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Controlling the characteristics 
of injected and accelerated electron 
bunch in corrugated plasma 
channel by temporally asymmetric 
laser pulses
M. Sedaghat, A. Amouye Foumani & A. R. Niknam*

In laser-driven plasma wakefield accelerators, the accelerating electric field is orders of magnitude 
stronger than in conventional radio-frequency particle accelerators, but the dephasing between the 
ultrarelativistic electron bunch and the wakefield traveling at the group velocity of the laser pulse 
puts a limit on the energy gain. Quasi-phase-matching, enabled by corrugated plasma channels, is a 
technique for overcoming the dephasing limitation. The attainable energy and the final properties of 
accelerated electron beams are of utmost importance in laser wakefield acceleration (LWFA). In this 
work, using two-dimensional particle-in-cell simulations, the effect of the driving pulse duration on 
the performance of quasi-phase-matched laser wakefield acceleration (QPM-LWFA) is investigated. 
It is observed that for a pulse duration around half the plasma period, the maximum energy gain of 
the beam electrons finds its peak value. However, the results show that for a pulse of that duration 
the collimation of the bunch is much worse, compared to the case where the pulse duration is twice as 
long. Furthermore, the dynamics of the laser pulse and the evolution of the quality of the externally-
injected electron bunch are studied for a symmetric pulse with sine-squared temporal profile, a 
positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with 
a slow rise and sharp fall). The results indicate that for a laser pulse with an appropriate pulse length 
compared with the plasma wavelength, the wakefield amplitude can be greatly enhanced by using 
a positive skew pulse, which leads to higher energy gain. Initially, this results from the stronger 
ponderomotive force associated with a fast rise time. Later, due to the distinct evolution of the three 
pulses with different initial profiles, the wakefield excited by the positive skew pulse becomes even 
stronger. In our simulations, the maximum energy gain for the asymmetric laser pulse with a fast rise 
time is almost two times larger than for the temporally symmetric laser pulse. Nevertheless, stronger 
focusing and defocusing fields are generated as well if a positive skew pulse is applied, which degrade 
the collimation of the bunch. These results should be taken into account in the design of miniature 
particle accelerators based on QPM-LWFA.

Laser wakefield acceleration (LWFA)1,2 is a scheme which utilizes strong laser-induced plasma waves to acceler-
ate electrons to relativistic energies over a very short distance3,4. The ultimate goal of research on this scheme is 
production of inexpensive, compact and lightweight accelerators which are comparable with bulky traditional 
accelerators in terms of energy gain and beam quality5,5–8. LWFA has been demonstrated and explored in numer-
ous experiments so far and is a very active research area at present9–11. These experiments have mainly been 
carried out in the so-called “bubble regime”9,11–13. Quasi-mono-energetic (low energy-spread), collimated GeV 
electron bunches with charges in the pC range have been produced in centimeter-scale acceleration length by 
using laser pulses with peak powers ranging from tens of TW to PW10,14,15. These beams are usable as compact 
radiation sources in the X-ray and γ-ray region16–22. Although petawatt lasers produce high intensity pulses, the 
rate of pump depletion and etching is greater at high intensities23,24. Moreover, in high power laser systems, due 
to technical obstacles, the frequency of optical pumping is low, thus the repetition rate of such lasers is as low as 
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∼1–10 Hz. This reduces the attractiveness of conventional LWFA for applications like advanced X-ray radiogra-
phy, which demand high average output20,25–27. Therefore, there exists much interest in accelerating relativistic 
electrons within the linear regime of LWFA, in which lower peak power lasers ( < 1 TW) with higher repetition 
rates (up to kHz) and pulse energies of several mJ are used25,26.

In general, there are three disruptive processes the control of which is of particular importance in LWFA, 
namely dephasing, pump depletion, and diffraction8,11,15,23. The phase velocity of a laser-driven wakefield is 
approximately equal to the group velocity of the laser pulse in the plasma, which is somewhat lower than the 
speed of light. Thus, the highly relativistic electrons outpace the plasma wave and eventually slip from an accel-
erating region into a decelerating region of the wakefield2. This process, known as dephasing, limits the accel-
eration length to the so-called dephasing length, which scales as Ld ∝ n

−3/2
0  , where n0 is the plasma density23. 

Dephasing is an important limitation that must be overcome in order to achieve higher electron energy gains, 
particularly for accelerators operating with lower power lasers. Another limitation is the depletion of the energy 
of the laser pulse as it drives the wakefield. The laser pump depletion length, Ldep , is the length scale over which 
this depletion occurs, and it scales with the plasma density in the same manner as the dephasing length does2,23. 
Since the maximum accelerating field scales as Emax ∝ n

1/2
0  , the energy gain in LWFA, �γ ∝ EmaxLd ∝ n−1

0  , 
can be increased by using a plasma of lower density. Decreasing the plasma density also increases the dephasing 
length and pump depletion length.

However, for optimum acceleration of electrons over long distances, which can be larger than tens of Rayleigh 
lengths, one has to ensure that the laser pulse is propagated up to the dephasing length with minimum diffrac-
tion. One solution is based on utilizing self-guiding, in which the combined effect of relativistic self-focusing 
and ponderomotive self-channeling guides the pulse2,28. This occurs in situations where the laser power is greater 
than the critical power, Pcrit = 17ω0

2/ωp
2 GW, in which ωp and ω0 are the plasma frequency and laser frequency, 

respectively. For sub-TW laser pulses, in order to have self-guided propagation, it is essential to perform LWFA 
at high plasma densities23,29,30. For example, Goers et al. accomplished sub-TW LWFA by focusing 0.21 TW laser 
pulses onto hydrogen gas targets ( ne0 ≥ 2× 1020 cm−3)26. Another way to reduce diffraction is by using a larger 
spot size, as Rayleigh length increases with spot size, but this approach requires high pulse power. Diffraction 
can also be reduced by using a parabolic transverse density profile that has a minimum on the laser propagation 
axis. Such a structure can be matched to guide a gaussian laser mode without distortion in the low intensity limit 
over many Rayleigh lengths2,31–33.

Extending the energy gain beyond what the dephasing limitation dictates is a prime objective in the devel-
opment of LWFA accelerators. One approach to overcoming the dephasing limitation is to link multiple LWFA 
stages in series34–36. The use of a new laser pulse at the beginning of each stage makes laser diffraction and deple-
tion more manageable. However, in practice this approach faces severe practical challenges with regard to beam 
extraction and transfer to the next plasma stage, to which the new pulse must be coupled with femtosecond 
accuracy. In addition, this approach requires a high total laser energy. An alternative, more efficient approach is 
to manipulate the wakefield using density gradients within a single stage so that the electron stays in the accel-
erating region of the wakefield. In the present work, we adopt this approach and use a plasma channel having an 
axially-periodic density profile. Axially corrugated plasma channels have been successfully generated in experi-
ments done by Layer et al.37,38. The laser-induced plasma wakefields in such a medium can be decomposed into 
spatial harmonics whose related phase velocities depend on the modulation period39,40. This property can be 
exploited in quasi-phase-matching-based LWFA (LWFA-QPM)41,42, in which by equating the density modulation 
period of the corrugated channel to the dephasing length, the phase velocity of an individual spatial harmonic 
is matched to the velocity of the accelerating electron beam, which is close to the speed of light, c. Consequently, 
the chosen individual spatial harmonic exerts an almost constant axial force on the relativistic electrons, while 
the time average of the axial forces from all other spatial harmonics is zero. Comparison of the longitudinal 
wakefields acting on an electron moving at nearly c in modulated and unmodulated channels shows that in a 
modulated channel because of the break in the symmetry of energy gain and loss between the acceleration and 
deceleration phases experienced by relativistic electrons, the wakefield performs net work on an electron even 
after it has traversed one dephasing length, while the integral of the axial field over a plasma period is zero in 
a uniform channel41. As a result, for acceleration using linear wakefields, this technique leads to energy gains 
several times greater than that from an equivalent uniform plasma channel. Moreover, using a preformed plasma 
channel allows the pulse to be guided without diffraction over distances in the order of centimeters, which is 
necessary to reach the desired energy gains.

The interaction of high-intensity laser pulses with underdense plasmas in LWFA is a complex process occur-
ring in the relativistic regime. As the laser pulse propagates in the plasma medium, its shape evolves due to 
several nonlinear effects such as group velocity dispersion, self-phase modulation, and self-steepening24,43–45, as 
a result of which the temporal profile of the pulse becomes asymmetric. This asymmetry affects the evolution of 
the pulse as well as the maximum gain and quality of the injected electron beam. Similarly, LWFA is drastically 
affected by the initial properties of the laser pulse. In this paper, we propose a simple method to enhance the 
performance of QPM-LWFA by controlling the waveform of the driving laser pulse.

It has been observed that the temporal profile of the driving laser pulse plays an important role in wakefield 
generation46–50. Previous experimental investigations of the impact of asymmetries in pulse envelope and also 
frequency chirps on plasma wake excitation performed within the self-modulated LWFA regime have shown 
significant enhancement of the electron energy and total charge for sharp rising asymmetric pulses with posi-
tive chirps51,52.

In addition, experimental and theoretical studies in the bubble regime show that frequency chirped and 
shaped laser pulses can be used to adjust the self-injection rate, beam charge and the output energy of LWFA in 
the bubble regime47,48,50,53. It is found that a positively chirped laser pulse, in which the frequency is lower at the 
front of the pulse, can create stronger and more stable plasma waves than a negatively chirped or a chirp-free 
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laser pulse. The reason is that when the pulse is positively chirped, the ponderomotive force is stronger at its front. 
By generating stronger plasma waves, which leads to a decrease in the effect of laser fluctuations, a positively 
chirped laser pulse also improves the stability of the electron beam48. Similarly, temporal laser pulse shapes with 
a sharp rising front (positive skew) are able to drive larger wakefields, leading to higher electron beam charge 
and energy47,54–56. Such asymmetric laser pulses have been generated experimentally in chirped-pulse amplifica-
tion laser systems by detuning the laser pulse compressor. Electron beams with stable and small pointing angles 
have been reported to be obtained using asymmetric laser pulses57. In ionization-induced injection, a negatively 
skewed laser pulse profile results in a lower energy spread compared to a positively skewed pulse, thus yielding 
higher bunch quality58.

In this study, through two-dimensional (2D) particle-in-cell (PIC) simulations with the code OSIRIS, the 
dependence of the final features of the accelerated bunch and its dynamics on the pulse duration and the asym-
metries in the pulse envelope is investigated. It is observed that in QPM-LWFA, by selecting proper pulse length, 
higher energy gain can be achieved. Although further reduction of the laser pulse duration leads to generation 
of larger ponderomotive force, the use of a relatively short pulse may cause problems due to a short depletion 
length. Indeed, there must be a trade-off between the weak ponderomotive force available from a long pulse 
and the pump depletion effect which can cause rapid energy loss of a short pulse in a plasma. Furthermore, 
the simulations show that the skewness of the laser pulse influences both the quality and the maximum output 
energy of the electrons injected into a corrugated plasma channel. It is found that for otherwise identical initial 
parameters, a temporal pulse profile with fast rise time ( ≤ plasma period) can excite a wakefield of significantly 
larger amplitude in comparison to a profile with slow rise time or a symmetric profile, resulting in enhanced 
peak energy of the bunch electrons. Initially, though all the three temporal profiles have the same peak intensity, 
the pulse with fast rise time exerts greater ponderomotive force, which is responsible for the generation of a 
stronger wakefield. The simulations show that the three pulses evolve differently, the pulse with positive skew 
reaching higher maximum intensity compared to the other two pulses. The laser envelope asymmetries have 
also significant impact on the final properties of the accelerated bunch. Using positively skewed pulses leads to 
considerable emittance growth because of the stronger transverse wakefield they generate.

Simulation model and parameters
To study the effect of laser pulse shape on the final properties of an externally injected electron beam of moderate 
initial energy within the framework of QPM-LWFA, we perform fully self-consistent 2D PIC simulations using 
the code OSIRIS59 which is a massively parallel electromagnetic PIC code. The simulation window which con-
sists of 16384 × 512 grid points and has dimensions of 438 μm × 77 μm, moves at the speed of light in the same 
direction that the electron beam and the laser pulse travel. The number of superparticles per grid cell is 4 and 9 
for the plasma and the electron beam, respectively. At the upper and lower longitudinal boundaries open-space 
boundary conditions are applied for both the electromagnetic fields and the particles.

In our simulations, the driving laser pulse has a central wavelength of �L = 800 nm and is linearly polar-
ized. It has a Gaussian transverse profile and a sine-squared temporal profile. The duration varies between 
σFWHM = 20 fs and 40 fs in the simulations. The pulse is focused into a waist radius of w0 = 15 μm. The mag-
nitude of the normalized vector potential a0 ≡ eA/mec

2 is chosen to be 0.25, which corresponds to a low peak 
power of 0.5 TW. Here, A, e and me represent the magnitude of the vector potential, the electron charge and the 
electron rest mass, respectively.

Figure 1 shows how the plasma density of the corrugated channel varies with position. A parabolic density 
ramp of length Lramp = 200 μm connects the vacuum to the main plasma channel. The plasma density of the 
channel varies sinusoidally in the longitudinal direction and parabolically in the transverse direction:

Here, np0 = 7× 1018 cm−3 is the average on-axis plasma density and δ = 0.04 is the amplitude of the sinusoidal 
modulation normalized to np0 . The theoretical investigation of QPM-LWFA assumes that δ ≪ 141. In simula-
tions, an excessively small δ causes serious problems. That is because by decreasing δ , the channel length as well 
as the initial distance between the laser pulse and the bunch must be increased if the energy gain is to remain 
unchanged. Therefore the simulations would require more run time and memory. The modulation period is 
�m = 5 mm, and km ≡ 2π/�m . The quantity n′′0 determines the curvature of the plasma channel, and is related 
to the so-called “channel radius”, wch , with n′′0 = 2c2me/πe

2np0w
4
ch . The channel radius is set equal to the waist 

radius of the pulse, w0 , so that the pulse propagates optimally. It is important to note that the chosen value for 
�m matches the dephasing length of the waveguide, L d = 2�3p0�

−2
L (1+ 8/k2p0w

2
ch) , where kp0 = ωp0/c with ωp0 

being the plasma frequency at a plasma density of np0 , and �p0 = 2π/kp0 . When the condition �m = Ld holds, 
the speed of the relativistic electrons almost equals the phase velocity of the n = −1 spatial harmonic. As a result, 
this individual spatial harmonic can accelerate the electron beam over a distance many times longer than the 
dephasing length41.

At the start of each simulation, the front edge of the laser pulse is located exactly where the ramp begins 
and a quasi-monoenergetic bi-Gaussian electron beam is placed behind the pulse in the vacuum region. The 
initial distance of the beam from the peak of the laser pulse is chosen to be 200 μm, so that the beam coincides 
with the peak of the co-moving envelope of the n = −1 spatial harmonic and the energy gain is maximized. The 
longitudinal and transverse radii of the electron beam are σz = 8 μm and σx = 4 μm, respectively, its charge 
is qb = 11 pC and it has a peak density of nb0 = 3.5× 1016 cm−3 . The electrons comprising the bunch have an 
average initial energy of 15 MeV. Figure 2a,b display the density distribution and the spatial distribution of the 
witness bunch in the z-x plane. The energy spectrum of the electron bunch is plotted in Fig. 2d, exhibiting the 
assigned FWHM energy spread of 7%. Figure 2c shows the inclination angle θx = tan−1(Px/Pz) , where Pz and 

(1)np(x, z) = np0[1+ δ sin(kmz)](1+ n′′0x
2/2)].
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Px represent the longitudinal and transverse particle momenta, respectively. The mean divergence angle of the 
bunch is only 3.4 mrad. For the bunch described above, the transverse normalized rms emittance is initially 
calculated to be εN,x = 0.5 π-mm-mrad according to the following definition:

where var(x) , var(Px) and cov(x, Px) respectively denote the variance of the positions, the variance of the 
momenta, and their covariance, in the transverse direction. When post-processing the raw outputs of the simu-
lations to calculate distributions and quantities like energy spectrum and emittance, only those particles which 
are not farther from the axis than 15 μm are taken into account. This is comparable to placing a collimator at 
the end of the waveguide in an experiment. By increasing this radius in post-processing, emittance is increased, 
but our investigation show that the general conclusions of this paper are independent of the radius used in 
post-processing.

(2)εN,x =
1

m0c

√

var(x)var(Px)− (cov(x, Px))2,
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Figure 1.   Heatmap showing the plasma density of the corrugated plasma channel. The curve at the top (blue) 
and the curve on the left (red) are its horizontal on-axis and vertical line-outs, respectively.

Figure 2.   (a) Density distribution of a 15 MeV bi-Gaussian witness electron beam with the peak density 
nb0 = 3.5× 1016 cm−3 , which is initially placed 200 μm behind the peak of the laser pulse. The radii of the 
injected bunch in the longitudinal and transverse directions are σz = 8 μm and σx = 4 μm, respectively; (b) 
Spatial distribution of the electron bunch injected in the simulations; (c) Distribution of the inclination angle θx ; 
(d) Corresponding energy spectrum.
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Results
First of all, we explore the wakefield dynamics and its properties over an axial distance of 12 mm. This is shown 
in Fig. 3, where a sequence of line-outs of the accelerating field is displayed at three axial distances of 1.4 mm 
(4.6 ps), 2.2 mm (7 ps), and 1.2 cm (40 ps). We performed a detailed investigation of bunch dynamics in our 
previous work42. The electron bunch injected in the plasma waveguide is several times longer than the plasma 
wavelength, so it is sliced into several microbunches due to overlap with multiple accelerating and focusing areas 
inside the wakefield. As can be seen in Fig. 3, the amplitude of the longitudinal wakefield increases with time 
through the longitudinal compression of the pulse and growth of its intensity42–44. As the witness electron beam 
moves inside the plasma channel, it experiences the superposition of the laser-driven wakefield and the self-field 
induced by the beam itself. Therefore, the bunch directly influences the accelerating field it experiences. The self-
field of the high loaded bunch strongly deforms the wakefield in a way that the accelerating gradient becomes 
variable along the bunch. At t = 4.6 ps and t = 7 ps the beam loading effect is most clearly visible locally within 
the moving simulation window where the injected bunch is located. At t = 4.6 ps, the linear superposition of 
the self-field of the bunch and the laser-driven wakefield leads to a significant reduction in the accelerating field 
along the bunch. As time progresses, the bunch electrons slip with respect to the wakefield. As a result, at t = 7 ps 
the wake from the accelerated bunch is in phase with, and thus boosts the wake generated by the driver laser 
pulse. Therefore, the electrons experience a greater accelerating field. At t = 40 ps, a large portion of low-energy 
electrons are already scattered away from the axis and the self-field of the bunch is very weak. As a result, the 
electrons only feel the accelerating field due to the laser pulse.

In the following subsections, we investigate the influence of the pulse duration and laser envelope asym-
metries on the final bunch properties in order to understand how the QPM-LWFA process can be optimized by 
modifying those quantities.

Effect of the laser pulse duration.  To understand the influence of the laser pulse duration on the per-
formance of QPM-LWFA, three different durations of σFWHM = 20 fs, σFWHM = 30 fs and σFWHM = 40 fs are 
assigned to 0.5 TW, 800 nm pulses in a series of simulations.

Figure 4a shows the variations of the maximum energy gain, �E , versus the distance, z, for an electron bunch 
initially placed at the optimum position. It can be seen that reducing the pulse duration from 40 fs to 30 fs leads 
to an increase in the maximum energy gain. This is due to the fact that by decreasing the pulse duration the front 
edge of the laser pulse interacts with the plasma electrons with an increased ponderomotive force, FN ∝ ∇E2 , 
which generates stronger wakefields. Similarly, by decreasing the pulse duration from 30 fs to 20 fs, the gener-
ated wakefields grow further in strength. The length of a pulse with a duration of 20 fs is almost half the average 
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Figure 3.   Snapshots illustrating the on-axis longitudinal wakefield, Ez , generated by a 30 fs laser pulse at three 
axial distances of (a) 1.4 mm, (b) 2.2 mm, and (c) 1.2 cm, corresponding to propagation times of 4.6 ps, 7 ps, 
and 40 ps, respectively. The wakefield is normalized to the wave-breaking field EWB = meωp0c/e , which is close 
to 254 GV/m here. The effect of beam loading on the longitudinal field can be obviously seen.

0 3 6 9 12 15
0

10

20

30

40

50

60

70
(a)

∆E
(M

e
V
)

z (mm)

σFWHM = 20 fs

σFWHM = 30 fs

σFWHM = 40 fs

0 4 8 12 16 20
0

1

2

3

4

5

6
(b)

time (ps)

ε N
x
(π
-m

m
-m

ra
d
) σFWHM = 20 fs

σFWHM = 30 fs

σFWHM = 40 fs

Figure 4.   (a) Maximum energy gain �E of a witness bunch with average initial energy of E0 = 15 MeV injected 
at optimal initial distance from the driving laser pulse, plotted versus the acceleration distance for three pulse 
durations at a fixed peak pulse power of 0.5 TW. The blue, black, and red colors denote the 20 fs, 30 fs, and 40 fs 
pulse durations, respectively; (b) The corresponding bunch emittance εN,x as a function of the propagation time.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8115  | https://doi.org/10.1038/s41598-022-11955-6

www.nature.com/scientificreports/

on-axis plasma wavelength of the plasma channel used in the simulations. It is well known that under this condi-
tion, the amplitude of the excited wakefield is close to its maximum2.

Comparing the curves of maximum energy gain associated with 20 fs and 30 fs pulses in Fig. 4a, it can be 
observed that the maximum yielded energy is almost always higher for the 20 fs pulse, but at the end, i.e. after 
1.5 cm of acceleration along the corrugated channel, it reaches �E = 50.5 MeV for both pulse durations. As we 
mentioned in the paragraph above, the larger ponderomotive force of the 20 fs pulse generates stronger wakefields 
compared to the 30 fs pulse. However, due to the stronger pump depletion of the 20 fs pulse, near the end of its 
propagation it excites weaker wakefields compared to the 30 fs pulse, which loses its initial energy at a lower 
rate. This explains why eventually the maximum energy gain is the same for the two pulse durations though it is 
larger for the 20 fs earlier. Since in QPM-LWFA the laser pulse is expected to propagate over a long distance, the 
dependence of the pump depletion length on pulse duration should be taken into account. In the linear regime 
of LWFA, the pump depletion length, Lpd , can be estimated by23

To summarize, increasing the pulse duration above a certain value, which is quite close to one-half of the 
plasma period, decreases the efficiency. As shown in Fig. 4a, after 1.5 cm of propagation the acquired energy 
gain for the pulse with the initial duration of σFWHM = 20 fs is about 1.5 times higher compared to the pulse 
with σFWHM = 40 fs.

Figure 4b shows how the transverse emittance of the bunch, εN,x , evolves over a period of 20 ps, correspond-
ing to an axial distance of 5.2 mm or one dephasing length. Because the length of the bunch is longer than the 
plasma wavelength, some off-axis bunch electrons experience focusing fields and some experience defocusing 
fields, depending on their injection phases. The electrons located in the defocusing regions of the wakefield, are 
pushed away from the axis, leading to a growth of emittance. The remaining electrons, which are in the focusing 
regions, oscillate transversely around the axis, resulting in some oscillations in emittance. Additionally, when-
ever some group of electrons leave the defocusing fields and enter the focusing fields, the emittance is abruptly 
reduced, provided that the reduction due to the transverse focusing fields is not compensated entirely by the 
electrons moving into the defocusing fields. The combination of these effects causes the emittance to grow on 
the whole but also oscillate on a lower time scale. It can be seen in Fig. 4b that for the laser pulse with the lowest 
duration, the increase in the transverse emittance is highest. This is because the stronger ponderomotive force 
of a shorter pulse generates stronger transverse wakefields affecting the bunch electrons, thus leading to greater 
emittance growth. According to Fig. 4b, the emittance growth for the 20 fs laser pulse is about twice as high as 
for the 40 fs pulse. These results demonstrate that by using a pulse of lower duration, the transverse features of 
the bunch are degraded in spite of the enhancement of the maximum energy gain.

Effect of the laser pulse shape.  Our aim here is to study how the laser pulse shape (specifically, its skew-
ness) affects the quality of the externally injected electron beam traveling through the corrugated plasma chan-
nel. For each driving laser pulse length, we consider three different initial temporal profiles: a symmetric sine-
squared pulse and two asymmetric pulses, one with a sharp rising front and a slow fall (positive skew) and the 
other with a gentle rising front and a sharp fall (negative skew). The initial asymmetry introduced in the pulse 
shape is clearly visible in Fig. 5a–c, in which σf  and σr denote the fall edge and rise edge of the laser pulse, respec-
tively, and its full length equals σ0 = σr + σf .

Figure 6a–c shows the changes in the maximum energy gain of the bunch electrons as the bunch travels in the 
plasma channel. It is clear that the maximum energy gain can be improved using asymmetric laser pulses with a 
fast-rising leading edge for all of the three pulse durations. The line-outs of the normalized longitudinal wakefield 
at t = 40 ps, corresponding to an axial distance of 1.2 cm, for all the three profiles are shown in Fig. 6d–f. It is 
seen that the amplitude of the wakefield increases with the gradient of the rising part. So, by using a pulse that has 
positive skew, higher energy gain can be achieved. The stronger wakefield excited by the positive-skew pulses is 
a result of the larger ponderomotive force that their leading edges exert. When σFWHM = 20 fs, which is almost 
half the plasma period, the accelerating field and maximum energy gain in all three profiles show little difference, 
as can be seen in Fig. 6a,d. It is clear that the positive-skew and symmetric pulses perform comparably, while the 
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Figure 5.   Different initial temporal profiles for the (a) 20 fs, (b) 30 fs and (c) 40 fs pulses, respectively. The red, 
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skew ( σr = 4 σf ) cases, respectively.
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energy gain is perceptibly less for the negative-skew pulse due to the weak ponderomotive force available from a 
pulse with a slow-rising front. For a longer pulse duration of 30 fs, the differences in the accelerating fields and 
maximum energy gains for the three pulse profiles are bigger. As can be seen in Fig. 6e, the positive-skew laser 
pulse generates the wakefield with the highest amplitude, compared to the other two temporal profiles. Accord-
ing to Fig. 6b, the differences in the maximum energy gain up to a distance of 5 mm are not considerable, but 
further propagation of the laser pulse increases the difference. These differences arise because of the longitudinal 
compression of the pulses, which is greater for the positive skew pulse. As a consequence of pulse compression, 
the peak amplitude of the pulses increases, resulting in enhanced wakefield amplitude and improved energy 
gain. After 1.5 cm of acceleration inside the plasma channel, the maximum energy gain for the asymmetric laser 
pulse with a fast rise time is about 30% higher than for the temporally symmetric pulse. The maximum energy 
gain and accelerating field for the pulse duration of σFWHM = 40 fs are illustrated in Fig. 6c,f. At the end of the 
simulations, the maximum energy gain for the positive skew pulse is more than two times larger than for the 
symmetric pulse. A comparison with Fig. 6a,b shows that the 40 fs pulse with the sharp steepening of its leading 
front is favorable for attaining higher electron bunch energies, with the energy gain reaching 75 MeV.

Figure 6g–i displays the time evolution of the transverse emittance for the positive skew, negative skew, and 
symmetric pulses. As shown in these figures, the asymmetric pulse with positive skew causes greater transverse 
bunch emittance due to the stronger focusing and defocusing wakefields it generates. Therefore, using an asym-
metric laser pulse with a fast rise time improves the maximum energy gain of the electron beam, but it also 
increases the final transverse emittance of the bunch, εN,x . One can see that initially, the transverse emittance is 
almost the same for the three profiles, as shown in Fig. 6g–i. However, the evolution of the driving laser pulse 
during its propagation in the plasma has an important role and leads to significant emittance growth for the 
positively skewed pulse. Additionally, increasing the laser pulse duration results in larger differences in the 
transverse emittance among the cases associated with the three profiles.

As discussed above, at the early phase of laser-plasma interaction, the sharp rising front of the positively 
skewed pulse generates a larger wakefield compared to the symmetric pulse and the negatively skewed pulse. As 
time passes, the nonlinear evolution of the laser pulses propagating in the channel plays an essential role in the 
wakefield evolution. Figure 7a–c displays the transverse field, EL , of three 30 fs laser pulses with different initial 
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Figure 6.   (a–c) show the variation of the maximum energy gain �E as a function of axial distance for (a) 20 fs, 
(b) 30 fs and (c) 40 fs pulses; (d–f) show the corresponding longitudinal wakefields at t = 40 ps; (g–i) show 
the corresponding transverse emittances, εN,x , as a function of the propagation time. The red, black, and green 
colors denote the positive skew, the symmetric, and the negative skew cases, respectively. In the simulations, the 
laser pulse is linearly polarized with a peak amplitude of a0 = 0.25 , a wavelength of 800 nm, and a focal spot size 
(FWHM) of w0 = 15 μm.
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temporal profiles at t = 40 ps. It can clearly be seen that each pulse undergoes longitudinal compression and its 
amplitude increases as it propagates through the plasma. This can be explained by using photon kinetic theory. 
When a laser pulse propagates through a plasma, its ponderomotive force causes a variation in the electron den-
sity along with the pulse. This variation in the electron density together with the dependence of the relativistic 
mass of the plasma electrons on the local intensity of the pulse leads to a nonlinear gradient in the refractive index 
along with the pulse. In our simulation with the symmetric pulse, the refractive index increases monotonically 
from the front of the pulse backwards throughout most of the pulse. In response to this laser-induced gradient 
in the refractive index, most of the photons are downshifted by various degrees. Since the group velocity declines 
with decrease in frequency ( vg ≈ c[1− ω2

p/2ω
2
] ), the redshifted photons are decelerated. The largest deceleration 

initially occurs near the center of the pulse as the photons there are redshifted most. So the pulse stretches in the 
front and compresses in the back. The positively skewed and negatively skewed pulses evolve similarly. Neverthe-
less, there are also important differences, because the initial pulse profile and the exact profile of the variations 
in the local refractive index differ in each case. Figure 7a–c shows that pulse compression and amplification are 
most intense for the positively skewed pulse and weakest for the negatively skewed pulse. Therefore, as can be 
seen in Fig. 7d–f, the positively skewed pulse generates the strongest wakefield.

Discussion
Here, we study how QPM-LWFA can be modified by controlling the duration and waveform of the driving laser 
pulse. The acceleration of externally injected electron bunches traveling in the plasma wakefield driven by asym-
metric laser pulses in an axially-modulated plasma channel is inspected by performing 2D PIC simulations. To 
investigate the influence of the laser pulse duration, we consider a symmetric driving laser pulse profile with three 
different pulse durations of σFWHM = 20 fs, σFWHM = 30 fs, and σFWHM = 40 fs under a fixed peak pulse power 
of PL = 0.5 TW. The results show that applying a duration of σFWHM = 20 fs which is around half the plasma 
period, results in the highest maximum energy gain of the beam. By increasing the pulse duration to 30 fs, the 
ponderomotive force at the front edge of the pulse decreases, which leads to a reduction of the wakefield ampli-
tude and also energy gain. At the end of the plasma channel, the difference in energy gain for these two pulse 
durations approaches zero, due to the faster depletion of the 20 fs laser pulse. On the other hand, the stronger 
focusing and defocusing fields generated by the shorter pulse result in an increase in the transverse emittance. 
Furthermore, simulations are conducted to study the effect of the skewness of the pulse shape on the final proper-
ties of the accelerated bunch. In comparison to temporally symmetric laser pulses and asymmetric pulses with 
a slow rise time, asymmetric laser pulses having fast rise time can generate larger wakefields, regardless of the 
pulse duration. As a result, the maximum energy of the electron beam can be enhanced using asymmetric laser 
pulses with a fast rise time. For the laser pulse shorter than the plasma wavelength with a duration of 20 fs, the 
effect of the skewness of the pulse shape is weak and the generated wakefields corresponding to different skewness 
modes do not demonstrate much difference. For longer pulse lengths, however, the differences become more 
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Figure 7.   (a–c) show the transverse field of the laser pulses, EL , along with the horizontal on-axis line-outs 
for (a) the pulse with positive skew, (b) the symmetric pulse, and (c) the pulse with negative skew, at the time 
t = 40 ps; (d–f) show the corresponding wakefields along with the horizontal on-axis line-outs. Each pulse 
initially has a peak amplitude of a0 = 0.25 , with a duration of 30 fs, and a spot size of w0 = 15 μm.
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significant. As an example, at a duration of 40 fs, the final maximum energy gain for the positive skew is almost 
twice larger than for the symmetric pulse profile. The simulation results show that the positive skew pulse with 
the duration of 40 fs yields the best maximum energy gain, which is �E = 75 MeV after 1.5 cm of acceleration 
for a peak pulse power of 0.5 TW. Finally, the results show that early in the simulation, when SPM and other 
nonlinear effects have not altered the pulse significantly yet, the wakefield amplitude for the positively skewed 
pulse is larger than for the other two cases due to the larger ponderomotive force available from the fast-rising 
front pulse. As time passes, nonlinear effects cause the pulses to stretch in the front and compress in the back, 
thus increasing their maximum intensity. The largest increase in the maximum intensity occurs in the positive 
skew pulse, so that it keeps generating a stronger wakefield compared to the other two pulses. The result is that 
the maximum energy gain is highest for the positive skew pulse. In addition, it is found that the increase in the 
transverse emittance of the bunch during each simulation is highest for positive skew laser pulses. The difference 
in the growth of transverse emittance between the positive skew pulse and the two other cases becomes more 
significant at larger pulse durations. Thereby, although positive skew pulses are favorable for achieving higher 
electron beam energies, they degrade the transverse characteristics of the bunch due to the stronger transverse 
wakefields generated by them.

Data availibility
The data that supports the results of this study is available from the corresponding author upon reasonable 
request.
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