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Evaluating the usefulness of VGI 
from Waze for the reporting of flash 
floods
Chris Lowrie1,2*, Andrew Kruczkiewicz1,5,6, Shanna N. McClain3, Miriam Nielsen4,7 & 
Simon J. Mason1

Using volunteered geographic information (VGI) to supplement disaster risk management systems, 
including forecasting, risk assessment, and disaster recovery, is increasingly popular. This attention is 
driven by difficulties in detection and characterization of hazards, as well as the rise of VGI appropriate 
for characterizing specific forms of risk. Flash-flood historical records, especially those that are 
impact-based, are not comprehensive, leading to additional barriers for flash-flood research and 
applications. In this paper we develop a method for associating VGI flood reporting clusters against 
authoritative data. Using Hurricane Harvey as a case study, VGI reports are assimilated into a spatial 
analytic framework that derives spatial and temporal clustering parameters supported by associations 
between Waze’s community-driven emergency operations center and authoritative reports. These 
parameters are then applied to find previously unreported likely flash flood-events. This study 
improves the understanding of the distribution of flash flooding during Hurricane Harvey and shows 
potential application to events in other areas where Waze data and reporting from official sources, 
such as the National Weather Service, are available.

Flash flood warning procedures in the United States. In the United States, the National Weather 
Service (NWS) mandate requires warnings for a variety of severe weather types, including flash floods. Mete-
orologists at local NWS Weather Forecast Offices develop standard operating procedures for warning issuance 
based on understanding of the area, potential socioeconomic impacts and available meteorological  data1–3. 
Warnings for flash floods are issued as geographic ‘storm-based’ (as opposed to county-based) polygons with a 
time duration, typically on the order of 3–10 h, and can cover as much as several hundred square kilometers or 
as little as 10 s of square  kilometers4. During the warning duration, or soon after it expires, the forecast-office 
staff undertakes a confirmation process to verify whether or not a flash flood is taking or has taken place within 
the issued warning  extent5. While the intent is to assess temporal overlap of any flash-flood warning with any 
potential flash  flood6, there can be significant challenges in doing so with a high level of confidence, due in large 
part to the sparseness of sensors relative to the spatial and temporal scales of flash  floods7,8. In addition to sen-
sors, confirmations of a flash flood are derived from reports gathered primarily from specialists—trained storm 
watchers, law enforcement, and emergency management—but also from social media, local businesses, and 
news  coverage2,9,10. If a flash-flood event is confirmed, the NWS Weather Forecast Office that issued the warning 
creates a Local Storm Report (LSR) containing a spatial–temporal point. LSRs are intended to be issued during 
the duration of the storm, to inform risk mitigation and response actions. Typically, a single confirmed report 
within the extent of the warning polygon is considered sufficient for verification, which speaks to the incentive 
to verify the warning, however this presents challenges in delineating the spatial extent and estimating the full 
impact of a flash  flood11. After any subsequent meteorological phenomena pass, the Storm Data  publication12 is 
created, which is intended to be the final source of truth for historical records.

Relative to other natural hazards in the US, there is a paucity in observational data for flash  floods13. Com-
pared to other flood types, historical records for flash floods are more likely to have significant  gaps14,15. However, 
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recent advances in unified flood and flash-flood data systems highlight the need for additional data sources to 
supplement reporting  systems16. In the United States in 2005, only 46% of flash-flood warnings were  verified17. 
Of the 54% of warnings that went unverified, it is unclear how many were false positives and how many coincided 
with actual, but unreported, flash-flood events.

For hurricane-related hazard risk, improving flood and flash-flood resilience is critical to building 
 resilience18,19. For example, for Hurricane Harvey, all but 3 of the 68 direct fatalities were associated with fresh-
water drowning, with additional fatalities associated with motor-vehicle crashes and isolation from necessary 
medical  services20, which could be indirectly attributed to flooding. A study of 62 hurricanes that made landfall 
in the United States found that the leading cause of death was freshwater  drowning21, with over half of all flood-
related deaths occurring in  vehicles22. Taken together, these findings point to a need to improve flash-flood warn-
ing systems, particularly for mobility-related risk, in order to improve hurricane preparedness and resilience. This 
should be done for landfalling as well as near-coastal cyclones, given the possibility for intense rainfall related to 
these types of storms to be spatially distant from the storm  center23,24. Considering options for event reporting 
beyond the conventional government and traditional media sources will help us expand and improve flash-flood 
warning systems where they are needed  most25–29.

VGI and citizen science for disaster risk management. VGI encompasses a wide variety of data 
sources created by platform users’ participatory actions, typically from mobile applications, that allow users 
to georeference an in-app action such as a social media post, possibly including text, photos or other media, 
attribution, and  metadata28. In the last two decades this type of information has shown significant potential as a 
cost-effective source of geographic data, including in a wide variety of disaster management contexts including 
heat  waves29,  drought30, riverine and coastal  floods31–34, and the assessment of shelter  availability35. For floods 
in particular, VGI has been used for event detection, information dissemination, and post-event  analysis33. 
One important benefit of VGI for disaster management is the ability to support decision making in near-real 
time situation analysis, referring to the properties of particular VGI applications that allow for real-time data 
 gathering34,36,37. Incorporating VGI into disaster-risk reduction (DRR) has created opportunities to increase 
local participation and promote the integration of local knowledge in the DRR  process38.

In operational contexts related to severe weather, VGI and mobile data is already in use. The NWS allows users 
to report information about storms through an online portal, Facebook, and  Twitter39. The U.S. Department of 
Transportation Federal Highway Association uses traffic flow data, provided by INRIX, a provider of Location-
Based Services data, to supplement real-time road sensors and aid situational  awareness40. NOAA and the NWS 
gather reporting from the mobile application  mPING41, which is used to supplement existing storm monitoring 
capabilities. Additionally, individual Weather Forecast Offices and news agencies may monitor social media for 
pertinent geographic information, although little evidence suggests this is standardized across all offices. The risks 
of VGI use, both the imprecise event descriptions and reporting guidelines, can be outweighed by the benefits 
of targeted use, especially in areas of limited data collection after disasters and/or with a lack of detailed event-
attribution  data34,42 and in areas with sharp gradients in socioeconomic  conditions43. This is especially true for 
VGI sources that harness actively contributed data, as opposed to data that is passively harvested as a byproduct 
of unrelated user  actions38. Data quality concerns should be addressed before assuming VGI integration will 
improve existing flash flood reporting  capacity44,45.

Methods for VGI quality assurance include: the use of trained data validators; the creation of user credibility 
metrics and built-in incentives for accurate reporting; and statistical methods to refine and transform  data46. 
Additionally, source applicability, semantic clarity, and meaningful descriptors of an event have been identified 
as an inherent aspect of VGI  use47,48. Interoperability is also an important consideration in VGI methodology, 
with the intention that VGI data should supplement, rather than replace, traditional  sources47,49,50. This focus 
on interoperability places focus on using VGI with analogous methodology to established reporting practices.

Geospatial methods for identifying meaningful information from VGI have included event  clustering34, 
space–time  statistics51, data mining to inherit properties from authoritative data  sources36, cross-model 
 validation52,53, and logistic  regression31. VGI event clustering relative to authoritative sources is a core compo-
nent of discerning meaningful information and source  credibility34.

Waze for disaster management. Compared to other social media applications, such as Twitter,  Waze54 
has seen less usage by the disaster management community. Waze is a mobile application for routing and turn-
by-turn directions, with a substantial interface for users to provide feedback on real-time road conditions. While 
Twitter receives a large amount of attention, driven by its large user base, the site’s deficiencies are well docu-
mented. These deficiencies include semantic ambiguity that can arise from analyzing text-based  posts55,56 and 
ambiguity in spatial and temporal data  referencing57. Additionally, language-independence has been highlighted 
as a key consideration for VGI  use34, which requires relevant metadata and attribution that is absent in Twitter. 
Waze, on the other hand, has a more limited usage domain—mobility—but is designed to provide maximum 
clarity for users within this domain. Given the value of Waze for traffic monitoring and pattern detection, and 
considering sufficient geographic accuracy, timely reporting and potential low latency and broad coverage, the 
crowdsourced data stream from Waze may be a valuable datasource for disaster risk  management58, including 
for flood preparedness and response.

Acknowledging the value of supporting emergency management activities, the Waze community maintains 
The Waze Virtual Emergency Operations Center (VEOC) a volunteer-driven effort that monitors Waze reports, 
local weather stations, and official reporting services, and provides real-time support during storm  events59,60. 
While the VEOC’s primary intention is to ‘keep the Waze map up-to-date’, the data is available for other analyses 
and decision making processes. The VEOC is a community effort related to and supported by Waze as a company, 
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but volunteer-led. The VEOC data source adds another layer of validation on top of in-app reports and addresses 
many of the known requirements for VGI use, with data contributed by Waze users with a mostly high degree of 
experience. Waze user events have explicit tags to report flooding, addressing any semantic ambiguity that may 
arise from text-based VGI. Waze users have a credibility score and incentives for accurate reporting, increasing 
the likelihood that data are more accurate than other platforms. Waze reports are likely to exceed the spatial 
and temporal referencing of other sources, due to Waze’s built-in incentives for timely reporting and accurate 
information, designed to help the app provide local road  conditions61. In the case of the VEOC, trained validators 
are reviewing flood reports from Waze users, as well as from local stations. The resulting dataset is focused on 
a particularly important set of storm risks—roadway flooding and flooding in areas that impact normal traffic 
flow conditions.

While Waze shows potential as a source of flood and flash-flood data, challenges remain. A primary concern 
is in understanding the scope of the Waze platform and data, particularly biases in the representativeness of its 
user  base38,62. Despite large sample sizes, VGI from social media is rarely representative of the  population38,63 and 
tends to overrepresent young and affluent citizens. Bias mitigation in VGI has emerged as a field, with important 
considerations for the use of VGI in decision  making62,64. While VGI bias mitigation is not the focus of this 
research, it is an important consideration in the use of VGI to assist in disaster-risk reduction.

Waze is designed to detect roadway-related risks and impacts. Increased documentation of roadway-related 
flood events is a priority, given mobility disruptions leading to stressors in related social systems and  services65. 
Further, with over half of all U.S flood-related drownings occurring within a  vehicle22, improvement of in-transit 
flood reporting can lead to improved methods of tailored flash-flood  warnings66 and potentially decrease indirect 
impacts of emergency response to other impacted  areas67,68. Considering these findings, Waze is an excellent 
candidate for describing road-related flash-flood risk, but the current iteration of the product is unsuitable for 
non-roadway risk, or more specifically, non roadway floods sufficiently distant from roads as they would not 
impact traffic flow.

Waze flood reports communicate flood-related hazards to drivers based on the existence of water on the 
road with little information about severity. As such, user perception of flood risk likely varies widely.. While 
Waze users may be motivated to accurately report conditions, they may not view their warnings in the context 
of authoritative flood guidance. Previous studies have demonstrated the use of data aggregation in conjunction 
with comparisons to authoritative sources to establish credibility for a source of  VGI49,53,69. The use of authorita-
tive flash-flood reports along with geospatial clustering indicates a way forward for transforming Waze flood 
reports into meaningful  information34, specifically the development of metrics to aggregate individual reports 
and alleviate biases and inconsistencies between users on any particular flood event. This paper focuses on the 
development of these magnitude validation metrics by creating a statistical methodology for associating Waze 
events to authoritative flash-flood reports such that clusters of Waze events can aid in flash-flood verification.

Methods
Methodology overview. This methodology establishes quantitative clustering parameters that mean-
ingfully relate Waze flood report intensity to LSR occurrence. The methodology is driven by several assump-
tions. First, we assume that LSRs are related to Waze flood reports, that this relationship is not meaningful or is 
overly noisy when comparing individual reports, and that some unknown level of Waze intensity is appropriate 
for determining a relationship between the Waze reports and LSRs. Second, we assume that the LSR record is 
incomplete and that by deriving thresholds for clustering we may draw new useful information out of the Waze 
reports. By assuming LSR incompleteness and the potential for new Waze information, we seek to answer the 
following questions:

1. “Which LSRs are best supported by spatially and temporally dense Waze reports?”
2. “How spatially and temporally dense is Waze around these LSRs?”
3. “Are there locations of equivalent spatial and temporally Waze report density where LSRs are not present?”

Data selection. We extracted Waze flood reports from the Hurricane Harvey  VEOC59. The Waze VEOC is 
available for many major storms in the United States. This effort involved processes for keeping road conditions 
up-to-date, such as verifying road conditions reported by users, as well as other crisis support functionality. The 
dataset consists of longitude, latitude, time (x, y, t) points, provided by Waze VEOC contributors, along with 
supplementary metadata denoting flooding. 2203 Waze reports were identified after filtering to the Hurricane 
Harvey boundary and time period as defined by  FEMA70 (Figs. 1 and 2).

We downloaded LSRs from the Iowa Environmental Mesonet, which maintains a GIS server of hazards issued 
by the National Weather  Service72. 125 LSRs were used after filtering for the FEMA extent and  duration70. While 
the FEMA declaration persisted through September 12th, LSRs were not issued after August 31st, and Waze 
clusters were not detected after September 2nd.

The Storm Data publication was downloaded from NOAA’s National Centers for Environmental Information 
 portal11. This file contained all storm points and was filtered to flash flood events during the duration and spatial 
extent of Hurricane Harvey.

Statistical methodology. This methodology provides spatial and temporal clustering parameters that act 
as thresholds to validate clusters of Waze reports. Waze flood events were sequentially aggregated into spatial 
and temporal clusters around LSRs using bivariate k-nearest-neighbor clustering and spatial density  analysis73,74. 
A specific number of Waze points (N) around a LSR denotes a cluster, and we derived a search radius around the 
LSR as the distance to include N points. Clustering was run for N = 10, 20, and 30 and calculations proceeded 
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independently for each value of N, with the final results for each N-value feeding into a measure of robustness 
(described below).

By deriving a spatial distance for inclusion, and ordering these distances, a distribution was created of the 
clustering density. For a given value of N, a smaller radius indicates tighter clustering and higher density, indicat-
ing agreement between Waze reports and a LSR. Given the need to eliminate Waze reports that were unrelated 
temporally even if close spatially (i.e. points in the same location, but days or weeks apart), the Waze points 
available for inclusion were constrained using a time window around the LSR, of [−1, + 6] h (Waze reports up 
to one hour prior and 6 h after the LSR). This window aligns with NWS guidance on temporal evolution of flash 
floods and related  impact75, as well as aligning with a sample of past Flash Flood Warnings of the  NWS2, a visual 
inspection of lags between peaks in the Waze and LSR data, and feedback from the Waze VEOC community. 
To represent these data visually, a geographic space–time cube is  used76. Figure 3 describes an example of tight 
Waze clustering around a single LSR for N = 10. Conceptually each LSR sits at the center of a cylinder, where 
the radius of the cylinder is the minimum distance required to include N points, and the height of the cylinder 
represents 7 h around the LSR.

The left tail of the spatial density distribution corresponds to the densest Waze reports, and choosing any 
percentile value on this distribution corresponds to choosing a spatial clustering threshold. Taken at the 5% 
level, each N-distribution yielded 7 LSRs and associated groups of Waze reports (125 LSRs * 0.05 = 6.25; results 
were rounded up). LSRs could be included as members of multiple N-groups, indicating that they were among 
the tightest clustered at multiple spatial scales.

The selected groups of high-spatial-density Waze reports were used in a top-hat kernel density estimate (band-
width of ± 30 min) to further refine a temporal density threshold beyond the previously defined 7 h window. For 
each Waze point in a cluster, the number of neighboring points within 30 min was counted yielding a measure 
of temporal density. Table 1 describes an example temporal distance matrix for a single cluster of Waze points. 
From each temporal distribution, high clustering was again identified using the top 5% of reports. This extraction 

Figure 1.  Hurricane Harvey’s spatial extent covering 51 counties in South Texas. FEMA issued the storm’s 
temporal extent as August 23–September 15,  201761. Waze flood reports (blue) and Local Storm Reports (red) 
are overlaid on the FEMA extent. Map created using ArcGIS  Pro71.
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of temporally dense Waze reports completes the last step of a transformation from N, an arbitrary number of 
Waze reports to include, to spatial and temporal thresholds S and T, summarized by Table 2.

S and T were then applied to the full 2,203 Waze reports to filter events not meeting the spatial and temporal 
density thresholds. This created a set of reports for each value of N that are at least as dense as the top 5% dens-
est reporting sets around the LSRs, but are no longer constrained to be near or related to an existing LSR. These 
density-supported reports will be referred to as Virtual Waze Reports, or VWRs.

The selected values of N are arbitrary and make determining a threshold challenging. Larger values of N 
describe clusters with more points and at larger spatial scales, as well as higher temporal density (given that more 
points are being included in the [−6, + 1] window). For this reason we derived a measure of robustness for each 
VWR by taking the number of supporting N-scales, ranging from 1 to 3 (Table 3). This measure of robustness 
across scales provides a conservative measure of value, showing reports that are verified at more than one scale.

To identify if the Waze dataset provided new information, VWRs were de-duplicated against the existing 
LSRs. This de-duplication was done by removing VWRs that occurred within 17.6 km of an LSR within the same 
time period([−6, + 1] window). This number, 17.6 km, was calculated as the midpoint of the spatial clustering 
distances for N = 10 and N = 30. Several values were visually inspected as de-duplication criteria, and upon 
review, 17.6 km successfully isolated reports that could reasonably be seen as providing new information. Other 
thresholds could be used as well, depending on the level of conservatism desired in reporting VWRs. We did 
not find that this algorithm and dataset were sensitive to a deduplication number above 15 km. The 17.6 km 
de-duplication value is also larger, and thus more conservative than, the median nearest neighbor distance of 
the LSR dataset under the same − 6 h to + 1 h time constraints, which is about 14.25 km. This provides support 
to the idea that an LSR could have been issued at the identified VWRs, while providing new information and 
aligning with reasonable criteria for newness.

We also compared the remaining VWRs to the Storm Data publication, to see if any of the de-duplicated 
points were verified. As the number of VWRs was small, this was done by visual inspection in GIS. Inclusion 
in the Storm Data publication serves as further evidence that VWRs are detecting flash floods. The goal of this 

Figure 2.  All Waze flood reports and Local Storm Reports. FEMA’s Hurricane Harvey extent is shown in 
grey, with the ground-referenced shapes representing reports occurring on August 23rd, and the vertical offset 
indicating time. The height of the floating county boundaries represent the latest Waze reports in the storm 
duration, September 12th. Map created using ArcGIS  Pro71.
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study is not to exceed, or even match, the Storm Data publication, as this is an eventual source of truth and 
does not necessarily provide any information on situational awareness during a storm. However, by eliminating 
any VWRs that coincide with LSRs, and showing that some or all of the remaining VWRs are contained in the 
Storm Data publication, we can show that VWRs are reporting actual flash floods and are improving situational 
awareness during a storm.

Figure 3.  Example radius to include 20 points, for a single LSR. 20 Waze reports are included within 14 km 
over a time span of just over 3 h. The Local Storm Report (red) and Waze reports (blue) are shown, with height 
corresponding to time. The base of the bars shows the exact x,y location of the report, with taller bars occurring 
later in time. The difference between the tallest and shortest bars is approximately 6 h. The upper-left inset shows 
the same view with axis gridlines. Map created using ArcGIS  Pro71.

Table 1.  Example temporal distance matrix for a group of highly clustered Waze events. Values are in seconds. 
Totals are for counts of Waze reports within 1800 s.

Waze report ID 707 720 722 723 733 746 790 805 1278 Total

707 0 7680 3480 1380 7080 7620 7980 3060 1740 3

720 7680 0 4200 6300 600 60 300 10,740 9420 4

722 3480 4200 0 2100 3600 4140 4500 6540 5220 1

723 1380 6300 2100 0 5700 6240 6600 4440 3120 2

733 7080 600 3600 5700 0 540 900 10,140 8820 4

746 7620 60 4140 6240 540 0 360 10,680 9360 4

790 7980 300 4500 6600 900 360 0 11,040 9720 4

805 3060 10,740 6540 4440 10,140 10,680 11,040 0 1320 2

1278 1740 9420 5220 3120 8820 9360 9720 1320 0 3
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Results
Table 2 describes the clustering parameters created during training of the algorithm on existing LSRs. These 
values describe the clustering of the tightest Waze reports around existing LSRs, at the 5% level. For example, 
5% of LSRs have more than 10 Waze reports within 9275 m and the 5% highest density of those Waze reports is 
8 reports within a 1 h time frame.

After clustering using the derived parameters, 13 VWRs were supported by 3 N-scales and 26 VWRs sup-
ported by 2 N-scales. These reports represent individual Waze reports that are supported by high spatial and tem-
poral density at more than one scale, but may correspond to existing LSR locations and thus may not provide new 
information. After de-duplication, 11 VWRs are supported by 2 N-scales and 13 by 3 N-scales. Figure 4 describes 
the VWRs remaining after de-duplication in two dimensions, for VWRs supported by 2 and 3 N-configurations. 
Several new locations are spatially identifiable, particularly between Bay City and Grangerland near the coast, 
and to the south-west of Conroe in the north. Note that VWRs may appear in clusters, with several Waze reports 
meeting the criteria for promotion to a VWR. The number of nearby Waze reports does not necessarily address 
the severity or likelihood of a flash flood occurring and could be filtered or reduced via some form of clustering, 
but also does not inhibit the interpretation of the results. VWR clusters are labeled based on nearby population 
centers or points of interest.

In addition to denoting new spatial reporting areas, several VWRs occur in the same location as existing LSRs, 
but notably earlier, showing the capacity of the Waze data to respond to events in real-time. Figure 5 shows a 
cluster of VWRs near South Austin, which report flooding around 9 pm on the 26th, while LSRs were not issued 
until the morning of the 27th. Similar early reporting capabilities were demonstrated by VWRs directly to the 
west of Houston, near the junction of Interstates 69 and 610 (Fig. 6). While Figs. 5 and 6 are similar to Fig. 3, the 
VWRs reports provided information on flood conditions notably earlier than the reported LSRs.

Across N = 2 and N = 3, the VWRs detected form five new clusters of flash floods, either earlier than exist-
ing LSRs (West Houston and South Austin) or sufficiently far from existing LSRs (near Bay City, Conroe, and 
Pinehurst). For VWRs reported earlier than LSRs, the later existence of an LSR is considered as evidence that 
these reports are genuine and that they are providing new information in the form of earlier alerts. For VWRs 
that denote new spatial locations, two of the three were later included in the Storm Data publication (Bay City 
and Pinehurst), while the third (near Conroe) was not.

Discussion
Operational implications. The results show that VWRs are capable of detecting flash floods that align 
with LSR issuance and the Storm Data publication, and that VWRs are capable of providing real-time situational 
awareness by both near-real-time reporting, and by issuing reports that are both valid (as measured by inclusion 
in the Storm Data publication) and were not previously reported by LSR issuance. These are seen as compelling 
evidence that this form of VGI could be picked up in a semi-automated operational context to improve local 
awareness of flood risk during a storm event.

Our results indicate value in continuing to understand, and potentially integrate, certain well-vetted VGI data 
sources into the tools used for LSR issuance. While full automation of report issuance using the Waze VEOC 
is not recommended without understanding the source’s representativeness of the overall population, particu-
larly socioeconomic biases and reporting  equities38,62,63,77, it is clear that the Waze VEOC is providing timely 
and relevant information during a storm, and that clustering methods can be used to establish a signal for VGI 
intensity relative to an LSR baseline. This points to a semi-automated form of VGI contribution for report issu-
ance, where Waze VEOC is monitored by a clustering algorithm, and VWRs are surfaced for WFOs to consider 
for issuance. Additionally, although the Waze VEOC serves a different overall purpose from NWS flash flood 

Table 2.  Spatial (S) and temporal (T) clustering values derived from N points. Spatial and temporal clustering 
values derived for N points.

N S (m) T (points within 30 min)

10 9275 8

20 16,636 15

30 26,017 21

Table 3.  Robustness of Virtual Waze Reports. Robustness is measured on a scale of 1–3, based on the number 
of N-configurations that support a given VWR.

Number of virtual Waze reports 
supported by N-configurations

Robustness Number of VWRs

1 203

2 26

3 13
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reporting, the two programs and any applicable trainings could be compared, with the goal of understanding and 
standardizing any overlap between the two processes. Finally, this data could be used within anticipatory action 
program development, which currently has seen little use in the context of flash floods and in urban areas. There 
have been few attempts to develop methods to identify which neighborhoods, far from the level of granularity 
of roads, are candidates for prioritization or deprioritization for anticipatory action when certain thresholds of 
flood risk are indicated within a  forecast78.

VGI applicability and representativeness. A critical next step in establishing the credibility of Waze is 
to understand the composure of the Waze sample and which groups and forms of risk may not be represented. 
Doing so allows for opportunities to understand the degree to which integration of such data into disaster man-
agement planning can have a negative, neutral, or positive influence on actions that have traditionally led to 
disproportionate impact on underserved populations and  communities79–81. Additional calibration would aid 
this research as well, particularly by understanding the typical traffic cycle. While the research presented here 
has proposed a global clustering value, the natural next step is to understand the deviation from normal Waze 
reporting behavior, in addition to how Waze reporting volume compares to actual traffic volume, and the rep-
resentation of drivers across socioeconomic status. Understanding the extent of this deviation would promote 
transparency in defining applicability of Waze data for representing flash flood risk in a more equitable manner, 
particularly if there are some populations such as older and non-white users that are underrepresented in the 
data, and if those communities’ movements are geographically biased. Using a longer-term Waze sample of an 
area would also help forecasters to understand the flood likelihood of a roadway as an input to flash flood warn-
ing issuance.

Method portability. Methods are derived under the assumption of an incomplete record, which creates a 
challenge for training and evaluating VWR quality using many forms of statistical learning. The methods here 
are intended to operate on incomplete authoritative datasets, but also on datasets where there is reason to believe 
that the VGI source and the authoritative source will overlap incompletely, such as is the case of roadway flood-

Figure 4.  Remaining Virtual Waze Reports after de-duplication. LSRs are denoted by red triangles, VWRs 
supported by exactly 2 out of 3 configurations of N are shown in light blue, and VWRs supported by exactly 3 
configurations are shown in dark blue. Note that while several new spatial clusters are apparent, the temporal 
dimension of flood reporting is not shown here. Clusters are labeled based on nearby population centers or 
points of interest. Map created using ArcGIS  Pro71.
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ing as a subset of all flash floods. Other forms of clustering and statistical learning may improve on the results 
presented here in the future, provided that the incomplete record is considered in the methods. The methods 
established here are simple, but could theoretically be extended to other VGI and authoritative sources, provid-
ing those sources meet well-established VGI criteria.

Conclusion
This research demonstrates the use of spatial–temporal statistics to derive signals from authoritative data sources 
for using VGI in disaster awareness, opening up a new tool in the disaster management toolbox. Future research 
may focus on studying the applicability of metrics across storms, particularly if derived thresholds can be applied 
across geographies with varying topography, land-use, Waze adoption rates, and biases within the Waze sample. 
This research has not included Digital Elevation Models, atmospheric data, or streamflow gauges, all of which 
would be valuable additions for deriving a Waze signal. Including these data sources is an important next step 
towards determining the danger of a flood, for example via the rate of flow. The nature of the methods presented 
here—methods built entirely on point-to-point distance metrics—allows for portability across datasets, as well 
as the potential to expand the methods to include arbitrary model outputs and sensor data.

In the context of flood management, Waze is an ideal VGI candidate to complement existing flood observa-
tions and address a particularly dangerous form of flash flood risk. Additional research should be prioritized to 
understand the Waze sample, including user tendencies and sample biases. However, it is important to consider 
how future development of VGI processes may or may not increase representation of disaster impacts in under-
served communities and that may reinforce existing disproportionalities. For next steps, we suggest prioritizing 
research on Waze representativeness and alignment with hydrological models to better describe flash flood onset 
and duration, extent, and impact.

Figure 5.  VWRs reported flooding to the South of Austin notably earlier than existing LSRs. The height of 
the bars represents time, with a difference of about 6.5 h between the VWRs (blue) and the LSR (red). In this 
example, VWRs appeared in the evening of the 26th, while the earliest LSRs were issued on the morning of the 
27th. Map created using ArcGIS  Pro71.
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Data availability
The data that support the findings of this study are available through Zenodo. DOI:10.5281/zenodo.5655741. 
Requests for future Waze VEOC events can be directed to the corresponding author.

Code availability
The code that supports the findings of this study are available through Github:. Stable branch: https:// github. 
com/ lowri ech/ Flash Flood Respo nse/ tree/ code- submi ssion- 11_ 10_ 2021. Master branch (may include updates 
after the time of writing): https:// github. com/ lowri ech/ Flash Flood Respo nse.
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