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Electron liquid state in the spin‑1
2

 
anisotropic Kondo lattice
Igor N. Karnaukhov

In the framework of the mean field approach, we provide analytical and numerical solution of the spin‑
1

2

 anisotropic Kondo lattice for arbitrary dimension at half filling. Nontrivial solution for the amplitude 
of the field opens a gap in the fermion spectrum of an electron liquid in which local moments on the 
lattice sites are realized. The ground state in the insulator state is determined by a static Z

2
 field of 

local moments, which forms the lattice with a double cell, conduction electrons move in this field. 
Due to hybridization between electron states a large Fermi surface is formed in the Kondo lattice. A 
gap in the quasi‑particle spectrum is calculated depending on the magnitudes of exchange integrals 
for the simple lattices with different dimension. The proposed approach is also valid for describing the 
Kondo lattice with weak anisotropy of the exchange interaction, which makes it possible to study the 
behavior of the spin‑1

2

 Kondo lattice with an isotropic exchange interaction.

The study of behavior of the Kondo-lattice is an actual problem of condensed matter physics. Until now, the 
phase state of the Kondo lattice is an open page: we cannot understand the physical nature of the state of the 
Kondo insulator and cannot calculate the thermodynamic characteristics in this phase state. It is clear that, first 
of all, it is necessary to take into account the processes of scattering of band electrons with spin flip on local 
moments located at lattice sites. Thus, in the Kondo problem, these scattering processes lead to the Abrikosov-
Suhl  resonance1,2. Simplified modifications of the Hamiltonian of the Kondo  lattice3–5 do not take these processes 
into account and, as a result, do not adequate describe the phase diagram of the Kondo lattice. In the numerical 
calculations of Anderson and Kondo lattices, small clusters are taken into account, which significantly affects 
the accuracy and reliability of the results of  calculations6,7. At the same time the antiferromagnetic exchange 
interaction opens a window for formation of the Kondo insulator state. It is naive to believe that in the Kondo 
insulator state the Hamiltonian of the Kondo lattice reduces to the one-particle Hamiltonian of the Anderson 
lattice, in which the Hubbard repulsion is not taken into account and the energies of an one-particle state of 
electrons located at the lattice sites lie near the Fermi  energy8. The behavior of an electron liquid in the sym-
metric Anderson lattice is equivalent to that in the spin-12 Kondo lattice, which made it possible to understand 
the nature of the Kondo insulator state in the framework of the symmetric Anderson  lattice9. Interestingly, in 
the state of the Kondo insulator, the cell  doubles9; therefore, the phase transition to the Kondo insulator state 
occurs similarly to the Peierls and Mott phase  transitions10.

Using a mean field approach, we consider the solution of the spin-12 anisotropic Kondo lattice. We shall show 
that local moments form a static Z2 field in which the band electrons move. A configuration of the Z2 field at 
which the energy of the system is minimal, corresponds to an antiferromagnetic order of local moments, the lat-
tice cell doubles .The spectrum of quasi-particle excitations has the Majorana type, it is particle-hole symmetric 
in the Kondo insulator state. It should be noted the works that consider the Kondo lattice, taking into account 
the interaction proposed by  Kitaev5,11–13. These models make it possible to study the spin liquid with gapless 
spin excitations on the Majorana Fermi surface. We declare that for an arbitrary dimension of the system, the 
Kondo insulator state is realized on a lattice with a double cell. This result also follows from the solution of the 
symmetric Anderson lattice, obtained for different  dimension9.

Model
The Hamiltonian of the spin-12 Kondo lattice dimension D H = H0 +HK includes two terms, the first of which 
is determined by energy of s-electrons, and the second is determined by the contact exchange interaction of these 
electrons with spins located at the lattice sites
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where c†j,σ and cj,σ are the fermion operators determined on a lattice site j, σ =↑,↓ denotes the spin of electron, 
the hopping integral between the nearest-neighbor lattice sites is equal to one, the spin operators of s-electrons 
sαj = 1

2 c
†
j,σ σ

α
σ ,σ ′cj,σ ′ are determined by the Pauli matrices σα ( α = x, y, z ), Sj is the spin-12 operator defined on 

the lattice site j, the anisotropic exchange interaction Jz , Jx > 0 creates a spin-flip electron scattering channel, we 
introduce also the following designation u = Jz − Jx for description of anisotropy of the spin-exchange interac-
tion in HK , N is the total number of lattice sites.

Let us define the spin-operators Sj using the d†j,σ and dj,σ fermion operators as Sαj = 1
2d

†
j,σ σ

α
σ ,σ ′dj,σ ′ with an 

additional constrain nj = nj,↑ + nj,↓ = 1 , here nj,σ = d†j,σ dj,σ is the density operator. We use the cj-operator for 
the conduction (hopping) electron and dj-operator for the localized electron, originally coming from the s and 
d orbits. We study an electron liquid state in the chain (1D) and on the square (2D) and cubic (3D) lattices at 
half-filled occupation.

The ground‑state of the Kondo lattice
Using the effective Hamiltonian (8) we calculate the energy of quasi-particle excitations, the spectrum includes 
four branches ±Eγ (k) ( γ = 1, 2 ) symmetric about zero energy

w h e re  α(k) = |�|2 + 1
8u

2 + 1
2 |w(k)|

2  ,  β(k) = 1

4
|�|2u2 + 1

64
u4 + |�|2|w(k)|2 − 1

8
u2|w(k)|2 + 1

4
|w(k)|4  , 

w(k) =
∑D

(1+ exp(ikα)) , k = (kx , ky , kz) is the wave vector.
The amplitude of the �-field determines the phase state of electron liquid, its value corresponds to 

minimum of the action (see section Methods). Nontrivial solution for � leads to open a gap in the elec-
tron spectrum � . The value of the gap has an universal behavior as a function of � , it value does not 

depend on the dimension of the  lattice9, at u >
√
2� � =

√

4|�|2 + u2/2− u
√

4|�|2 + u2/4 and u <
√
2� 

� =
√

8+ 4|�|2 + u2/2−
√

(u2/2− 8)2 + 4|�|2(16+ u2) . In the case u > 0 the gap in the spectrum opens 

only when �  = 0.
The solution for � corresponds to minimal action (9), in the saddle point approximation a self-consistent 

equation has the following form at T = 0K

� is the solution of Eq (3), for given Jx its value is determined by Jz , depends on dimension of the lattice. Due to 
symmetric spectrum of quasi-particle excitations (2), the density of d−electrons n =

∑

k,σ nk,σ is equal to 1. Such 
the density of states of d-electrons with spin σ and −σ are equal to nσ = 1/2+ δn, n−σ = 1/2− δn

z-projection of a local moment equal to Sloc = 1
2 (nσ − n−σ ) = δn , is equal to zero in the � infinity limit.

A reasonable limitation would be to consider small values of � < �max , at which the local moment is decreased 
from 12 to 14 , without taking into account large values of � , which correspond to a smaller value of the local 
moment, where �max corresponds to d-states with Sloc = 1

4 . Numerical calculations of Sloc depending on � (where 
� < �max ) and u, obtained for different lattice dimension, are shown in Fig. 1. Consider a lattice with local 
moments, that is, for � less than �max (see Fig. 1), such for u = 0.001 , �max = 0.0316(1D), 0.045(2D), 0.052(3D) ; 
u = 0.01 �max = 0.0994(1D), 0.135(2D), 0.1635(3D) ; u = 0.1 , �max = 0.307(1D), 0.4185(2D), 0.51(3D) ; u = 0.5 , 
�max = 0.67(1D), 0.903(2D), 1.099(3D) ; u = 1 , �max = 0.96(1D), 1.264(2D), 1.53(3D) . As expected, the local 
moment at a lattice site is more than 14 for �2 < u , as the lattice dimension increases, this condition becomes 
less stringent. In general, the mean field approach becomes more plausible in higher dimensions (ultimately 
D → ∞ ). Unfortunately, this approach does not allow us to study the behavior of an electron liquid in the 
symmetric Kondo lattice model. The problems are due to the fact that the representation for spin operators in 
terms of electron operators does not adequately define the local spin for the isotropic exchange interaction. The 
�-field breaks the conservation the number of d- and s− electrons, due to s-d hybridization only total number 
of electrons is conserved. As a result, a large Fermi surface defines the density of electrons.

As we noted above in the electron spectrum the gap opens at �  = 0 , its value is also determined by Jx and Jz 
or u. Using Eq (3) we numerically calculate � as function of Jx and u, the results of the calculations for different 
dimension of the lattice are presented in Figs. 2a, 3a and 4a. To illustrate, let us analyze the results obtained in 
the case of weak and strong anisotropy of the exchange interaction at u = 0.2 and u = 1 for the chain Fig. 2, 
square and cubic lattices Figs. 3, 4. From the numerical results it follows that for given u and Jx there are two 

(1)

H0 = −
∑
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∑
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non-trivial solutions of � . We also take into account that � < �max . In Figs. 2b, 3b and 4b the value of Jx is shown 
as a function of � for fixed values of u. The minimum of ground state energy corresponds to maximal value of 
� , therefore the instable branch of the solution is marked by dotted line, a stable branch is marked by blue line.

In the Kondo chain a gapped state of electron liquid is realized for arbitrary values of u, such at u → 0 solu-
tion for Jx also Jx → 0 (see in Figs. 1a, 2a). In the square lattice a minimal value of umin is equal to 0.04 which 
corresponds to � = 0.267 and Jx = 1.22 , other words the gapped state is realized at u > 0.04 and Jx > 1.22 (see in 
Figs. 1b, 3a). In cubic lattice a minimal value of u is equal to 0.13, at which corresponds to � = 0.58 and Jx = 1.68 
(see in Figs. 1c, 4a). A fixed value of u corresponds to nontrivial solution of � , such a quantum phase transition 

Figure 1.   A local moment of d-electrons depending on � and u calculated for the chain (a), square (b) and 
cubic (c) lattices, the region of � , in which local moment changes from 1

2
 to 1

4
 , is bounded by �max for which local 

moment is equal to 1
4
.

Figure 2.  � as a function of Jx and u calculated for the chain (a), calculations of Jx as a function of � in weak 
at u = 0.2 and strong at u = 1 anisotropy of the exchange interaction (b) (dotted and blue lines correspond to 
instable and stable states of electron liquid). A spectrum of the Kondo chain (c) as a function of the wave vector 
calculated at u = 0.2 , � = 0.3 and Jx = 0.776.

Figure 3.  � as a function of Jx and u calculated for the square lattice (a), Jx as s function of � (b), a low energy 
spectrum as a function of the wave vector calculated at u = 0.2 , � = 0.5 and Jx = 1.268.
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in gapped state is a first order phase transition. The electron spectra (in 1D) and its low energy part (in 2D) are 
shown in Figs. 2c and 3c, the calculations are given for the case of a weak anisotropy of the exchange interaction 
at u = 0.2 . There are two gaps in the quasi-particle spectrum: the low energy one is insulating gap � , the high 
energy one separates the branches of s- and d-electrons.

Methods
We introduce the operator χj = c†j,↑dj,↑ + c†j,↓dj,↓

16 and redefine the term HK in the following form

here mj =
∑

σ c†j,σ cj,σ is the density operator. Let us consider the solution of the problem for Jz > Jx and u > 0 . 
The zz-exchange interaction in (5) determines the energies of the states of d−electrons located at the lattice sites, 
one particle state has the energy − u

2 , the energy of two particle state is equal to zero. Two d-electrons located at 
site j have the energies: − u

2 for the first and u2 for the second. This symmetric about the Fermi energy arrange-
ment of levels realizes the constrain nj = 19. In this case the state with nj = 1 is realized, as it takes place in the 
symmetric Anderson  lattice9. The Hubbard-Stratonovich transformation reduces the exchange interaction to a 
non-interacting ones in a stochastic external �-field, which determines by the interaction strength. Taking into 
account the action S0 (the action with respect to the free Hamiltonian H0 ), we redefine the interaction term as 
follows S = S0 + 1

Jx

∑

j �
∗
j �j +

∑

j(�
∗
j χj + �jχ

†
j ) . The canonical functional is determined by the action

where �k(τ ) is the wave function, k is the wave vector of an electron. The effective Hamiltonian Heff (k) deter-
mines low-energy excitations of electrons at half filling occupation

We expect that �j did not depend on τ , since in an electron liquid state, the translation invariance is conserved. 
�-field leads to the on-site hybridization between s- and d-states of electrons. Let us consider the equations for 
the one-particle wave functions ψ(j, σ)c†j,σ + φ(j, σ)d†j,σ with energy ε:

where sums over the nearest lattice sites and �j does not depend on j. The variables uj = ±u are identified with a 
static Z2 field determined on the lattice sites, the band electrons move in this static field. Note that the energy of 
d-electron is not defined by its spin, because only the energies of one- and two-particle d-states on the lattice site 
are fixed, which are equal to − u

2 and 0, respectively. Detailed numerical analysis shows, that an uniform sector 
with uj = u and uj+1 = −u for all variables is the ground state of an electron liquid described by Eqs. (7)5,9,14,15.

Let us consider the antiferromagnetic state, when 
∑

j < c†j,↑cj,↑ >=
∑

j < c†j,↓cj,↓ > . Due to the translational 
invariance of the lattice, the equations for the wave function are solved analytically for the uniform configuration 
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Figure 4.  � as a function of Jx and u  calculated for the cubic lattice (a), Jx as a function of � in weak at u = 0.2 
and strong at u = 1 anisotropy of the exchange interaction (b).
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of a static Z2 field. The effective Hamiltonian Heff (k) , which corresponds to uniform configuration with a double 
lattice cell, has the following form

We can integrate out fermions to obtain the following action S per an atom

where ωn = T(2n+ 1)π are the Matsubara frequencies, four quasiparticle excitations εγ (k) ( γ = 1, ..., 4 ) deter-
mine the electron states in the �-field. In the saddle point approximation the canonical functional will be domi-
nated by the minimal action S (9), that the spectrum of the quasi-particle excitations is symmetric about zero 
energy, it has the Majorana type. The opening of the gap occurs due to the doubling of the cell in the insulator 
state.

Conclusion
We studied the behavior of electron liquid in the spin-12 anisotropic Kondo lattice at half-filling for different 
dimension. The calculation results are valid for an anisotropic Kondo lattice with Jz > Jx , since the constrain 
nj = 1 and local moments at the lattice sites are realized only in the case of an anisotropic exchange interaction. 
It is shown that band electrons move in a static Z2 field of local moments, the uniform configuration of the Z2 
field corresponds to ground state of electron liquid and leads to formation of a lattice with a double cell. In the 
insulator state the fermion spectrum is electron-hole symmetric as it takes place for the Majorana spectrum. 
The gapped state is formed at finite values of the Jz and Jx exchange integrals. The results of calculations are valid 
in the case a weak anisotropy of the exchange interaction, that alow to made conclusion that the behavior of 
electron liquid in an isotropic Kondo lattice is similar.
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