was used to perform amplification with specific primers (Table 2, Eurofins Genomics, Ebersberg, 
Germany) related to osteogenesis as well as GAPDH as a genetic internal control. PCR was quantified using 
the 2−∆∆Ct method and amplification was carried out using an Applied Biosystems 7500 Real Time PCR system.
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