
R
ev

is
ed

 P
ro

of

1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6208  | https://doi.org/10.1038/s41598-022-09846-x

www.nature.com/scientificreports

Algorithmic multiscale analysis 
for the FcRn mediated regulation 
of antibody PK in human
Dimitris G. Patsatzis1, Shengjia Wu2, Dhaval K. Shah2 & Dimitris A. Goussis3*

A demonstration is provided on how algorithmic asymptotic analysis of multi-scale pharmacokinetics 
(PK) systems can provide (1) system level understanding and (2) predictions on the response of the 
model when parameters vary. Being algorithmic, this type of analysis is not hindered by the size 
or complexity of the model and requires no input from the investigator. The algorithm identifies 
the constraints that are generated by the fast part of the model and the components of the slow 
part of the model that drive the system within these constraints. The demonstration is based on 
a typical monoclonal antibody PK model. It is shown that the findings produced by the traditional 
methodologies, which require significant input by the investigator, can be produced algorithmically 
and more accurately. Moreover, additional insights are provided by the algorithm, which cannot be 
obtained by the traditional methodologies; notably, the dual influence of certain reactions depending 
on whether their fast or slow component dominates. The analysis reveals that the importance of 
physiological processes in determining the systemic exposure of monoclonal antibodies (mAb) varies 
with time. The analysis also confirms that the rate of mAb uptake by the cells, the binding affinity 
of mAb to neonatal Fc receptor (FcRn), and the intracellular degradation rate of mAb are the most 
sensitive parameters in determining systemic exposure of mAbs. The algorithmic framework for 
analysis introduced and the resulting novel insights can be used to engineer antibodies with desired 
PK properties.

Pharmacokinetics (PK) modeling is an indispensable tool in the drug development process, where mathematical 
models are implemented to characterize and predict the drug distribution and concentration over time  profile1. 
Owning to the advance in computational and analytical methods, as well as the increasing need for preclinical-
to-clinical translation and dosing optimization, the PK models are transforming from simple one and two com-
partmental models to more mechanistically based models. These models usually consist of a large number of 
complex equations and a much larger number of parameters, making it difficult to assess the impact of specific 
parameters, reactions and variables on a certain  output2–4. The multiscale character of these models introduces 
another difficulty in assessing the influence of the various parameters and reactions, since the available in vivo 
data are usually collected in clinical trials with a frequency that adheres to the slow time  scales5. As a result, 
processes that are characterized by fast time scales (such as the antibody-receptor binding) are not adequately 
resolved, so that identifiability problems  arise6. Model reduction has been recognized as a viable remedy to the 
obstacles created by the complexity of the models of interest and their multiscale character. Several methodologies 
are available for model reduction, such as sensitivity analysis, singular perturbation (i.e., time-scale analysis), 
lumping, optimization etc; see Refs.2,7–11 for details.

The model reduction methods employed most frequently are the quasi-steady-state approximation (QSSA) 
and partial-equilibrium approximation (PEA); e.g.,6,12–18. Both methodologies are based on the multiscale char-
acter of the full model and are limiting cases of singular perturbation  analysis19–22. The major drawback in their 
use is that their validity requires the identification of the number of fast time scales, the fast variables and fast 
reactions. Such identifications depend strongly on the value of the parameters employed and on the period of 
interest along a specific trajectory. These drawbacks are all manifested in the well known Michaelis-Menten 
(MM) model, for which the sQSSA, rQSSA and tQSSA reduced models were developed, each valid in distinct 
domains of the parameter  space23–25. Depending on the parameters, the validity of these reduced models might 
be restricted in only a portion of a specific trajectory, so that more than one models must be employed if it is 
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desired to approximate the full  trajectory26. The drawbacks of QSSA and PEA and the fact that their use is not free 
of ambiguities are all well known. As a result, their implementation must always be subjected to  verification27–29.

The traditional paper-and-pencil singular perturbation analysis (SPA) faces similar problems QSSA and PEA 
do; i.e., the number of fast variables and the proper non-dimensional form of the full model must be identified, 
both of which are strongly dependent on the value of the parameters employed or on the period of interest along 
a specific trajectory. However, a number of algorithms were developed that can produce most or all SPA does. All 
these algorithms are based on the geometric singular perturbation analysis (GSPA), which was developed in an 
effort to systematize the various SPA  methodologies30–32. According to GSPA, the fast dynamics of a multiscale 
model are responsible for the development of low-dimensional surfaces in phase space, on which the process is 
constrained to evolve according to the slow  dynamics33. The algorithm that provides all SPA does is the Compu-
tational Singular Perturbation (CSP), which identifies (1) the number of fast time scales and the reactions that are 
responsible for their development, (2) the variables that can be considered fast, (3) the constraints that develop 
due to fast dynamics and the reactions that participate in the related equilibria and (4) the reactions that drive 
the process within the  constraints34–36. CSP is used extensively in combustion and chemical kinetic studies and 
recently in problems in biology and  pharmacokinetics26,37–43. Regarding the subject of the present investigation, 
CSP has been already employed for the analysis of two target-mediated drug disposition (TMDD) models; a 
one-compartment model and a two-compartment with first order absorption  one40,41,43. Among others, it was 
shown that algorithmic CSP tools provide (1) system-level understanding and (2) all necessary information to 
predict the response of the system when a change in the parameters is introduced.

Here, a simple antibody model, considering Neonatal Fc Receptor (FcRn) recycling of Immunoglobulin G 
(IgG), will be analyzed with CSP in order to demonstrate how system-level understanding can be obtained 
algorithmically. IgG typically shows an extended half-life compared to other protein molecules of similar size 
(i.e., 150 kDa) due to neonatal Fc receptor (FcRn) mediated  recycling44,45. The binding between FcRn and IgG 
is negligible at physiological pH but strong at the acidic pH within the endosomes. This pH-dependent binding 
protects IgG from degradation in the lysosomal space, while allowing to release it back into the system circulation 
upon return to the cell  surface46. Modification of the affinity between FcRn and IgG can alter antibody serum 
half-life as  desired47–49. Based on the importance of FcRn binding on IgG half-life, mechanistic-based PK mod-
els of IgG usually incorporates FcRn binding component. The IgG enters the endosomal space via pinocytosis, 
and the binding of FcRn in endosomal space can salvage IgG from degradation. While this process has been 
described in the past, a systemic analysis of each parameters involved in this process has not been performed 
before. Consequently, here we have employed the CSP algorithm to gain more insight into the FcRn mediated 
recycling process of antibodies. The present investigation demonstrates the ability of CSP to provide insight that 
cannot be provided by the conventional methods.

The structure of the manuscript is as follows. First, the antibody model will be introduced and two QSSA-
based reduced models will be generated, which are the appropriated ones for the parameter set employed here 
and are frequently encountered in the related  literature47,48,50,51. A methodology for improving the accuracy of 
these two QSSA models will be presented and the physical understanding provided by the QSSA and the more 
accurate models will be compared. The CSP formalism will be briefly stated and the CSP analysis will follow. It 
will be demonstrated how CSP diagnostics can (1) provide system-level understanding and (2) suggest ways to 
modify the parameters of the model according to a desired response of the system.

Model
A schematic representation of the model employed here is depicted in Fig. 1. This model consists of two com-
partments: a plasma compartment and endosomal compartment. In the model, IgG can move from plasma 
compartment to endosomal compartment via pinocytosis (CLup ). IgG can then interact with FcRn via association 
( kon ) and dissociation ( koff  ) rate constants. Bound IgG will recycle back to plasma space (CLup ) and unbound 
IgG in the endosomal space will be eliminated with a elimination rate constant ( kdeg ). The model was able to 

Figure 1.  Schematic representation of the model formulating the interaction of IgG with the FcRn 
receptor, R1

= k1C
IgG
p  , R2

= kdegC
IgG
e  , R3

= R3f
− R3b

= konC
IgG
e .CFcRn

e − koff C
IgG.FcRn
e  , R4

= k1C
IgG.FcRn
e  ; 

k1 = CLup/Ve.
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capture the wildtype and Fc-mutated IgG PK profile in human after IV administration; e.g.,46. The process is 
governed by the system:

where

and a = Ve/Vp and k1 = CLup/Ve . C
IgG
p  and CIgG

e  denote IgG concentration in the plasma and the endosom, 
respectively, CFcRn

e  denotes the FcRn concentration in the endosom and CIgG.FcRn
e  denotes the IgG.FcRn 

concentration in the endosom. From the last two relations of Eq. (1), it follows that the conservation law 
CFcRn
e + C

IgG.FcRn
e = FcRno holds. The system in Eq. (1) can be cast in the compact form:

where Si and Ri denote the stoichiometric vector and rate of the i-th reaction, respectively.

Conventional reduced models
The conventional methodology that is frequently employed for the construction of reduced models will be 
employed next. In particular, the QSSA for CIgG

e  and CFcRn
e  will be considered, which have previously employed 

in similar investigations; e.g.,47,48,50,51. These assumptions are the ones appropriate for the parameter set that was 
employed for the numerical demonstrations that follow. Of course, different assumptions might be appropriate 
if different parameter sets are considered.

Reduced models based on the QSSA of CIgG

e
 and CIgG.FcRn

e
. Suppose that reaction 3f: 

IgG + FcRn → IgG.FcRn is very fast and that its reactant IgG is the fast variable, so that the following QSSA for 
C
IgG
e  holds:

Substituting in Eq. (1), by eliminating the rate of the fast reaction 3f, yields:

A reduced model can be constructed, using the algebraic relation in Eq. (5) and the differential Eqs. (6, 8, 9). 
Note that Eqs. (8, 9) keep satisfying the conservation law CFcRn

e + C
IgG.FcRn
e = FcRno , which can replace either 

Eq. (8) or (9).
Suppose now that the 4th reaction IgG.FcRn → FcRn+ aIgG is very fast and that its reactant IgG.FcRn is the 

fast variable, so that the following QSSA for CIgG.FcRn
e  holds:

Substituting in Eqs. (6–9), by eliminating the rate of the fast reaction 4, yields:

(1)
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(5)R3f
− R3b

≈ R1
− R2

⇒ konC
IgG
e .CFcRn

e − koff C
IgG.FcRn
e ≈ k1C

IgG
p − kdegC

IgG
e

(6)dC
IgG
p

dt
≈− a(R1

− R4)

(7)dC
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e

dt
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(8)dCFcRn
e

dt
≈ − R1
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+ R4

(9)dC
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e
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≈R1
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IgG
e



R
ev

is
ed

 P
ro

of

4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6208  | https://doi.org/10.1038/s41598-022-09846-x

www.nature.com/scientificreports/

A new reduced model can be constructed, using the algebraic relations in Eqs. (5) and (10), the differential Eq. 
(11) and the conservation law CFcRn

e + C
IgG.FcRn
e = FcRno.

Higher order correction to the reduced models based on the QSSA of CIgG

e
 and CIgG.FcRn

e
. A 

higher order correction for the QSSA of CIgG
e  is obtained by differentiating Eq. (5) with  time52,53, substituting 

from Eq. (1) and solving for the rate of the fast reaction R3f :

or

where r1 = k1a/(konC
FcRn
e + kdeg ) and r2 = (konC

IgG
e + koff )/(konC

FcRn
e + kdeg ) . Substituting in Eq. (1) yields:

A reduced model can be constructed by using Eqs. (17–20) or by using the algebraic relation Eq. (15) (which 
must be solved for the fast variable CIgG

e  ) and the differential Eqs. (17, 19, 20). Note that this reduced model 
simplifies to the one in Eqs. (6–9) in the limits r1 → 0 and r2 → 0.

Similarly, a higher order correction for the QSSA of CIgG.FcRn
e  is obtained by differentiating Eq. (10) with 

 time52,53, substituting from Eqs. (17–20) and solving for the rate of the fast reaction R4:

or

where m = kdeg/k1 , and then substituting in Eqs. (17–20):

(11)dC
IgG
p

dt
≈− aR2

(12)dC
IgG
e

dt
≈ 0

(13)dCFcRn
e

dt
≈ 0

(14)dC
IgG.FcRn
e

dt
≈ 0

(15)R3f
− R3b

≈

(1+ r1)R
1
− R2

+ (r2 − r1)R
4

1+ r2

(16)konC
IgG
e .CFcRn

e − koff C
IgG.FcRn
e ≈

(1+ r1)k1C
IgG
p − kdegC

IgG
e + (r2 − r1)k1C

IgG.FcRn
e

1+ r2

(17)dC
IgG
p

dt
≈− a(R1

− R4)

(18)dC
IgG
e

dt
≈

(r2 − r1)(R
1
− R4)− r2R

2

1+ r2

(19)
dCFcRn

e

dt
≈−

(1+ r1)(R
1
− R4)− R2

1+ r2

(20)dC
IgG.FcRn
e

dt
≈

(1+ r1)(R
1
− R4)− R2

1+ r2

(21)R4
≈ R1

−

(1+mr2)

1+ a+ r1(1−m)+ r2(a+m)
R2

= R1
−�R2

(22)k1C
IgG.FcRn
e ≈ k1C

IgG
p −�kdegC

IgG
e

(23)dC
IgG
p

dt
≈− a�R2

(24)dC
IgG
e

dt
≈−

r2 − (r2 − r1)�

1+ r2
R2
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A reduced model can now be constructed by using Eqs. (23–26) or by using the algebraic relations Eqs. (15) and 
(21) (which must be solved for the fast variables CIgG

e  and CIgG.FcRn
e  ) and the differential Eqs. (23, 25). Note that 

this reduced model simplifies to the one in Eqs. (11–14) in the limits r1 → 0 , r2 → 0 and � → 0.
The conservation law CFcRn

e + C
IgG.FcRn
e = FcRno is still valid and can replace either of Eqs. (19,20) and either 

of Eqs. (25,26).

Discussion. At this point it must be emphasized that for the construction of the reduced models in Eqs. 
(5–9), (10–14), (15–20) and (21–26) the investigator must identify (1) the proper number of QSSAs and (2) the 
variables and reactions that are considered fast. These are identifications, which are usually based on the experi-
ence of the investigator and must be subject to an a posteriori verification.

A comparison of (1) the reduced model in Eqs. (5–9), generated with one QSSA, with the equivalent one in 
Eqs. (15–20) and of (2) the reduced model in Eqs. (10–14), generated with two QSSAs, with the equivalent one 
in Eqs. (21–26), reveals that the models in Eqs. (15–20) and (21–26) provide more informations than those in 
Eqs. (5–9) and (10–14), respectively. For example, the differential equation for CIgG

e  in Eq. (7) does not indicate 
the way the various reactions influence the evolution of this concentration. In contrast, the equivalent Eq. (18), 
indicates that the evolution of CIgG

e  is determined by the 1st, 2nd and 4th reactions. This influence of the 4th 
reaction is absent in the related to CIgG

e  equation of the full model, Eq. (1). However, it is included in Eq. (18) 
because its influence is exercised via the equilubrium in Eq. (15). Similar comments apply for the equations 
governing the evolution of CFcRn

e  and CIgG.FcRn
e .

It will be shown next that the reduced models in Eqs. (15–20) and (21–26) are more accurate than those in 
Eqs. (5–9) and (10–14). Given a complex model, the analytical derivation of such more accurate reduced models 
requires significant input from the investigator and considerable mathematic manipulations. However, as it will be 
shown next, this type of reduced models can be constructed algorithmically with the CSP algorithm. In addition, 
it will be demonstrated that the CSP-generated models provide a full system-level understanding, in contrast to 
the models in Eqs. (15–20) and (21–26). Such an understanding, is most useful when considering changes in the 
model or when exploring different operating conditions for the function of the model.

CSP formalism and diagnostics
In CSP context, the 4-dim. model in Eq. (4) is cast in the form:

where the state vector is defined as y = [C
IgG
p ,C

IgG
e ,CFcRn

e ,C
IgG.FcRn
e ]

T , the 4-dim. column vectors an are the CSP 
basis vectors and f n are the related amplitudes:

where the 4-dim. row vectors bn are the CSP dual basis vectors ( bi · aj = δij ), c
n
i = bn · Si and Si and Ri are the stoi-

chiometric vector and rate of the i-th reaction introduced in Eq. (4). The term anf n in Eq. (27) represents a CSP 
mode and is characterized by a single time scale, say τn . The CSP modes anf n are ordered in Eq. (27) according to 
the value of τn ; first the fastest mode (smallest τn ), etc. Due to the conservation law CFcRn

e + C
IgG.FcRn
e = FcRno , 

f 4 = 0 and τ4 = ∞.

CSP generated reduced models. When the fastest mode becomes exhausted, Eq. (27) reduces to:

Similarly, when the two fastest modes become exhausted, Eq. (27) reduces to:

In general, considering an N-dim. system, when M fast modes become exhausted, the reduced model is:

The M relations f i ≈ 0 define the constraints (i.e., the low dimensional surface in phase space) on which the 
system evolves according to the reduced model that is expressed by the differential equation in Eq. (31).

(25)
dCFcRn

e

dt
≈

1− (1+ r1)�

1+ r2
R2

(26)dC
IgG.FcRn
e

dt
≈−

1− (1+ r1)�

1+ r2
R2

(27)
dy

dt
= a1f

1
+ a2f

2
+ a3f

3
+ a4f

4

(28)f n = bn · g(y) = cn1R
1
+ cn2R

2
+ cn3f R

3f
+ cn3bR

3b
+ cn4R

4

(29)f 1 ≈ 0
dy

dt
≈ a2f

2
+ a3f

3

(30)f 1 ≈ 0 f 2 ≈ 0
dy

dt
≈ a3f

3

(31)f r ≈ 0 r = 1, . . . ,M
dy

dt
≈ aM+1f

M+1
+ · · · + aN f

N
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CSP diagnostic tools. CSP provides a number of algorithmic tools that allow system level understand-
ing. A detailed description of the CSP tools is provided in the Supplement. In summary, the following tools are 
available: 

 (i) Amplitude Participation Index (API) Identifies the reactions that contribute significantly to the forma-
tion of each of the M constraints, expressed by the relations f r ≈ 0 ( r = 1, . . . ,M ) in Eq. (31). The 
related index is Prk , which measures the contribution of the k-th reaction to the cancellations occurring 
in the expression f r ≈ 0 . Prk is scaled so that 

∑K
k=1 |P

r
k| = 1 , where K is the number of reactions in the 

 model35,37,54.
 (ii) Importance Index (II) Identifies the reactions contributing the most in driving the evolution of each vari-

able according to the system of differential equations in Eq. (31). The related index is Ink  , which measures 
the influence of the k-th reaction in driving the n-th variable, within the established constraints. Ink  is 
scaled so that 

∑K
k=1 |I

n
k | = 135,37. Positive (negative) Ink  indicates an influence of the k-th reaction in 

increasing (decreasing) the n-th variable.
 (iii) Time scale Participation Index (TPI) Identifies the reactions that contribute significantly to the develop-

ment of the time scale τn that characterises the n-th mode ( n = 1, . . . ,N ). The related index is Jnk  meas-
ures the contribution of the k-th reaction to the n-th time scale τn and is scales so that 

∑K
k=1 |J

n
k | = 1

37,55,56. A negative (positive) Jnk  implies that the k-th reaction contributes to a dissipative (explosive) 
character of the n-th timescale τn . By definition, dissipative (explosive) timescales relate to the compo-
nents of the system that tend to drive it towards (away from)  equilibrium34,35.

 (iv) Pointer (Po) Identifies the variables related the most to the generation of the n-th mode. The related index 
is Dn

i  and is scaled so that 
∑N

n=1 D
n
i = 135,54,57. A relatively large value of Dn

i  indicates that the i-th species 
is strongly associated to n-th CSP mode and the n-th timescale. A value of Dn

i  close to unity suggests 
the validity of the Quasi Steady-State Approximation (QSSA) for the i-th variable, while only two large 
values of Dn

i  indicate the validity of the Partial Equilibrium Approximation (PEA)21. The variables that are 
pointed by the Pointer of the M exhausted modes are those that are “slaved” to the remaining variables 
via the equilibrium relations f r ≈ 0 ( r = 1 . . .M ) in Eq. (31) and are those that adjust the most when 
the related equilibrium relation is  perturbed54.

Given a solution from a model in the form of Eq. (1), the CSP diagnostics (API, II, TPI and Po) can be computed 
algorithmically on the basis of the expressions provided in the Supplement, with relatively simple codes in For-
tran, Python, Mathematica, MatLab, etc. The Fortran code employed here is publicly available in GitHub; see 
Additional Information. The required input are (1) the number of variables N and of unidirectional reactions K, 
(2) the stoichiometric vectors Sk , the reaction rates Rk and their gradient ∂Rk/∂y.

CSP results
The model parameters are presented in Table 1. Physiological values of human plasma and endosomal volume are 
used for the two compartments separately. The association ( kon ) and dissociation ( koff  ) rate constant between IgG 
and FcRn and the IgG endosomal degradation rate ( kdeg ) were obtained from the  literature49,58. The pinocytosis 
and exocytosis rate ( CLup ) was calculated based on the reported per-unit endosomal uptake rate multiplying 
the endosomal volume.

Considering the parameters in Table 1, the solution of the model in Eq. (1) was analyzed with CSP and the 
results are displayed in Figs. 2, 3, 4  and  5. Figures 2 and 3 show that the profiles of (1) the concentrations, (2) 
the reaction rates Rk and (3) the concentrations rate of change, exhibit periods of rapid changes and periods of 
very small variations. It will be shown that the latter periods are indicative of established equilibria.

Figure 4 displays the evolution of the timescales τn and of the amplitudes f n of the first three modes 
in Eq. (27) ( n = 1, . . . , 3 ); the forth mode a4f 4 is neglected, because it represents the conservation law 
CFcRn
e + C

IgG.FcRn
e = FcRno , for which τ4 ≡ ∞ and f 4 ≡ 0 . It is shown that significant gaps exits between τ1 

and τ2 and between τ2 and τ3 , so this feature established the multiscale character of the model. At each point 
in time the characteristic time scale is the fastest of those having a non-negligible amplitude; i.e., in the period 
0 < t < 3 × 10−4h the characteristic time scale is τ1 (M = 0 in Eq. (31)) and no reduced model is valid, in the 
period 3 × 10−4h < t < 3h the characteristic time scale is τ2 (M=1) and the reduced model in Eq. (29) is valid 
and in the period 3h < t the characteristic time scale is τ3 (M=2) and the reduced model in Eq. (30) is valid.

In Figs. 2, 3, 4 and 5 the periods in which a reduced model is valid is denoted by an arrow; M = 1 indicates 
the period in which one mode is exhausted ( f 1 ≈ 0 ) and a model of the form of Eq. (29) is valid, while M = 2 
indicates the period in which two modes are exhausted ( f 1 ≈ 0 and f 2 ≈ 0 ) and a model of the form of Eq. 
(30) is valid.

The M = 1 period. Consider the M = 1 period, in which the first equilibrium f 1 ≈ 0 holds. According to 
Fig. 4, the fastest time scale τ1 that characterizes the development of this equilibrium there is much faster than τ2 ; 

Table 1.  The parameter set employed for modelling the system in Eq. (1).

Vp = 3.10 L kon = 0.559 (nM · h)−1 koff = 23.9 h−1 kdeg = 25.0 h−1

Ve = 0.34 L CLup = 0.167 L · h−1 FcRn0 = 4.98 × 104 nM Dose = 24.0 × 104 nmol
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about a four orders of magnitude difference. It is also shown that, right before the start of this period, the ampli-
tude f 1 decreases considerably, as the first mode a1f 1 becomes exhausted, while the amplitude of the second 
mode f 2 remains at very large values. Figure 5 shows that the variable related to the first mode in the M = 1 
period is CIgG

e  ( D1

C
IgG
e

≈ 1.0 ) and that the reaction responsible for the emergence of τ1 is the IgG(CIgG
e )-consum-

ing reaction 3f in the endosom IgG + FcRn → IgG.FcRn ( J1
3f ≈ −1.0 ). Finally, it is shown that the equilibrium 

expressed by the relation f 1 ≈ 0 involves the equilibration of R3f  , first with R1 ( R3f
≈ R1 ; P1

3f ≈ −0.5 and 
P11 ≈ 0.5 ), then with R1

+ R3b ( R3f
≈ R1

+ R3b ) and finally with R3b ( R3f
≈ R3b ; P1

3f ≈ −0.5 and P1
3b ≈ 0.5 ). 

During the M = 1 period, the dominant mode is the second one, the time scale τ2 of which is mainly generated 
by reaction 4 and by reaction 2 at the last part of the period, as shown in Fig. 5. Indicative values for all CSP 
diagnostics for this period ( M = 1 ) are provided in Table 2, as they were computed at t = 10−2.

All these informations lead to the conclusion that in the M = 1 period the QSSA of the CIgG
e  variable is valid; 

i.e., R1
− R2

− (R3f
− R3b) ≈ 0 . In order to assess the accuracy of such an approximation, the following relative 

errors were computed:

Figure 2.  The evolution of the variables CIgG
p  , CIgG

e  , CFcRn
e  and CIgG.FcRn

e  (left) and of the rates Rk (k = 1, 2, 3f, 3b, 
4) (right). The periods indicated M = 1 and M = 2 refer to those in which one and two modes, respectively, are 
exhausted; i.e., in the M = 1 period f 1 ≈ 0 (Eq. (29)) and in the M = 2 period f 1 ≈ 0 and f 2 ≈ 0 (Eq. (30)).

Figure 3.  The evolution of the rate of change of CIgG
p  , CIgG

e  , CFcRn
e  and CIgG.FcRn

e .

Figure 4.  The evolution of the time scales τi (left) and of the amplitudes f i (right); i = 1, 2, 3.
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where er11 is the relative error in approximating (R3f
− R3b) generated by the QSSA expression in Eq. (5), er12 is 

the relative error generated by the higher order correction in Eq. (15) and er13 is the relative error generated by 
the CSP derived expression:

where, c1
3f = b1 · S3f = −b1 · S3b = −c1

3b = c13 . The results displayed in Table 3 indicate that the expression in 
Eq. (15) provided higher order accuracy to the standard QSSA in Eq. (5) ( er12 ≪ er11 ) and the CSP-derived Eq. 
(35) provided higher to Eq. (15) accuracy ( er13 < er12 ). Note that using the cnk values displayed in Table 2, the 
expression for the the first equilibrium, as derived by CSP in Eq. (35) at t = 10−2h , yields:

(32)er11 =

(R3f
− R3b)− (R1

− R2)

(R3f
− R3b)

(33)
er12 =

(R3f
− R3b)−

(

(1+ r1)R
1
− R2

+ (r2 − r1)R
4

1+ r2

)

(R3f
− R3b)

(34)
er13 =

(R3f
− R3b)−

(

−

c11R
1
+ c12R

2
+ c14R

4

c1
3f

)

(R3f
− R3b)

(35)f 1 = c11R
1
+ c12R

2
+ c13f R

3f
+ c13bR

3b
+ c14R

4
≈ 0

Figure 5.  Evolution of CSP diagnostics for the three modes, n = 1, 2, 3 ; TOP: Pointers Dn
i  ; i = C

IgG
p  , CIgG

e  , CFcRn
e  , 

C
IgG.FcRn
e  . MIDDLE: Time scale Participation Indices Jnk  ; k = 1, 2, 3f , 3b, 4 . BOTTOM: Amplitude Participation 

Indices Pnk ; k = 1, 2, 3f , 3b, 4.
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which is similar to the QSSA relation R1
− R2

− (R3f
− R3b) ≈ 0 in Eq. (5) and its extension in Eq. (15). The 

values of coefficients cnk in this expression stay practically constant throughout the M = 1 period. In addition, 
according to the P1k values displayed in Fig. 5 , the major participants in the equilibrium across this period are 
R1 , R3f  and R3b ; i.e., R2 and R4 provide negligible contributions and can be neglected. Therefore, Eq. (35) can 
be simplified as:

providing good accuracy across the M = 1 period.

The M = 2 period. Consider now the M = 2 period, in which the two equilibria f 1 ≈ 0 and f 2 ≈ 0 hold. 
Regarding the first equilibrium, the CSP diagnostics are similar to those in the M = 1 period; (1) the pointed 
variable CIgG

e  is reactant of the fast reaction 3f, which is the main responsible for the emergence of τ1 and (2) the 
fact that D1

C
IgG
e

≈ 1.0 and that R3f
≈ R3b both indicate that the QSSA for CIgG

e  is still valid, as in the M = 1 
period.

Regarding the second equilibrium Fig. 4 shows that the time scale τ2 that characterizes its development is 
much faster than τ3 ; about two orders of magnitude. It is also shown that the amplitude f 2 decreases considerably 
right before the start of the M = 2 period, as the second mode a2f 2 becomes exhausted, while the amplitude of 
the third mode f 3 remains at very large values. Figure 5 shows that at the start of this period the variable related 
the most to this mode is CFcRn

e  , followed by CIgG.FcRn
e  , while for the remaining part of the period is only the latter 

variable ( D2

C
IgG.FcRn
e

≈ 0.9 ). Figure 5 also shows that the reaction responsible for the emergence of τ2 is initially 

the IgG(CIgG
e )-consuming reaction 2 and then the IgG-FcRn(CIgG.FcRn

e )-consuming reaction 4. Finally, Fig. 5 

(36)(0.99910488)R1
− (0.99910293)R2

− (1.00000080)(R3f
− R3b)+ (0.00089592)R4

≈ 0

(37)R1
− (R3f

− R3b) ≈ 0

Table 2.  Solution data and CSP diagnostics at t = 10−2h , where M = 1.

yi ( nM) C
IgG
p  = 77377.76 C

IgG
e  = 1.70 CFcRn

e  = 49422.84 C
IgG.FcRn
e  = 377.16

RHS ( nMh
−1) g

IgG
p  = − 4148.09 g

IgG
e  = 33.84 gFcRne  = − 37744.56 g

IgG.FcRn
e  = 37744.56

τi ( h−1) τ1=0.36 10−4 τ2=1.77 τ3=458.09

f i f1  = 1.86 10−3 f2 = 3.78 104 f1  = 1.53 102

n IgG,p IgG,e FcRn,e IgG.FcRn,e

D1
n 0.000 0.999 0.000 0.001

D2
n 0.091 0.000 0.001 0.906

D3
n 0.908 0.000 0.036 0.055

k 1 2 3f 3b 4

Rk ( nMh
−1) 38006.135 42.479 46943.920 9014.109 185.251

J1k 0.000 − 0.001 − 0.998 − 0.001 0.000

J2k
− 0.086 − 0.034 0.032 − 0.032 − 0.817

J3k
− 0.199 − 0.211 0.203 − 0.199 0.187

c1k 0.99910488 − 0.99910293 − 1.00000080 1.00000080 0.00089592

c2k 1.00209268 − 0.90652448 0.00080178 − 0.00080178 − 1.00289446

c3k 0.00403610 0.09556626 − 0.00008647 0.00008647 − 0.00394963

P1
k

0.404 − 0.000 − 0.500 0.096 0.000

P2
k

0.992 − 0.001 0.001 − 0.000 − 0.005

P3
k

0.941 0.025 − 0.025 0.005 − 0.004

r1 = 1.94 10−6 r2 = 8.98 10−4 a = 0.1096

Table 3.  Relative error in approximating (R3f
− R3b) at indicative points along the M = 1 period: via the 

QSSA expression in Eq. (5) ( er11 ), the more accurate expression in Eq. (15) ( er12 ) and the CSP expression in Eq. 
(35) ( er13).

t (h) 10
−2

10
−1 1 2 3 4

R3f
− R3b

er11 0.89× 10−3 0.98× 10−3 0.29× 10−2 0.11× 10−1 0.19× 10−2 0.86× 10−3

er12 0.39× 10−5 0.42× 10−5 0.98× 10−5 0.33× 10−4 0.58× 10−4 0.62× 10−4

er13 0.50× 10−7 0.58× 10−7 0.47× 10−6 0.56× 10−5 0.11× 10−6 0.21× 10−7
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shows that the equilibrium expressed by the relation f 2 ≈ 0 involves mainly the equilibration of R4 and R2 with 
R1 ( R4

+ R2
≈ R1 ), in which R2 contributes only at the start of the M = 2 period. Indicative values of all CSP 

diagnostics for this period are provided in Table 4, as they were computed at t = 102.
All these informations lead to the conclusion that in the M = 2 period the QSSA of the CIgG

e  and CIgG.FcRn
e  

variables are valid. In order to assess the accuracy of these approximations, the relative errors er11 , er
1
2 and er13 in 

approximating ( R3f
− R3b ) in Eqs. (32–34) were computed along with the relative errors:

where er21 is the relative error in approximating R4 generated by the QSSA expression in Eq. (10), er22 is the rela-
tive error generated by the higher order correction in Eq. (21) and er23 is the relative error generated by the CSP 
derived expression:

where, c2
3f = b2 · S3f = −b2 · S3b = −c2

3b = c23 . The results displayed in Table 5 indicate that the expressions 
in Eqs. (15) and (21) provided higher order accuracy to the standard QSSA in Eq. (5) and (10) ( er12 ≪ er11 and 
er22 ≪ er21 ) and the CSP-derived Eqs. (35) and (41) provided similar or better to Eqs. (15) and (21) accuracy 
( er13 ≪ er12 and er23 ≤ er22).

As Table 5 indicates, the accuracy in approximating (R3f
− R3b) with the CSP-derived expression is higher 

than that in approximating R4 . This feature relates to the fact that the accuracy of the constraint f M ≈ 0 , which 
is generated after the M-th time scale becomes exhausted (so that the characteristic time scale changes from τM 
to τM+1 ), is proportional to the size of the ratio τM/τM+1 ; i.e., the smaller this ratio the higher the  accuracy59,60. 
Accordingly, the accuracy of the CSP expression for approximating (R3f

− R3b) in Eq. (35), which becomes valid 
after the fastest time scale τ1 becomes exhausted, is proportional to τ1/τ2 , while the accuracy of the CSP expres-
sion for approximating R4 in Eq. (41), which becomes valid after τ2 becomes exhausted, is proportional to τ2/τ3 . 
Figure 4 shows that τ1/τ2 ≪ τ2/τ3 . Therefore, the accuracy of the former approximation will be higher than the 

(38)er21 =

R4
− (R1

− R2)

R4

(39)
er22 =

R4
−

(

R1
−

(1+mr2)

1+ a+ r1(1−m)+ r2(a+m)
R2

)

R4

(40)
er23 =

R4
−

(

−

c21R
1
+ c22R

2
+ c2

3f R
3f
+ c2

3bR
3b

c24

)

R4

(41)f 2 = c21R
1
+ c22R

2
+ c23f R

3f
+ c23bR

3b
+ c24R

4
≈ 0

Table 4.  Solution data and CSP diagnostics at t = 102 h , where M = 2.

yi ( nM) C
IgG
p  = 31346.03 C

IgG
e  = 58.84 CFcRn

e  = 21202.58 C
IgG.FcRn
e  = 28597.42

RHS ( nMh
−1) g

IgG
p  = − 148.07 g

IgG
e  =− 0.58 gFcRne  = 120.40 g

IgG.FcRn
e  = − 120.40

τi ( h−1) τ1=0.84 10−4 τ2 = 1.53 τ3 = 100.82

f i f1  = 0.55 10−6 f2 = 0.37 f1  = 148.03

n IgG,p IgG,e FcRn,e IgG.FcRn,e

D1
n 0.000 0.995 0.003 0.002

D2
n 0.068 0.004 0.096 0.831

D3
n 0.932 0.000 0.476 − 0.407

k 1 2 3f 3b 4

Rk ( nMh
−1) 15369.432 1471.039 697404.378 683478.404 14046.381

J1k 0.000 −  0.002 −  0.996 0.000 −  0.002

J2k −  0.060 −  0.149 0.060 −  0.061 −  0.668

J3k −  0.290 −  0.258 0.109 −  0.107 0.234

c1k 0.99525512 −  0.99525062 −  1.00000977 1.00000977 0.00475466

c2k 1.00855828 −  0.92519772 0.00190065 −  0.00190065 −  1.01045892

c3kk 0.01881054 0.08335607 −  0.00017575 0.00017575 −  0.01863478

P1
k

0.011 −  0.001 −  0.499 0.489 0.000

P2
k

0.461 −  0.040 0.039 −  0.038 −  0.421

P3
k

0.316 0.134 −  0.134 0.131 −  0.286

r1 = 4.53 10−6 r2 = 4.78 10−3 a = 0.1096
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latter, in accordance to the results in Table 5. Note that using the cnk values displayed in Table 4, in the expressions 
for the first and second equilibria, as derived by CSP in Eqs. (35) and (41) at t = 102h , yield:

As in the M = 1 period discussed previously, Eq. (42) is still similar to the QSSA relation 
R1

− R2
− (R3f

− R3b) ≈ 0 in Eq. (5) and its extension in Eq. (15). Equation (43) is similar to the QSSA rela-
tion R1

− R2
− R4

≈ 0 in Eq. (10) and resembles to its extension in Eq. (21), in which R3f
− R3b is however not 

present. The values of coefficients cnk in these two expressions vary negligibly in the M = 1 period. In addition, 
according to the Pnk values displayed in Fig. 5 (1) the major participants in the first equilibrium ( n = 1 ) across the 
M = 2 period are R3f  and R3b , while R1 , R2 and R4 provide negligible contributions and (2) the major participants 
in the second equilibrium ( n = 2 ) are R1 and R4 , while R2 , R3f  and R3b provide small but no negligible contribu-
tions only at the early stage of this period. As a result, the previous expressions can be simplified throughout 
the M = 2 period as:

where the terms in the brackets provide smaller contributions.

The reactions driving the process. When the M equilibria have been established, as it is expressed by the 
algebraic relations f r ≈ 0 ( r = 1 . . .M ), the system is driven by the dominant reactions in the simplified system 
of differential equations in Eq. (31). These reactions are identified by the Importance Index, introduced in  “CSP 
diagnostic tools”  Section and displayed in Fig. 6; IInk > 0 ( IInk < 0 ) implies that the n− th variable is produced 
(consumed) by the k − th reaction.

Figure 6 shows that initially (while M = 0 ), CIgG
p  is consumed only by reaction 1 ( IgGp → IgGe ), CIgG

e  is pro-
duced by reaction 1 and then gradually consumed by reaction 3f ( IgGe + FcRne → IgGe · FcRne ) and CFcRn

e  and 
C
IgG.FcRn
e  are gradually consumed and produced, respectively, by reaction 3f. These findings can also be predicted 

by inspection of the governing equations in Eq. (1).
After the first equilibrium is established ( M = 1 : R1

− R2
− (R3f

− R3b) ≈ 0 ) and the 1st mode becomes 
exhausted, the process is driven by the remaining 2nd and 3rd modes; see Eq. (29), which is valid in the M = 1 
period. Figure 6 shows that the action of the two active modes in this period refers mainly to reactions 1 
( IgGp → IgGe ) and 4 ( IgGe .FcRn → IgGp + FcRn ) and partly to reaction 2 ( IgGe → ), while the contributions 
of reactions 3f and 3b manifest towards the end of this period cancelling each other. In particular, Fig. 6 shows 
that CIgG

p  is consumed by reaction 1 ( IIIgG,p1 < 0 ) and is produced by reaction 4 ( IIIgG,p4 > 0 ). CIgG
e  and CIgG.FcRn

e  
are produced by reaction 1 ( IIIgG,e1 > 0 , IIIgG.FcRn,e1 > 0 ) and during the last stage of this period are consumed 
mainly by reaction 4 ( IIIgG,e4 < 0 , IIIgG.FcRn,e4 < 0 ) and partly by reaction 2 ( IIIgG,e2 < 0 , IIIgG.FcRn,e2 < 0 ). These 
reactions have exactly the opposite influence to the evolution of CFcRn

e  (mainly IIFcRn,e1 < 0 , IIFcRn,e4 > 0 and 
partly IIFcRn,e2 > 0 ). At the end of this period, reactions 3f and 3b exhibit a minor influence to the evolution of 
the three variables in the endosom, but their contributions cancel each other.

When the second equilibrium is established, both the 1st and 2nd modes are exhausted ( M = 1 : 
R3f

− R3b
≈ 0andR1

− R2
− R4

≈ 0 ) and it is only the 3rd mode that drives the system; see Eq. (30), which is 
valid in the M = 2 period. It is shown in Fig. 6 that in this period reactions 1 and 2 tend to decrease CIgG

p  , CIgG
e  

and CIgG.FcRn
e  ( IIIgG,p1 < 0 , IIIgG,p2 < 0 , IIIgG,e1 < 0 , IIIgG,e2 < 0 , IIIgG.FcRn,e1 < 0 , IIIgG.FcRn,e2 < 0 ) and to increase 

CFcRn
e  ( IIFcRn,e1 > 0 , IIFcRn,e2 > 0 ), reaction 4 has the opposite tendencies ( IIIgG,p4 > 0 , IIIgG,e4 > 0 , IIIgG.FcRn,e4 > 0 , 

IIFcRn,e4 < 0 ), while the contributions of reactions 3f and 3b cancel each other.

(42)(0.99525512)R1
− (0.99525062)R2

− (1.00000977)(R3f
− R3b)+ (0.00475466)R4

≈ 0

(43)(1.00855828)R1
− (0.92519772)R2

+ (0.00190065)(R3f
− R3b)− (1.01045892)R4

≈ 0

(44)R3f
− R3b

≈ 0 R1
− R4

+

[

c22R
2
+ c23(R

3f
− R3b)

]

≈ 0

Table 5.  Relative error in approximating (R3f
− R3b) (top) and R4 (bottom) at indicative points along the 

M = 2 period: TOP: via the QSSA expression in Eq. (5) ( er11 ), the more accurate expression in Eq. (15) ( er12 ) 
and the CSP expression in Eq. (35) ( er13 ), BOTTOM: via the QSSA expression in Eq. (10) ( er21 ), the more 
accurate expression in Eq. (21) ( er22 ) and the CSP expression in Eq. (41) ( er23).

t (h) 5 10 20 50 100 1000

R3f
− R3b

er11 0.92× 10−3 0.70× 10−3 0.42× 10−3 0.12× 10−3 0.41× 10−4 0.44× 10−5

er12 0.59× 10−4 0.47× 10−4 0.32× 10−4 0.16× 10−4 0.99× 10−5 0.42× 10−5

er13 0.24× 10−7 0.15× 10−7 0.55× 10−8 0.43× 10−9 0.39× 10−10 0.24× 10−13

R4

er21 0.88× 10−2 0.97× 10−2 0.10× 10−1 0.10× 10−1 0.86× 10−2 0.44× 10−2

er22 0.87× 10−4 0.48× 10−4 0.13× 10−4 0.12× 10−3 0.10× 10−3 0.18× 10−4

er23 0.22× 10−4 0.23× 10−4 0.28× 10−4 0.12× 10−3 0.26× 10−4 0.24× 10−7
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Some of the features displayed in Fig. 6 can be detected from the original model in Eq. (1) in the period where 
no mode is exhausted ( M = 0 ), the reduced models in Eqs. (6–9) or Eqs. (17–20) that are valid in the M = 1 
period and the reduced models in Eqs. (11–14) or (23–26) that are valid in the M = 2 period; e.g., the influence 
of reactions 1, 3f and 4 during the initial and the M = 1 periods or the transition from reaction 3f to reaction 1 
as the major driving reaction for the evolution of CFcRn

e  and CIgG.FcRn
e  at the start of the M = 1 period.

However, there are features that cannot be foreseen by inspection of the full or the reduced models; even 
in the case where these models are simple, as those considered here. For example, Fig. 6 shows that during 
the transition from the M = 1 to the M = 2 period, the influence of reactions 1 and 4 reverses. That is, in the 
M = 1 period reaction 1 tends to increase CIgG

e  and CIgG.FcRn
e  and to decrease CFcRn

e  ( IIIgG,e1 > 0 , IIIgG.FcRn,e1 > 0 , 
IIFcRn,e1 < 0 ), while in the M = 2 period its influence reverses; i.e., reaction 1 tends to decrease CIgG

e  and CIgG.FcRn
e  

and to increase CFcRn
e  ( IIIgG,e1 < 0 , IIIgG.FcRn,e1 < 0 , IIFcRn,e1 > 0 ). Reaction 4 exhibits exactly the opposite behavior 

to reaction 1; i.e., tends to decrease CIgG
e  and CIgG.FcRn

e  and to increase CFcRn
e  in the M = 1 period and exhibits 

the opposite tendency in the M = 2 period. Although the influence of these reactions in the M = 1 period can 
be predicted from the relevant reduced model in Eqs. (17–20), their influence in the M = 2 period cannot be 
predicted, since reactions 1 and 4 are not present in the appropriate reduced model in Eqs. (23–26).

Another feature that cannot be detected by inspecting the existing models relates to the influence of reactions 
3f and 3b. Figure 6 shows that these reactions are shown to exercise a certain influence in the evolution of the 
system during the last stage of the M = 1 period and throughout the M = 2 one, in contrast to what is suggested 
by the reduced models derived in  “Conventional reduced models” Section, in which these reactions are absent.

In order to validate these findings and explain the discrepancies between the reduced models in “Conventional 
reduced models” Section and the Importance Index findings in Fig. 6, the influence of reaction 1 and 3f in driving 
the system was investigated, by doubling their reaction rate constant from a specific point in time until the end 
of the process and by comparing the perturbed concentration profiles with the unperturbed ones. In general, 
a perturbation - such as the one considered here - will influence both the constraints and the manner in which 
the process evolves within these constraints. Naturally, the response of the constraints will manifest in accord-
ance to the fast time scales that characterized their formation, while the response of the evolution within the 
constraints will be will manifest according to the slow time scales. The results such a comparison are shown in: 

 (i) Figure 7, where the effect of the perturbation imposed by doubling the rate constant of R1 , enforced from 
t = 0.1 h (where M = 1 ) is displayed in the top row and that enforced from t = 5 h (where M = 2 ) is 
displayed in the bottom row and

 (ii) Figure 8, where the effect of the perturbation imposed by doubling the rate constant of R3f  , enforced 
from t = 5 h (where M = 2 ) is displayed.

Perturbation on R1. The top row of Fig. 7 shows that when the perturbation on R1 is initiated at t = 0.1 h (where 
M = 1 ), the perturbed profile of CIgG

e  exhibits a sudden increase, while those of the other three variables exhibit a 

Figure 6.  The participation index IInk  ( k = 1, 2, 3f , 3b, 4 ) for all four variables ( n = C
IgG
p ,CIgG

e ,CFcRn
e ,CIgG.FcRn

e  ) in 
the periods where M = 0, 1, 2.
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smooth departure, relative to the unperturbed profiles. The sudden increase of CIgG
e  is due to the response to the 

perturbation of the equilibrium R1
− (R3f

− R3b) ≈ 0 in Eq. (37) that develops in the M = 1 period:

where γ = 1 in the unperturbed case and γ = 2 in the perturbed one. According to the P1k values displayed in 
Fig. 5, the contribution of R1 in this equilibrium is relatively small, but not negligible; i.e., at t = 0.1 h when the 
perturbation is enacted P11 = 0.15 , P1

3f = −0.50 and P1
3b = 0.35 . As a result, a perturbation on R1 will produce 

a weak response. In addition, according to the D1
n values displayed in Fig. 5, the pointed variable for this equi-

librium is CIgG
e  ; D1

C
IgG
e

≈ 1 . Therefore, it is this variable that will adjust the most as soon as the equilibrium in Eq. 

(45) is perturbed, exactly as displayed in the top row of Fig. (7); i.e., a sudden increase of γ produces an equally 
fast increase of CIgG

e  , which is limited in size, given the contribution of R1 to the equilibrium in Eq. (45). The 
displayed in Fig. 7 smooth increased rates of consumption of CIgG

p  and CFcRn
e  and of production of CIgG.FcRn

e  and 
C
IgG
e  (the latter after the sudden increase due to the perturbed equilibrium), are all in agreement with the Impor-

tance Index findings reported in Fig. 6; i.e., IIIgG,e1 < 0 , IIFcRn,e1 < 0 , IIIgG.FcRn,e1 > 0 , IIIgG,e1 > 0.
The bottom row of Fig. 7 shows that when the doubling of the reaction rate constant of R1 is initiated at 

t = 5 h ( M = 2 ), the perturbed profile of CIgG
e  , CFcRn

e  and CIgG.FcRn
e  exhibit a sudden change and then a smooth 

(45)γ k1C
IgG
p − (konC

IgG
e .CFcRn

e − koff C
IgG.FcRn
e ) ≈ 0

Figure 7.  Concentration profiles for the reference case (parameter values in Table 1, solid curves) and for the 
case in which the reaction rate constant of R1 is doubled (dashed curves). The perturbation is enforced from 
t = 0.1 h (top) and t = 5 h (bottom). The indicated M = 1 and M = 2 periods refer to the reference case.

Figure 8.  Concentration profiles for the reference case (parameter values in Table 1, solid curves) and for the 
case in which the reaction rate constant of R3f  is doubled (dashed curves). The perturbation is enforced from 
t = 5 h , as indicated by the vertical line. The indicated M = 1 and M = 2 periods refer to the reference case.



R
ev

is
ed

 P
ro

of

14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6208  | https://doi.org/10.1038/s41598-022-09846-x

www.nature.com/scientificreports/

variation, while the profile of CIgG
p  exhibits a smooth departure, relative to the unperturbed profiles. The sudden 

changes are due to the the two equilibria R3f
− R3b

≈ 0 and R1
− R4

+ [c22R
2
+ c23(R

3f
− R3b)] ≈ 0 in Eq. (44) 

that develop in the M = 2 period:

where γ = 1 in the unperturbed case, γ = 2 in the perturbed one and [. . .] denote smaller contributions. Accord-
ing to the P2k values displayed in Fig. 5, the contribution of R1 in the second equilibrium is significant; i.e., at 
t = 5 h when the perturbation is enacted P21 = 0.39 , P22 = −0.13 , P2

3f = 0.11 , P2
3b = −0.11 and P24 = −0.26 . In 

addition, according to the D2
n values displayed in Fig. 5 and Table 4, for the second equilibrium there two the 

pointed variables at the start of the M = 2 period, CFcRn
e  and CIgG.FcRn

e  , and only one during the remaining period, 
C
IgG.FcRn
e  . Given that the perturbation is enacted right after the start of the M = 2 period, a sudden increase of 

γ will result in a sudden increase of CIgG.FcRn
e  , via the second equilibrium in Eq. (46) and a sudden decrease of 

CFcRn
e  via the conservation law CFcRn

e + C
IgG.FcRn
e = FcRno . In turn, this sudden increase of CIgG.FcRn

e  will result 
to a sudden increase of CIgG

e  via the first equilibrium in Eq. (46), given that this is the pointed variable, as shown 
in Fig. 5 and Table 4. The smooth increased rates of consumption of CIgG

p  , CIgG
e  and CIgG.FcRn

e  and production 
of CFcRn

e  , exhibited either right after the perturbation (applies to CIgG
p  ) or right after the sudden response to the 

perturbation of the two equilibria (applies to CIgG
e  , CIgG.FcRn

e  and CFcRn
e  ) are in full agreement with the Importance 

Index findings reported in Fig. 6; i.e., IIIgG,p1 < 0 , IIIgG,e1 < 0 , IIIgG.FcRn,e1 < 0 and IIFcRn,e1 > 0.

Perturbation on R3f . Figure 8 displays the response of the concentration profiles to the doubling of the reac-
tion rate constant of R3f  , enacted at t = 5 h (where M = 2 ). It is shown that the perturbation generates a sudden 
response of CIgG

e  , which is followed by a slower response of CIgG
e  , CFcRn

e  and CIgG.FcRn
e  and a subsequent even 

slower response of all four variables. These three successive types of responses are due to the fact that at the time 
when the perturbation is enacted there are two different equilibria established, which are characterized by two 
different time scales ( τ1 ≪ τ2 ), and that the perturbation modifies both of them. In particular, in the M = 2 
period the established equilibria R3f

− R3b
≈ 0 and R1

− R4
+ [c22R

2
+ c23(R

3f
− R3b)] ≈ 0 , are expressed as:

so that γ now associates to R3f  ( γ = 1 in the unperturbed case, γ = 2 in the perturbed one) and is present in 
the expression of both equilibria. According to the P1k and P2k values displayed in Fig. 5, the contribution of R3f  
in the first equilibrium in Eq. (47) is more significant than the second one in Eq. (48); i.e., at t = 5 h when the 
perturbation is enacted P1

3f = −0.49 and P2
3f = 0.11 . Therefore, the response to the perturbation considered here 

of the first equilibrium will be more pronounced than that of the second; both in the speed of its manifestation 
(since τ1 ≪ τ2 ) and in magnitude (since |P1

3f | ≪ |P2
3f | ). These features are displayed Fig. 8, where an increase 

of γ is shown to generate initially a very fast decrease of CIgG
e  (the variable exhibiting the largest D1

n values, 
according to Fig. 5) via the first equilibrium and a slower decrease of CFcRn

e  and increase of CIgG.FcRn
e  (the vari-

ables exhibiting the largest D2
n values, according to Fig. 5) via the second equilibrium and the conservation law 

CFcRn
e + C

IgG.FcRn
e = FcRno . The evolution of the four variables after these two initial transients are in accordance 

to the Importance Index results in Fig. 6. Specifically, the consumption of CIgG
p  , CIgG

e  , CIgG.FcRn
p  and the production 

of CFcRn
e  slow down ( IIIgGp > 0 , IIIgGe > 0 , IIIgG.FcRne > 0 and IIFcRne < 0).

Discussion. The results presented in  “The M = 1 period” to “The reactions driving the process” Sections 
demonstrated that CSP can algorithmically provide all information needed in order to acquire system-level 
understanding. CSP provided everything the cumbersome analytical methodologies might provide and many 
more. Specifically: 

 (i) The analytical methodology does not provide a method for the identification of the fast variables and 
fast reactions. These identifications are usually based on the experience and intuition of the investigator. 
In contrast, via the Partitipation Index Prk , the Pointer Dn

i  and Time scale Participation Index Jnk  , CSP can 
make these identifications algorithmically, as it was demonstrated in  “The M = 1 period” and “The M = 
2 period” Sections.

 (ii) The analytic methodology assumes that a reaction deemed fast must be eliminated from the reduced 
model. As a result its influence on the slow evolution cannot be assessed. In contrast, CSP allows for a 
reaction to have a fast and a slow component, so its influence in shaping the constraints and in driving 
the system within these constraints can be assessed with the Importance Index IIni  , as it was demonstrated 
in  “Perturbation on R3f ” Section.

(46)konC
IgG
e .CFcRn

e − koff C
IgG.FcRn
e ≈ 0 γ k1C

IgG
p − k1C

IgG.FcRn
e + [. . .] ≈ 0

(47)γ konC
IgG
e .CFcRn

e − koff C
IgG.FcRn
e ≈ 0

(48)k1C
IgG
p − k1C

IgG.FcRn
e + [. . .+ γ c23konC

IgG
e .CFcRn

e + . . .] ≈ 0
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The significance of the identifications in item (1) is profound, especially when the mathematical model of interest 
is large and complex. Item (2) addresses a feature that the conventional methodologies cannot handle; that is, 
the fact that reactions have usually a fast and a slow component, each of which might exercise a different influ-
ence. This feature was first encountered in the case of the glycolysis cycle, where the slow component of certain 
reactions were shown to promote a larger cycle, while their fast component were opposing  this39. It was shown 
that an increase of the reaction rate constant of these reactions was promoting their fast component, reducing 
significantly the period of the cycle. Similar features are manifested in the simple PK model considered here, 
resulting to (1) the reversal of the influence of reactions 1 and 4 during the transition from the M = 1 to the 
M = 2 period and (2) the influence in the M = 2 period of reaction 3, which was deemed equilibrated there; 
R3f

≈ R3b.
Specifically, according to Fig. 6, towards the end of the M = 1 period reaction 1 tends to decrease CFcRn

e  and 
to increase CIgG

e  and CIgG.FcRn
e  , while in the M = 2 period this influence of reaction 1 reverses. A similar behavior 

is exhibited by reaction 4; i.e., in the M = 1 period reaction 4 tends to increase CFcRn
e  and to decrease CIgG

e  and 
C
IgG.FcRn
e  , while it tends to the opposite in the M = 2 period. This feature is due to the fact that reactions 1 and 

4 have a fast and a slow component, which tend to move the system in opposing directions. In particular, Fig. 6 
shows that in the M = 1 and M = 2 periods reaction 1 contributes significantly to both f 2 and f 3 , while has 
negligible contribution to the fastest amplitude f 1 ; as indicated by the large values of P21 and P31 and the negli-
gible ones P11 . This implies that reaction 1 has non-negligible components only in the 2nd and 3rd CSP modes:

where the first term in the RHS of this expression belongs to the relatively fast 2nd CSP mode a2f 2 
( f 2 = b2 · (S1R

1
+ · · · ) ) and the second term belongs to the relatively slow 3rd one a3f 3 ( f 3 = b3 · (S1R

1
+ · · · ) ). 

In the M = 1 period, according to Eq. (29) the system is formally driven by both these CSP modes. However, 
according to the amplitude profiles in Fig. 4, f 2 ≫ f 3 , so in this period it is mode a2f 2 that dominates. Therefore, 
the component of reaction 1 in the relatively fast 2nd mode exhibits much largest influence in the M = 1 period, 
in comparison to its component in the relaatively slow 3rd mode. As a result, the value of the Importance Index 
IIn1  in this period reflects the influence of the fast component of reaction 1. In the M = 2 period the 2nd CSP 
mode is exhausted (i.e., f 2 ≈ 0 ) and the system is driven only by the 3rd mode a3f 3 , in accordance to Eq. (30). 
As a result, the influence of reaction 1 is exercised only through its component in the relatively slow 3rd mode 
and IIn1  there reflects the influence of the slow component of reaction 1. The fact that the IIn1  values of CIgG

e  , CFcRn
e  

and CIgG.FcRn
e  have opposite signs in the M = 1 and M = 2 periods, as displayed in Fig. 6, demonstrate that the 

fast and slow components of reaction 1 exhibit opposing influences. A similar explanation can be provided for 
the opposing influence of reaction 4 in the M = 1 and M = 2 periods, as shown in Fig. 6.

Reaction 3 exercises a significant influence in all three modes during the M = 2 period, as it is demonstrated 
by the non-negligible Amplitude Participation Indices Pn

3f  and Pn
3b that are displayed in Fig. 5 for n = 1, 2, 3 . This 

indicates that this reaction has non-negligible components in all three modes:

where S3 = S3f = −S3b . The values of P1
3f ≈ −0.5 and P1

3b ≈ 0.5 in Fig. 5 for the fastest mode during the M = 2 
period indicate that this reaction is in partial equilibrium; R3f

≈ R3b . However, this does not preclude this reac-
tion having an influence in the slower modes, as it it demonstrated by the non-negligible Importance Indices IIn

3f  
and IIn

3b , as shown in Fig. 6 and in more details in Fig. 8.
The traditional methods cannot distinguish the fast and slow components of the reactions. Therefore, the 

possibility that a change of the value of a parameter to have a certain influence in the short-run and the opposite 
in the long-run cannot be discovered. In contrast, the algorithmic CSP methodology can identify both (1) the 
component of a reaction that associates to a certain time scale via the Partitipation Index Prk , the Pointer Dn

i  and 
Time scale Participation Index Jnk  and (2) the influence of this component in driving the process via the Amplitude 
Participation Indices IInk .

Dominant dynamics in the M = 1 and M = 2 periods
It was demonstrated in the previous sections that CSP was able to algorithmically (1) identify the constraints that 
develop due to the fast dynamics and (2) recognize their nature; i.e., the fast variable, the fast reaction and the 
reactions participating in the constraints. It was also demonstrated that CSP can provide very accurate expres-
sions for the constraints, which is reflected in the accuracy of the reduced model; see Eq. (31) for the general 
form of the constraints and the reduced model.

It will be demonstrated next that the CSP generated diagnostics, displayed in Figs. 2, 3, 4 and 5 and Tables 2 
and 4, can provide the required knowledge in order to predict the response of the system when subjected to a 
change in the value of a parameter. The demonstration will address first the M = 1 period and then the M = 2 
one.

The M = 1 period. Let us first consider the M = 1 period, for which is was shown that the process evolves 
within one constraint in the form of Eq. (35):

(49)S1R
1
≈ a2

(

b2 · S1R
1
)

+ a3
(

b3 · S1R
1
)

(50)S3(R
3f
− R3b) = a1

(

b1 · S3

[

R1
− R3b

])

+ a2

(

b2 · S3

[

R1
− R3b

])

+ a3

(

b3 · S3

[

R1
− R3b

])

(51)f 1 = c11R
1
+ c12R

2
+ c13f R

3f
+ c13bR

3b
+ c14R

4
≈ 0
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For this case, the Amplitude Participation Index P1k displayed in Figure 5 shows that only reactions 1, 3f and 3b 
provide significant contributions in the occurring cancellations, i.e.:

where c1
3f = −c1

3b = c13 , since S3f = −S3b and cik = bi · Sk , and c11/c
1
3 ≈ −1 throughout the M = 1 period; see 

Table 2. As the Pointer D1
i  diagnostics reported in Figure 5 show, the pointed variable for this equilibrium is 

C
IgG
e  . Therefore it is this variable that will adjust the most in this period when a value of a parameter of those 

appearing in Eq. (52) is perturbed. For example, an increase of koff  ( R3b
= koff C

IgG.FcRn
e  ) will cause an increase 

of CIgG
e  , while an increase of kdeg ( R2

= kdegC
IgG
e  ) will have no effect, since it is not present in this equilibrium, 

Eq. (52). These conclusions are validated by the results displayed in Figs. 9 and 10, where concentration profiles 
computed with the reference parameter values in Table 1 are compared with profiles computed with perturbed 
values 2.0koff  and 2.5kdeg ). It is shown that variations of these two parameters have no other significant effect in 
the period where M = 1 , other than the increase of CIgG

e  in the case of the perturbed value 2.0koff .
Regarding the influence of the perturbations to the time scales (1) τ1 that characterizes the development of 

the 1st equilibrium and (2) τ2 that characterizes the evolution of the system in the M = 1 period, the changes in 
their profiles displayed in Figs. 9 and 10 are in full agreement with: 

 (i) The Time scale Participation Index J1k diagnostics for τ1 reported in Fig. 5, according to which the related 
to the equilibrium in Eq. (52) time scale τ1 depends only on reaction 3f; i.e., is independent of koff  or 
kdeg . Therefore, there will be no change in the M = 1 period on how fast the first equilibrium will be 
established when koff  or kdeg are perturbed, as shown in Figs. 9 and 10.

 (ii) The Time scale Participation Index J2k  diagnostics for τ2 reported in Fig. 5, according to which the 
time scale τ2 , which characterizes the second mode that drives the system in the M = 1 period (since 
f 2 ≫ f 3 ), depends mainly on reaction 4; i.e., is also independent of koff  or kdeg . Therefore, there will be 
no change on how fast the system evolves in the M = 1 period or on the time required for the second 
equilibrium to be established when koff  or kdeg are perturbed, as shown in Figs. 9 and 10.

The M = 2 period. Let us next consider the M = 2 period, for which is was shown that the process evolves 
within two constraints in the form of Eqs. (35) and (41):

(52)
c11
c13
R1

+ R3f
+ R3b

= −k1C
IgG
p + konC

IgG
e .CFcRn

e − koff C
IgG.FcRn
e ≈ 0

Figure 9.  The reference (solid, koff  ) and the perturbed (dashed, 2.0koff  ) concentration and time scale profiles. 
The indicated M = 1 and M = 2 periods refer to the reference case.

Figure 10.  The reference (solid, kdeg ) and the perturbed (dashed, 2.5kdeg ) concentration and time scale profiles. 
The indicated M = 1 and M = 2 periods refer to the reference case.
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The Amplitude Participation Index P1k displayed in Fig. 5 shows that in the period considered here only reactions 
3f and 3b provide significant contributions in the occurring cancellations in the first equilibrium ( R3f

− R3b
≈ 0 , 

Eq. (44)) and only reactions 1, 2 and 4 contribute to the second ( R1
− R4

+

[

c22R
2
+ . . .

]

≈ 0 , Eq. (44)), i.e.:

where c1
3f = −c1

3b and c21/c
2
4 ≈ −1 throughout the M = 2 period and c = c22/c

2
4 > 0 ; see Table 4. As the Pointers 

D1
i  and D2

i  reported in Fig. 5 indicate, the pointed variable for the 1st equilibrium throughout the period is CIgG
e  

and for the 2nd equilibrium is mainly CIgG.FcRn
e  and at the start of the period CFcRn

e  as well. Therefore, these are 
the variables that will adjust the most in this period when a value of a parameter is perturbed.

Considering the increase of koff  ( R3b
= koff C

IgG.FcRn
e  ), Eq. (55) shows that this will cause an increase of the 

pointed variable CIgG
e  via the 1st equilibrium. This increase will cause a decrease of CIgG.FcRn

e  via the 2nd equilib-
rium Eq. (56), which in turn will cause an increase of CFcRn

e  via the conservation law CFcRn
e + C

IgG.FcRn
e = FcRno . 

These CSP-based predictions are in full agreement with the findings displayed in Figure 9.
Considering now the increase of kdeg ( R2

= kdegC
IgG
e  ), Eq. (56) shows that this will cause a decrease of the 

pointed variable CIgG.FcRn
e  via the 2nd equilibrium, which in turn will cause an increase of CFcRn

e  via the conser-
vation law CFcRn

e + C
IgG.FcRn
e = FcRno . The decrease of CIgG.FcRn

e  and the increase of CFcRn
e  will in turn cause a 

decrease of the pointed variable CIgG
e  via the 1st equilibrium Eq. (55). Again, these CSP-based predictions are in 

full agreement with the findings displayed in Figure 10.
Note that in both perturbations considered, the CIgG

p  profile follows that of CIgG.FcRn
e  . This feature is in accord-

ance to the 2nd equilibrium Eq. (56), in which the contribution of reaction 2 decreases as the process moves 
deeper into the M = 2 period; i.e., P22 → 0 , as shown in Fig. 5.

Regarding the influence of the perturbations to the time scales (1) τ1 and τ2 that characterize the development 
of the 1st and 2nd equilibria and (2) τ3 that characterizes the evolution of the system in the M = 2 period, the 
changes in their profiles displayed in Figs. 9 and 10 are in full agreement with: 

 (i) The Time scale Participation Indices J1k and J2k diagnostics reported in Figure 5, according to which the 
related to the first equilibrium time scale τ1 depends only on reaction 3f and the related to the second 
equilibrium time scale τ2 depends basically on reaction 4 (i.e., both are independent of koff  or kdeg).

 (ii) The Time scale Participation Index J3k diagnostics reported in Figure 5, according to which the time scale 
τ3 that characterizes the only active mode depends mainly on all reactions; i.e., it depends on koff  and 
kdeg . Since J3

3b and J32 are both negative, increasing koff  or kdeg ( R3b
= koff D , R2

= kdegB ) will result in a 
faster τ3 ; i.e., the process will evolve faster in the M = 2 period.

These predictions are validated by the results shown in Figs. 9 and 10. In particular, it is shown in these figures 
the fastest consumption of CIgG

p  , CIgG
e  and CFcRn

e  and the fastest reach to steady state of CFcRn
e  in the M = 2 period, 

which are due to the faster characteristic time scale τ3.

Conclusions
A demonstration is provided here on how algotithmic multi-scale analysis can provide system-level understand-
ing. This work refers to the traditional analytic and to an algorithmic (CSP) treatment of a simple model that 
exhibits multi-scale dynamics. It is shown that CSP provides algorithmically all the results that are provided by 
analytical techniques along with additional ones, that cannot be obtained analytically. In contrast to the tradi-
tional analytical treatment, CSP was shown to require no input or experience from the investigator.

In a multi-scale process, the fast and slow dynamics exhibit distinct influence: (1) the fast dynamics gener-
ates constraints in which the process evolves and (2) this evolution is governed by a slow model (free of the fast 
dynamics). A perturbation along the fast components of the model (reactions) will have an immediate effect 
that will affect the fast variables, since it will modify the existing constraints, the development of which is char-
acterized by the fast time scales. In contrast, a perturbation along the slow components will have a gradual effect 
and can potentially affect all variables, since it will modify the evolution of the process within the established 
constraints. A multi-scale analysis aims in identifying (1) the constraints, (2) the slow system that governs the 
evolution within the constraints, (3) the reactions whose fast component is responsible for the development of 
the constraints, (4) the reactions whose slow component determines the slow evolution, (5) the reactions that 
can be ignored; i.e., those that do not contribute to the fast or slow dynamics and (6) the fast variables; i.e., those 
that are “slaved” to the rest. CSP provides all these in an algorithmic fashion, so no input from the investigator is 

(53)f 1 = c11R
1
+ c12R

2
+ c13f R

3f
+ c13bR

3b
+ c14R

4
≈ 0

(54)f 2 = c21R
1
+ c22R

2
+ c23f R

3f
+ c23bR

3b
+ c24R

4
≈ 0

(55)
c1
3f

c1
3b

R3f
− R3b

= konC
IgG
e .CFcRn

e − koff C
IgG.FcRn
e ≈ 0

(56)
c21
c24
R1

+

c22
c24
R2

+ R4
= −k1C

IgG
p + k1C

IgG.FcRn
e +

[

ckdegC
IgG
e + . . .

]

≈ 0
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required and the analysis can be repeated for any parameter set of interest. The conclusions reached for a given 
set of parameters are valid for in a large domain of the parameter space, in which basic dynamics properties 
(such as time scale separation) are not altered.

It was demonstrated that the CSP diagnostics provide all necessary information to predict the response of the 
system when a change in the parameters is introduced with the use of specific algorithmic tools; Pnk  (identifies 
the reactions participating in the n-th equilibrium), Dn

i  (identifies the variables that will adjust the most when 
the system is perturbed), Jnk  (identifies the reactions that generate the n-th time scale) and IInk  (identifies the 
reactions that drive the n-th variable within the established equilibria). These numerical diagnostics can provide 
all required information in order to acquire system-level understanding and seek ways to redesign the process.

Finally, it was shown that CSP can distinguish the dual role a reaction might exhibit, via its opposing influ-
ence in the fast and slow dynamics. This is a feature that popular methodologies (such as, paper-and-pencil 
singular perturbation analysis, QSSA and PEA) cannot handle, since they cannot consider reactions having a 
significant fast and slow component. The same applies to sensitivity analysis, which cannot distinguish fast and 
slow reactions.

It is important to note that our automatic algorithmic analysis came to some conclusions that are very similar 
to the ones a pharmacokineticist would have derived based on detailed manual analysis of the system. For exam-
ple, in the very early time points after antibody administration (i.e., M = 0 period) the entry of antibody from 
plasma to endosome via pinocytosis (i.e., reaction 1) affects plasma PK the most, and minimizing this process 
with help achieve higher plasma concentrations. This aspect can be leveraged to design better antibodies for more 
efficient elimination of pathogenic targets. For example, recently sweeping antibodies have been developed that 
utilize surface FcRn or Fc-gamma receptors to increase cellular uptake of antibodies and associated pathogenic 
protein molecules (e.g., PCSK9, C5 etc.)61,62. Literature and our lab’s recent data, which show that positively 
charged antibody molecules demonstrate a higher cellular uptake rate and a reduced plasma exposure, also sup-
port the conclusion derived by the model over  here63,64. As the time progresses (i.e., M = 1 period), reducing the 
pinocytosis in the cells and increasing the recycling of FcRn bound mAbs (i.e., strengthening reaction 4) both 
will help maintain higher plasma exposure of mAbs. Even at later time points (i.e., M = 2 period), weakening 
reaction 1, strengthening reaction 4, weakening reaction 2 (i.e., reducing lysosomal degradation rate of mAbs), 
and strengthening reaction 3f along with weakening reaction 3b, will all help improve the plasma exposure of 
mAbs. This aspect of the process has been heavily utilized by the protein engineers to develop antibodies with 
very long half-lives. For example, mutations (e.g., YTE, LS etc.)46,65 have been introduced in the Fc region of the 
antibodies to improve their binding to the FcRn at pH 6.0, leading to half-life of several months (compared to 3 
weeks for wild-type antibodies in human). Our analysis also provides additional insight not generated by other 
methods. For example, identification of the period in which the influence of each reaction in increasing plasma 
PK of mAb is exercised (e.g., reaction 4 becomes influential when enough FcRn bound mAb complex has been 
accumulated). These unprecedented insights can further stimulate protein engineering efforts to discover and 
develop better antibody-based drug molecules.

This work demonstrates the ability of CSP in fully analyzing complex Pharmacokinetic and Quantitative 
Systems Pharmacology models. Due to the algorithmic nature of CSP, the type of analysis introduced here can 
be extended to much more complex models; i.e., models that include target mediated drug disposition (TMDD) 
to characterize the PK of target binding antibodies and antibody drug conjugates (ADC)66–69. The new features 
introduced by these models will be represented as additional terms in the governing Eq. (1). The influence of 
these terms can be easily assessed by the algorithmic tools of CSP.

Code availability
The datasets generated during and/or analysed during the current study are available in the CSP_PK_IgG reposi-
tory, https:// github. com/ patsa tzisd im/ CSP_ PK_ IgG.
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