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MiR‑206 conjugated gold 
nanoparticle based targeted 
therapy in breast cancer cells
Ramesh Chaudhari, Simran Nasra, Nikita Meghani & Ashutosh Kumar*

MicroRNAs (miRNAs) are single‑stranded, non‑coding, 19–25 nucleotide RNA molecules that have 
been observed to be dysregulated in many diseases including cancer. miRNAs have been known 
to play an important role in cellular proliferation, differentiation, migration, apoptosis, survival, 
and morphogenesis. Breast cancer is heterogeneous in nature and contributed extensively to 
the increased mortality rate. miRNA can either be tumor‑suppressive or oncogenic in nature. The level 
of expression of miRNA changes according to the subtypes of cancer and the mutation responsible for 
different cancers. miRNA mimicry or inhibition are emerging possible therapies to maintain the level 
of miRNA inside the cells. In order to have proper miRNA mimicry, the major hurdle is to deliver the 
miRNA mimics at the site of tumor. Metallic nanoparticles with modified surface can be used to solve 
the problem of miRNA delivery. MiR‑206 is reported to be down‑regulated in Luminal‑A type of breast 
cancer. In the current manuscript, we aim to modify the surface of gold‑nanoparticles (AuNPs) with 
PEG moiety and allow miRNA to attach to it. The fabricated nano‑complex, not only delivered miR‑
206 but also caused cell death in MCF‑7 by arresting cells in the G0‑G1 phase and inducing apoptosis 
by downregulating NOTCH 3.

Breast cancer is one of the most common, amongst all the female malignancies in the world and is known to 
cause development of chemo-resistance and metastatic progression of cancerous  tissue1,2. Breast cancer is a 
highly heterogeneous disease, containing distinct yet complex histopathological patterns and clinical behaviours. 
In clinical facilities across, these intrinsic subtypes of cancer are recognized in the presence of immune-histo-
chemical molecules, like estrogen receptor (ER), progesterone receptor (PR), HER2 expression and Ki67 labelled 
 index1,3. The cancers are classified on the basis of the different immune histochemical molecules present which 
are also due to the difference in subsets of genetic and epigenetic abnormalities present in  them4. Approximately 
70% of breast cancers are ER-positive and/or PR-positive, hence the focus of the present study is on Luminal 
A, a type of breast cancer where the proliferating cells are hormone-receptor positive (estrogen-receptor and/
or progesterone-receptor positive), HER2 negative, and has low levels of the protein Ki-67, which subsequently 
facilitates in controlling the growth of  cells5. Previous studies have demonstrated differential expression of 
miRNA in different types of breast cells, including in different intrinsic subtype (as differentiated by the expres-
sion of different receptors) of breast  cancer6,7.

MiRNAs are known to be small, non-coding RNA molecule which regulates the translation and stability of 
mRNAs at the post-transcriptional  level8–10. In mammals, miRNA binding sites are found in 3′ untranslated 
regions (3′ UTRs), and its binding to the 3′ UTR halts translation or induces mRNA degradation, resulting in 
gene  silencing10. It is now well established that dysregulation of these miRNAs can influence the expression of 
oncogenes or pacify the expression of tumor suppressor genes. The dysregulation of certain microRNAs, which 
are known as oncomiR has been linked with specific cancer giving rise to particular oncogenic events. MiRNAs 
are either over-expressed (oncomiR) or down-regulated (anti-oncomiR) in cells, both of which can lead to 
cancer. Thus, it is necessary to maintain the level of miRNA throughout the cells either via silencing them or 
by delivering the mimics of miRNA. However, the major concern is the lack of an efficient and proper delivery 
system for miRNA.

Transfection reagents such as cationic lipids or polymers are used world-wide to deliver the miRNA, but their 
own cytotoxicity and low transfection efficiency are a big  concern11,12. To overcome these shortcomings, nano-
carriers including gold nanoparticles have been developed and are being tested for delivery of miRNA mimics. 
The importance of miRNAs in cancer treatment has been recognized increasingly for developing miRNA-based 
therapies. However, the controlled delivery of miRNAs at target cells in a desired amount and conformation is 
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still a  problem1. Gold nanoparticles are generally used to deliver miRNA mimics and are hindered by the need of 
complicated step to conjugate miRNA onto the gold nanoparticle. In this study, we developed a simpler method 
for the fabrication of miRNA loaded gold nanoparticles to deliver miR-206. This process also has a potential for 
establishing PEGylated AuNP as the universal carrier for miRNA mimic.

MiR-29, miR-10a, miR-99a, miR-103, miR-146, and miR-206 have been reported to be associated with Lumi-
nal-A type of Breast Cancer. MiR-206 functions as a tumor suppressor, inhibiting cell growth, migration and 
invasion and on down regulation causes  apoptosis11. MiR-206 levels in breast cancer cells when compared to 
normal breast cells are dramatically down  regulated12,13. When up-regulated in breast cancer, miR-206 was able 
to suppress breast cancer cell proliferation and colony formation by blocking the G1/S transition by targeting 
cyclin  D211,14. Inhibition of the growth of rhabdomyosarcoma (RMS), breast cancer, endometrial endometrioid 
carcinoma (EEC), lung cancer, and HeLa cells has been shown by the ectopic expression of miR-20615,16. Cell 
invasive and migratory ability has also been shown to be impaired by miR-206 in RMS, EEC, lung cancer, and 
HeLa  cells15. Hence, miR-206 has been used in the study as it is known to be down regulated in Luminal A type 
of breast  cancer17.

In the present study, we employed a functionalized AuNPs system for the delivery of miR-206 mimic and 
demonstrated that miRNA when delivered through gold nanoparticles is effective in treating Luminal A type of 
breast cancer by targeting the NOTCH 3 gene. Consequently, this nano-conjugate has the potential to be used 
as a universal delivery system for miRNA at the desired targeted site.

Results and discussion
Synthesis of PEG capped AuNPs. Gold nanoparticles (AuNPs) have received attention as a non-viral 
gene delivery vector due to their unique physicochemical properties such as shape, surface area, amphiphilic-
ity, biocompatibility, and better gene transfection efficiency. Researchers have developed amine-functionalized 
AuNPs for efficient intracellular delivery, however, the approach was limited to delivering chemically modified 
siRNAs  only18. It is highly likely that the function of miRNAs may be impacted by these modifications. Large-
scale production, annealing sense and antisense strands to make duplexes, and base pairing with target messen-
ger RNAs (mRNAs) have been largely impeded by these modifications. In addition, these non-viral nano-vectors 
are limited by drawbacks like low encapsulation efficiency, poor storage stability and slow endosomal  escape19. 
AuNPs can be potentially toxic sometimes because of the use of a reducing agent in its synthesis such as  NaBH4, 
cysteamine, CTAB, and  others19. Hence, in order to limit their toxicity, the citrate capping method was used. 
All the experiments were conducted using DEPC treated AuNPs, with the purpose of escaping any RNAases 
that can potentially degrade the miRNA. The effect of these treatments on the properties of AuNPs was assessed 
using UV spectroscopy and transmission electron microscopy (TEM) and our observation suggest no change 
in the morphology of AuNPs (Fig. 1). A robust loading of miRNA on AuNPs is a two-step process, the first of 
which is to attach  NH2-PEG-SH, which will not only make AuNPs, stable and less toxic but also will impart a 
positive zeta potential which is a cue for miRNA to bind.  NH2-PEG-SH capped AuNPs were further incubated 
with miRNA206 mimic (miR-206) for its attachment and the excess  NH2-PEG-SH was removed.

Characterization of miR‑206 mimic loaded AuNPs. The UV–Vis spectral analysis of AuNPs and 
DEPC treated AuNPs exhibited a change of 1 nm in wavelength with a slight increase in intensity as observed in 
the spectrum of DEPC treated AuNPs (Fig. 1A). This could be attributed to the additional temperature given to 
the AuNPs when autoclaved. It has been reported that DEPC treated AuNPs and AuNPs do not have any differ-
ence in their physicochemical  properties20. The oscillating electric fields of a light ray spreading near a colloidal 
nanoparticle interrelate with the free electrons causing a combined oscillation of electron charge that is in reso-
nance with the frequency of visible light. These resonant oscillations are termed as surface plasmons. For 30 nm, 
monodisperse gold nanoparticles, the surface plasmon resonance phenomenon causes absorption of light in the 
blue-green area of the spectrum (~ 450 nm) while red light (~ 700 nm) is reflected, generating a rich red color.

DEPC treated AuNPs were allowed to bind first with  NH2-PEG-SH and then with miRNA. The UV–Vis spec-
tral analysis of AuNPs, PEG – AuNPs, and miRNA—PEG—AuNPs showed a shift in the plasmonic resonance 
peak position of 6 nm between AuNPs and PEG – AuNPs and 10 nm between PEG – AuNPs and miRNA—
PEG—AuNPs (Fig. 1B). This shift could be attributed to an increase in the size of the nanoparticles possibly due 
to the binding of  NH2-PEG-SH molecule on the surface of AuNPs and then subsequent attachment of miRNA. 
The binding of  NH2-PEG-SH molecule on the surface of AuNPs has also been confirmed by the difference in 
peaks observed in FTIR spectra of both the molecules. The presence of a peak at wavelength 2999/cm and 1237/
cm represents the presence of thiol and amine group respectively (Fig. 1C). It has also been reported that bands 
near 600, 794, 1306, and 1631/cm are due to miRNA, while in the present study, the absorbance was observed at 
509, 803, and 1399/cm possibly due to the association of miRNA with  NH2-PEG-SH capped  AuNPs21.

The increase in the hydrodynamic size from 20.10 to 48.89 nm also confirms the attachment of PEG molecules 
on AuNPs. Additionally, the binding of PEG on Au nanoparticles lead to a shift in zeta potential from − 29.3 to 
+ 12.5 mV, as  NH2-PEG-SH is known to impart a positive charge. These positively charged PEG-AuNPs are then 
allowed to bind with negatively charged miR-206 mimic, which further results in an increased hydrodynamic size 
of around 16 nm and negative zeta potential of 16.4 mV (Table 1). It has also been observed that the positively 
charged AuNPs can form polymeric complexes with the negatively charged therapeutic agents such as miRNA, 
siRNA, etc. via electrostatic interactions that take place between the phosphate group of miRNA and amine 
group on the surface of PEG-AuNPs22.

Loading efficiency of miRNA on to the PEG—AuNPs. PEG capped AuNPs were incubated and stirred 
with 100 nM of miRNA for different time points. After the incubation, the nanoparticles were centrifuged and 
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unbound miRNA in the supernatant was measured using a spectrophotometer. The negative control miR is a 
random sequence miRNA mimic molecule that has been extensively tested in human cell lines and tissues and 
validated to not produce identifiable effects on known miRNA function. The binding of miRNA to PEG-AuNPs 
was also assessed using agarose get electrophoresis. The band visibility in (Fig. 2A) indicates the presence of 
unbound miRNA in lanes 1, 2, 3, and 4, while the lack of visibility of miRNA in lanes 5, 6, 7 and 8 provides the 
support for the complete binding of miRNA to PEG -AuNPs. The binding of miRNA was also confirmed by 
plotting percent miRNA binding over time (Fig. 2B). A time dependent increase in the binding efficiency of the 
miRNA was also observed at 0, 2, 6, 12 h. However, a plateau was observed after 24 h, with a binding efficiency 
of 74% and 76% at 24 and 48 h respectively. Hence, for a further experiment, the miRNA was allowed to bind 
only for 24 h.

Figure 1.  Characterization of formulated gold nanoparticles. (A) UV–Vis Spectra obtained for gold 
nanoparticles and DEPC treated gold nanoparticles. (B) UV–Vis Spectra of DEPC treated gold nanoparticles 
(Au NPs), PEG capped Au NPs (Au—PEG) and MiRNA coated PEG capped Au NPs (Au–PEG–MiRNA). (C) 
FTIR spectra for citrate capped AuNPs (bottom) and MiRNA–PEG (top) capped Au NPs represent the binding 
of  NH2-PEG-SH molecule on the surface of AuNPs. (D) Transmission Electron Microscopy (TEM) image 
obtained for PEG coated gold nanoparticles inset: histogram indicating particle size.

Table 1.  Hydrodynamic size and zeta potential of different nano-formulation using dynamic light scattering.

Hydrodynamic Size (d nm) PDI Zeta potential (mV)

Gold nanoparticles (AuNPs) 19.96 ± 0.03 0.266 ± 0.007 − 26.6 ± 1.35

DEPC treated AuNPs 20.10 ± 0.01 0.260 ± 0.011 − 29.3 ± 1.71

AuNPs–PEG 48.89 ± 0.13 0.370 ± 0.008 12.5 ± 2.71

AuNPs–PEG–miR negative control 64.94 ± 0.12 0.559 ± 0.005 − 16.4 ± 1.15

AuNPs–PEG–miR 206 65.27 ± 0.34 0.602 ± 0.006 − 18.8 ± 1.04
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Cytotoxicity of miRNA—PEG—AuNPs. Cytotoxicity of the formulation was assessed using cell viabil-
ity assay also known as MTT assay. MiR-206 has been reported to be down regulated in Luminal A type of 
breast cancer, hence MCF-7 cells were selected for assessing the effect of miRNA–PEG–AuNPs. Negative control 
miRNA treatment was also given to the cells and the observed response was considered as control. A substantial 
decrease in the cells number was observed when exposed to different concentrations of miRNA. All the con-
centrations showed high toxicity after 48 h of treatment. Ethyl methanesulfonate (EMS) was used as a positive 
control (Fig. 3).

At treatment concentration 5 nM, the cell viability drops to 68.10% and 53.88% for 6 and 24 h respectively. 
However, it has dropped to 17.60% after 48 h of exposure. This data indicates that when downregulated, miR-206 
was transfected with gold nanocomplex resulting in a higher cellular level of miR-206 and it helps in reducing cell 
viability. This also provides evidence for the fact that the PEG-AuNPs is not only an efficient method of delivery 
but also can safely deliver sensitive therapeutic agents with desired concentrations for effective treatment. It has 

Figure 2.  Percent loading efficiency of gold nanoparticles (A) Agarose gel electrophoresis of PEG 
Capped AuNPs incubated with miRNA at various time points. (1) 50 nM miRNA (2)100 nM miRNA (3) 
AuNPS + miRNA (2 h) (4) AuNPS + miRNA (4 h) (5) AuNPs + miRNA (6 h) (6) AuNPS + miRNA (12 h) 
(7) AuNPs + miRNA (24 h) (8) AuNPs + miRNA (48 h) (full-length gel image has been included in a 
“Supplementary Information” file) (B) Line plot showing percent loading of miRNA on PEG capped AuNPs. 
The data represents mean ± S.E. of three independent experiments.

Figure 3.  Concentration and time dependent percent MTT reduction of miRNA coated Au Nps in MCF-7 
cells. A negative control miRNA coated with Au Nps was considered as Control miRNA. The viability of the 
control cells was considered as 100%. Values represents mean ± S.E. of three independent experiments (*p < 0.05, 
**p < 0.001).
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been reported that when down-regulated miRNA are introduced into cells it facilitates apoptosis resulting in 
cell  death23.

Cell cycle progression analysis. Cell cycle progression was analysed using propidium iodide (PI) uptake 
assay in a flow cytometer. MiR-206 at all concentration was able to arrest the MCF-7 cells in G0/G1 phase. The 
arrest in G0/G1 phase increased in a concentration dependent manner with the maximum arrest observed at 
concentration 5 nM after exposure of 24 h (Fig. 4). In addition, a concentration dependent decrease in the popu-
lation of G2-M and S phase across all concentration was observed. As miR-206 arrests cells in G1 phase and 
regulates cell proliferation, hence its down regulation plays a vital role in cancer  progression24.

Apoptosis marker. Mitochondrial membrane potential. JC-1 dye was used to determine the mitochondri-
al membrane potential in a flow cytometer. MCF-7 cells were treated with control miRNA and miRNA coated on 
PEGylated AuNPs for 24 h and were assessed for alteration in their mitochondrial membrane potential (MMP). 
A significant (p < 0.05) increase in green fluorescence intensity 4.87–16.05% was observed at concentration 0.1–
5 nM at 24 h (Fig. 5). However, no significant increase in green fluorescence was observed across concentrations 
after 6 h of exposure. The increase in green fluorescence suggests the involvement of the mitochondria in the 
activation of apoptotic pathways. As the electron transport system of the cell is located at mitochondria and any 
disturbance in the MMP can lead to altered respiration and overall cellular metabolism.

Annexin V binding assay. Annexin V-PI dual staining assay was performed to assess the apoptotic cells. A 
significant increase in the percent apoptotic cells was observed across all concentrations with an increase in 60% 
apoptotic cells at concentration 0.1 nM after 24 h (Fig. 6). The data exhibits the presence of early apoptotic cells 
after the exposure with both AuNPs. This observation is also concurrent with the observations made in the loss 
of MMP at 24 h. This is also consistent with the previous studies that showed the occurrence of apoptosis after 
cells were treated with 206  miRNA17.

Figure 4.  The cell cycle distribution analysis using flow cytometry in MCF-7 cells. (A) The cell cycle 
distribution histogram of cells treated with 0.1 nM, 1 nM, 2.5 nM and 5 nM of miRNA -206 mimic coated Au 
Nps for 24 h. (B) Graphical representation of cell cycle arrest after 24 h.
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Cellular pathway analysis. Cellular pathway analysis was conducted by analysing the mRNA expression 
pattern of target genes using real time PCR. The increase in mitochondrial membrane potential and presence 
of apoptotic cells provides an indication towards the activation of mitochondria mediated apoptosis. Hence, to 
explore this pathway in detail the expression of a regulatory gene such as BAX, BCL2, Caspase 8, and 9 were 
selected. NOTCH 3 is a gene associated with the down regulation of miR-206. Hence MCF-7 cells were treated 
with various concentrations of miRNA nanocomplex for 24  h. A concentration dependent increase in BAX 
expression and decrease in BCL2 expression was observed in the treated cells (Fig. 7). This is consistent with the 
increase in mitochondrial membrane potential thus confirming the mitochondrial activation of apoptosis. How-
ever, the lack of significant change in expression of both the caspases suggests that a caspase independent path-
way is activated which is also a common phenomenon in breast cancer  cells25,26. However, in order to confirm 
that the activation is caspase independent the gene expression of caspase 6 and 7 too need to be studied further.

Figure 5.  Evaluation of mitochondrial membrane potential (MMP) in MCF-7 cells using flow cytometer. (A–E) 
Flow cytometric scatter plot for JC-1 in cells treated with different concentration of miRNA coated AuNPs (F) 
camptothecin (G) Bar graph represents the percentage of JC-1 monomer positive cells (%MMP loss). Values 
represents mean ± S.E. of three independent experiments (*p < 0.05, **p < 0.001).
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Various studies acknowledge that miR-206 is a tumor suppressor that is downregulated in various tumors and 
is involved in cancer metastasis. NOTCH3, an established target of miR-206, has also been reported to be often 
expressed in cancer samples and has a capacity in the modulation of cell proliferation and tumorigenic potential 
in certain xenograft  models27. The observation demonstrates a significant decrease in NOTCH 3 expression 
and BCL2 expression while the simultaneous increase in BAX expression is a route via which miR-206 works, 
confirming the up-regulation of miR-206 directly links to the down regulation of NOTCH 3.

Conclusion
In the present manuscript, an efficient method for delivering sensitive therapeutic agent like miRNA has been 
demonstrated, and a similar approach can be used to deliver siRNA and other therapeutic agents. The synthesized 
nano-complex contains AuNPs and  NH2-PEG-SH and together form PEGylated AuNPs. Apart from being able to 
electrostatically bind to miRNA, the nano-complex has a major advantage of easy to conjugate with therapeutic 
agents. A small concentration in nanomolar (nM) loaded onto nano-complex is able to cause cell death of cancer 
cells. MiR-206 when given via gold nano-complex was able to stop cell proliferation, induce G0-G1 cell arrest 
and change the mitochondrial membrane potential.

MiR-206 works via different pathways in different cells; it is often down-regulated via the up-regulation of 
NOTCH 3 or in some rare cases up regulated and is associated with the Cyclin B1. However, in almost all different 
types of breast cancer, miR-206 has been reported to be down regulated and is said to target NOTCH 3. The up 

Figure 6.  Estimation of apoptosis in MCF-7 cells after treatment. Flow cytometric scatter plot of PI vs 
Annexin-FITC (A–E) various concentration of miRNA coated AuNPs (F) Camptothecin (1 µg/mL) was used as 
positive control. (G) Bar graph represents the percent apoptotic population induced by miRNA coated Au Nps. 
Values represents mean ± S.E. of three independent experiments (*p < 0.05, **p < 0.001).
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regulation of miR-206 mimic using gold nano-complex, not only showed increased expression of BAX but also 
decrease expression of NOTCH 3, which suggests that the miRNA delivered to the cells in intact conformation 
and there are no structural or any sort of changes in the miRNA which might lead to loss of activity of miRNA-
206 mimic delivered to the cells (Fig. 8). Thus, the described method can be used as a potential alternative to 
deliver the therapeutic agents.

Materials and methods
Materials. Chloroauric acid  (HAuCl4), sodium citrate  (Na3C6H5O7), diethylpyrocarbonate (DEPC) were 
obtained from Invitrogen, Ethyl Methane Sulfonate (EMS), Polyethylene glycol (PEG average molecular weight 
 (Mn-800)) were procured from HiMedia, miRNA − 206 mimic (UGG AAU GUA AGG AAG UGU GUGG), negative 
miRNA control (GGU UCG UAC GUA CAC UGU UCA) from Sigma, Agarose, Ethidium bromide (EtBr), 2 M Tris 
base, acetic acid, 0.5 M EDTA (pH 8), Milli Q water, loading dye, Modified Eagle’s Media (MEM), Fetal Bovine 

Figure 7.  Determining Relative Expression of genes in MCF-7 cells after exposed to various concentration 
of MiRNA–PEG–Au NPs for 24 h using RT-qPCR. GAPDH was considered as endogenous control while 
expressions of BAX, BCL2, Caspase 8, 9 and Notch 3 were studied due to increase in mitochondrial membrane 
potential and NOTCH 3 being directly associated with miRNA 206. Values represents mean ± S.E. of three 
independent experiments (*p < 0.05, **p < 0.001).

Figure 8.  Schematic representation of the study.
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Serum (FBS), sodium bicarbonate  (NaHCO3), Gibco Antibiotic–Antimycotic solution, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT), Dimethylsulfoxide (DMSO), 5,5,6,6′-tetrachloro-1,1′,3,3′ tetra-
ethylbenzimi-dazoylcarbocyanine iodide (JC-1) dye, FITC-Annexin V, Propidium iodide, TRIzol Reagent, and 
Triton-X100 were obtained from Thermo Fisher.

Synthesis of gold nanoparticle. The synthesis of citrate-capped gold nanoparticles (AuNPs) of 13 nm 
diameter was done using the method reported by Crew et al.21. Concisely, 5 mL of freshly prepared 38.8 mM 
sodium citrate  (Na3C6H5O7) was added to a boiling solution containing 45  mL of 1  mM chloroauric acid 
 (HAuCl4). The solution was heated for 30 min. Subsequently, the synthesized citrate-capped gold nanoparticles 
were treated with 0.1% diethylpyrocarbonate (DEPC) for 12 h alongside stirring and then autoclaved at 121 °C 
for 60 min.

Capping of PEG on synthesized AuNPs. The PEG capped AuNPs (PEG-AuNPs) were synthesized using 
a method reported by Manson et  al.28 with slight modification. In order to synthesize PEG capped AuNPs, 
16.8 μg of  NH2-PEG-SH was added to the 1 mL of DEPC treated AuNP solution (1.9322 mM) at room tempera-
ture. The solution was agitated at room temperature for 2 h to assist for the exchange of the citrate molecules 
with PEG molecules. Centrifugation of the obtained AuNPs was performed using Centrifuge 5424 R, Eppendorf 
at 10,000 rpm for 90 min, at 4 °C, in the sets of 1  mL29. 900 µL of the supernatant was drawn out, and the pellet 
of AuNPs was obtained. 900 µL of DEPC treated water was then added and stirred, to make up the volume up 
to 1 mL.

MiRNA‑206 mimic loading on PEG capped AuNPs. 1 mL of  NH2-PEG-SH capped AuNPs was incu-
bated with 1000 nM of miRNA206 mimic and stirred at 25 °C in Thermomixer comfort, Eppendorf for 24 h. 
Subsequently, the solution containing the formulated nanoparticles was centrifuge at 10,000 rpm, for 30 min, at 
4 °C to eliminate the unbound miRNA. The nanoparticles were then re-suspended in DEPC treated water. Simi-
larly, the negative control miRNA nanoparticles were synthesized to be used as the negative control.

Characterization of miR‑206 mimic loaded AuNPs. Characterization of the following samples and 
controls were performed:

A. Citrate capped AuNPs,
B. DEPC treated AuNPs (AuNPs),
C. PEG capped AuNPs (PEG–AuNPs),
D. PEG capped AuNPs loaded with Negative miRNA control (miR-Neg–PEG–AuNPs)
E. PEG capped AuNPs loaded with miR-206 mimic (miR-206–PEG–AuNPs)

UV–visible spectra for each sample were recorded using a SYNERGY-HT multiwell plate reader (Bio-Tek, 
USA) using the Gen5 software in the range of 300–700 nm, at 1 nm increments in the wavelength.

Hydrodynamic size and zeta potential of the above listed samples were determined by transferring 1% aqueous 
solution of nanoparticles into a disposable polystyrene cuvette and standard zeta cuvette and measured using a 
Zetasizer Nano-ZS equipped with 4.0 Mw, 633 nm laser (Model ZEN3600, Malvern Instruments, Malvern, UK). 
The samples were analysed three times at 25 °C.

Infrared spectra of DEPC treated AuNPs and PEG capped AuNPs were obtained using PerkinElmer FT-IR 
Spectrometer. The aqueous solution of samples was dried and mixed with potassium bromide (KBr) to obtain 
a fine powder which was pressed onto the discs. All spectra were measured at a resolution of 1/cm and over a 
wavelength range of 4000–400/cm.

Determining the miRNA loading efficiency. In order to evaluate the loading efficiency of miR-206 
mimic and the negative control, onto the PEG capped AuNPs, was obtained by determining free miRNA 
 concentration30. PEG capped AuNPs were incubated and stirred with 100 nM of miRNA for a duration of 2, 12, 
24, and 48 h. After the incubation, the nanoparticles were centrifuged at 10,000 rpm for 30 min at 4 °C to remove 
all the unbound miRNA. Unbound miRNA in the supernatant was determined by measuring absorbance with 
of UV–Vis spectrophotometer at 260, 280, and 320 nm. The miRNA loaded was measured as the percentage of 
miRNA loaded to the total amount of miRNA added initially.

Validation of miR‑206–PEG–AuNPs using agarose gel electrophoresis. Gel electrophoresis was 
carried out for the validation of miR-206 conjugation with PEG-AuNPs. After the incubation, the supernatant 
was collected and subjected to 1% agarose gel containing ethidium bromide dye (EtBr) and run in tris acetate 
buffer at 110 V for approximately 30  min22. The gel was photographed using GE ImageQuant LAS 5000.

Cell culture. The human breast adenocarcinoma cell line, MCF-7 was obtained from National Centre for 
Cell Sciences, Pune, India, cultured in MEM media and supplemented with 10% FBS (heat inactivated), 0.2% 
sodium bicarbonate, and 10 mL/L antibiotic and antimycotic solution, at 37 °C under a humidified atmosphere 
of 5%  CO2. Cells were treated with different formulations and miR–Neg–PEG–AuNP was used as a negative 
control in all the experiments.
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Cell viability assay for the formulated AuNPs on MCF‑7 cell‑line. The cytotoxic effect of AuNPs 
was determined by performing an MTT assay according to Mosmann et al.31 and with a slight modification with 
Shukla et al.32. In brief, the cells (1 ×  104 cells/well) in 100 µL of culture medium were seeded in 96-well plates 
and incubated for 40 h. Cells were then exposed to different concentrations of 0.1 nM (nano Molar), 1 nM, 
2.5 nM, and 5 nM of miR-206–PEG–AuNPs for 6 and 24 h. MiRNA’s interference with the assay reagents was 
also assessed using a cell-free system, where miRNA’s alone were incubated with the assay reagents, including 
dye and buffers, and the absorption was monitored by spectroscopy. Negative control miRNA was allowed to go 
through the same process. The results were assessed by measuring the absorbance of the end product at 595 nm 
wavelength using a SYNERGY-HT multiwell plate reader (Bio-Tek, USA) using the Gen5 software.

Propidium iodide uptake assay for cell cycle analysis. The distribution of DNA in the cell cycle was 
studied by using FACSCalibur, BD Bioscience flow cytometer. About 3 ×  105 cells/well were seeded in six-well 
cell culture plates and the treatment of different  concentrations33 of nanoparticles was given to cells for 24 h. 
After the removal of treatment, cells were harvested and centrifuged at 135g for 10 min at 37 °C. Ice-cold ethanol 
(70% in 1 × PBS) was used to fix the pellet which was then incubated at − 20 °C for 30 min. Further centrifugation 
was carried out, followed by resuspension of pellet in lysis buffer (0.2% triton in 1 × PBS). After incubation at 
4 °C for 30 min, cells were centrifuged and resuspended in 20 μg/mL RNase prepared in 1 × PBS and incubated 
at 37 °C for 30 min. Final centrifugation was carried out and cells were resuspended in 1 × PBS and stained with 
10 μL propidium iodide (PI) (1 mg/mL) followed by incubation at 4 °C until analysed by flow cytometry.

Apoptosis assays. Mitochondrial membrane potential. In order to explore the effect of miR-206 on mi-
tochondrial membrane potential, JC-1 dye was given to cells after being treated with miRNA loaded AuNPs 
following the previously reported  studies34. Concisely, in a 6 well plate, 3 ×  105 cells/well were seeded and treated 
with AuNPs loaded with miRNA for 6 h and 24 h at concentrations 0.1 nM, 1 nM, 2.5 nM, and 5 nM. 1 μM 
Camptothecin was used as the positive control. After removal of treatment, cells were washed with PBS and 
incubated with 10 μM of JC-1 dye for 15 min at 37 °C. The cells were analyzed using a BD FACSCalibur flow 
cytometer.

Annexin V assay. Cells actively undergoing apoptosis were identified by staining with FITC-Annexin V and 
PI according to the manufacturer’s protocol (BD Biosciences, San Jose, CA, USA). Briefly, 3 ×  105 cells/well were 
seeded in a 6 well culture plate for 40 h prior to treatment. Cells were treated with the nanoparticle formulation 
at different concentrations for 6 and 24 h. 1 μM camptothecin was used as the positive control for this assay. 
After removal of treatment, cells were harvested and washed with PBS, resuspended in 100 µL binding buffer 
containing 5 μL of FITC-Annexin V and PI and kept at room temperature in the dark, after incubation, 400 μL 
of binding buffer was added to each sample and analyzed using flow cytometer.

RNA isolation and differential gene expression analysis using RT PCR. The total RNA was 
extracted from cells after delivery of miRNA loaded AuNP using  Trizol35 at different concentrations. The cells 
were treated for 6 and 24 h. RNA concentration and quality were determined with a SYNERGY-HT multiwell 
plate reader (Bio-Tek, USA). cDNA was synthesized using the verso c-DNA synthesis kit. Equal loading was 
ensured by an internal control (GAPDH). Quantitative real-time PCR was performed with a SYBR Green Kit 
using the housekeeping gene GAPDH as a control (Table 2). Gene expression was quantified by the delta delta 
CT method.

Statistical analysis. All the experiments were carried out in triplicates and the results were presented as 
means ± standard error means (SEM). ANOVA was used for statistical analysis followed by Dunnett’s post hoc 

Table 2.  Details of primers used in RT qPCR to assess the gene expression.

Primer name Primer sequence

GAPDH-forward CAG GAG GCA TTG CTG ATG AT

GAPDH-reverse GAA GGC TGG GGC TCA TTT 

BAX-forward CCC GAG AGG TCT TTT TCC GAG 

BAX-reverse CCA GCC CAT GAT GGT TCT GAT 

BCL2-forward CTG CAC CTG ACG CCC TTC ACC 

BCL2-reverse CAC ATG ACC CCA CCG AAC TCA AAG A

Caspase 8-forward GGT CAC TTG AAC CTT GGG AA

Caspase 8-reverse AGG CCA GAT CTT CAC TGT CC

Caspase 9-forward GTG GAC ATT GGT TCT GGA GGAT 

Caspase 9-reverse CGC AAC TTC TCA CAG TCG ATG 

NOTCH3 forward primer TCT TGC TGC TGG TCA TTC TC

NOTCH3 reverse primer TGC CTC ATC CTC TTC AGT TG
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multiple comparison tests from Graph Prism-8.0. In all the cases, the p-value less than 0.05 was considered as 
statistically significant.
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