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Detection and identification 
of drug traces in latent fingermarks 
using Raman spectroscopy
Mohamed O. Amin1, Entesar Al‑Hetlani1* & Igor K. Lednev2*

Recent advancements in analytical techniques have greatly contributed to the analysis of latent 
fingermarks’ (LFMs) “touch chemistry” and identification of materials that a suspect might have come 
into contact with. This type of information about the FM donor is valuable for criminal investigations 
because it narrows the pool of suspects. It is estimated that at least 30 million people around the 
world take over‑the‑counter and prescription nonsteroidal anti‑inflammatory drugs (NSAIDs) for pain 
relief, headaches and arthritis every day. The daily use of such drugs can lead to an increased risk of 
their abuse. In the present study, Raman spectroscopy combined with multivariate statistical analysis 
was used for the detection and identification of drug traces in LFMs when NSAID tablets of aspirin, 
ibuprofen, diclofenac, ketoprofen and naproxen have been touched. Partial least squares discriminant 
analysis of Raman spectra showed an excellent separation between natural FMs and all NSAID‑
contaminated FMs. The developed classification model was externally validated using FMs deposited 
by a new donor and showed 100% accuracy on a FM level. This proof‑of‑concept study demonstrated 
the great potential of Raman spectroscopy in the chemical analysis of LFMs and the detection and 
identification of drug traces in particular.

Fingerprints are among the greatest discoveries of forensic sciences and have been employed for decades as the 
primary biometric means of human individualization. Establishment of a clear connection between a questioned 
fingermark (FM) and an individual entails a minute comparison of the morphological pattern of the FM with a 
reference material (e.g., a fingerprint from a suspect)1. However, this forensic application of FM is based on the 
comparison with a known FM either collected from a suspect or found in the database. The biochemical com-
position of a FM contains numerous information about the donor, including  age2,  sex3, health  status4 and other 
characteristics that may have been previously overlooked. Such characteristics can be identified by the presence 
of thousands of compounds in FM residue originating from both endogenous and exogenous components. 
Endogenous substances result from the natural secretion of the human body, such as lipids, waxes, amino acids, 
and proteins, while substances that come in contact with fingertips prior to deposition (e.g., drugs, cosmetics, 
explosives) are often referred to as exogenous substances. In addition, semi-exogenous substances can also be 
found in FMs; these substances result from compounds that are ingested and then excreted in their metabolized 
and unmetabolized forms through sweat (e.g. drugs, food and drink components)5.

These exogenous substances reflect information about the individual’s lifestyle and therefore have been the 
focus of several recent  studies6. Thus, chemical analysis of the contaminants in FMs has served as a mainstay 
in forensic investigations, producing prosecutorial evidentiary  data5. For this purpose, several analytical tech-
niques have been employed for the chemical analysis of FMs, such as gas chromatography-mass spectrometry 
(GC–MS)7, ultra-performance liquid chromatography-mass spectrometry (UPLC–MS)8, laser desorption/
ionization-mass spectrometry (LDI-MS)9 and others.

Owing to their inherent nondestructive nature and the need for little to no sample pretreatment, vibrational 
spectroscopic techniques, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and 
attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, have great potential in foren-
sic  applications10–12. Vibrational spectroscopy has garnered a considerable amount of attention in the field of 
FM  analysis13. A comprehensive review by Ewing and Kazarian discussed the use of vibrational spectroscopic 
imaging to obtain the chemical composition of FMs and exogenous  materials14. In particular, ATR-FT-IR spec-
troscopic imaging has been utilized for the analysis of latent FM and its changes under controlled humidity 
and  temperature15,16. Furthermore, Kazarian and coworkers have investigated the use of common adhesive tape 
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and polydimethylsiloxane (PDMS) film along with ATR spectroscopy to detect drugs of  abuse17. Commercial 
gel lifters and ATR-FTIR spectroscopy have been used to generate chemical imaging from a different depth of 
 FMs18. In addition, FM contaminated with cosmetics on porous and nonporous surfaces have been  analyzed19.

Raman spectroscopy, through its technological advancement, has enabled efficient detection of several forensi-
cally relevant contaminants and household products in FM. For instance, significant strides have been made in 
the detection of explosive residues in FMs, which is of importance in preventing terroristic attacks on  civilians20,21. 
In addition, drug-contaminated FMs are valuable evidence that can be used to reconstruct various types of crime 
scenes, such as suicide, drug abuse, drug manufacturing and others. In this regard, Raman spectroscopy has 
been applied in two different studies that detected drugs of  abuse22, including codeine, cocaine, amphetamine, 
barbital and nitrazepam and adulterants, as well as caffeine, aspirin, paracetamol, starch and talc  powders23 in 
FM impressions. Furthermore, FMs contaminated with the drugs of abuse including ecstasy, cocaine, ketamine 
and amphetamine have been lifted with adhesive tape and analyzed using Raman  spectroscopy24. In another 
study by West and  coworkers25, Raman spectroscopy was employed for the analysis of FMs contaminated with 
over-the-counter (OTC) analgesic substances. These FMs had been treated with powder and lifted with adhesive 
tape. The findings indicated that the application of powders did not hinder the identification of contaminants in 
FM impressions. Additionally, analysis of drug powder and additive doping in FMs was investigated using tape 
lifting and Raman microscopy; the obtained spectra were deconvoluted using the multivariate technique Band-
target entropy minimization (BTEM)26. These combined methods enabled the identification of the test substances 
using their characteristic Raman signatures. Based on the above literature, limited studies have focused on the 
analysis of drug-contaminated FMs using Raman spectroscopy despite its importance in forensic cases.

This study expands the potential use of Raman spectroscopy for detecting drugs in contaminated FMs 
obtained by gentle touching nonsteroidal anti-inflammatory drug (NSAIDs) pharmaceutical tablets purchased 
from a local drugstore. Two important aspects of this approach for preparing mock contaminated FMs are con-
sidered. (1) NSAIDs pharmaceutical tablets contain active ingredient(s) as well as other excipients that makes 
the mock samples more realistic. (2) Touching a tablet is practically important and further expands the variety 
of drug-contaminated FMs, which can be analyzed by Raman spectroscopy. Five commonly used NSAID tablets 
were selected for this study and subjected to Raman analysis. These drugs share many of the same functional 
groups, and subtle differences can be seen in their Raman spectra when they are present in FMs. Therefore, the 
differentiation of FM samples was evaluated using multivariate data analysis. Initially, principal component 
analysis (PCA) was carried out on the preprocessed spectra for the removal of multivariate outliers, defined 
as spectra with high Hoteling’s  T2 and Q residuals values in all the datasets, and they were removed before any 
further statistical analysis was performed. Further advanced statistical analysis was applied, including a genetic 
algorithm (GA), to select the most informative features in the spectra in the training process of partial least 
squares-discriminate analysis (PLS-DA) to distinguish between FM classes. Both internal and external validations 
were applied to evaluate the performance of the model. The obtained results clearly demonstrate that Raman 
spectroscopy is a powerful analytical method that can detect traces of drugs in FMs and define the type of drug 
with which the FM made contact.

Experimental
Sample preparation. Initially, hands were washed with water and soap and then thoroughly dried. The 
donor was requested to rub his index finger on the forehead, nose and chin five times to eventually produce a 
sebum-rich mark and to stimulate natural grooming behavior, after which the finger was placed directly on a 
microscope slide covered with aluminum adhesive tape (Nashua tape, Home Depot). The NSAID-contaminated 
FMs were prepared as follows: the donor was requested to rub his index on the forehead, nose and chin five times 
and then touch a pharmaceutical tablet purchased from a local drugstore containing one of these active ingre-
dients: aspirin (500 mg), ibuprofen (400 mg), diclofenac (50 mg), ketoprofen (100 mg) or naproxen (500 mg) 
for 10 s. The contaminated FMs were applied to a microscope slide covered with aluminum tape for Raman 
spectroscopic analysis. All FMs were analyzed within 30 min post collection. All procedures were approved by 
the Health Sciences Centre Ethical Committee of Kuwait University and in accordance with the ethical stand-
ards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards. An informed consent was obtained from all subjects and/or their 
legal guardian(s).

Instrumentation and spectra collection. Spectra of the FMs were acquired utilizing a Renishaw inVia 
confocal Raman microscope with a 1200 L/mm grating and a CCD camera. The analyses were carried out using 
a 785 nm diode laser for excitation, and the spectra were collected in the range of 400 to 1800  cm−1, employing 
50% laser power and 20 s exposure time. A longitudinal spot was attained at a high optical magnification of 
xL50, and WiRe 4.4 software was used to control the microscope. The instrument was calibrated with a silicon 
standard prior to analysis, and a vibrational band corresponding to a silicon wafer was used for this purpose. 
An automatic mapping stage was used for the analysis, and a total of 52–56 spectra were obtained from different 
spots to account for sample heterogeneity.

Data analysis. Dataset preparation and statistical analysis were carried out using PLS Toolbox 8.9.1 (Eigen-
vector Research, Inc., Wenatchee, WA) operating in MATLAB R2020b (MathWorks, Inc., Natick, MA)27. All the 
spectra were baseline-corrected by automatic weighted squares, normalized and mean centered. A PCA model 
was constructed to identify multivariate outliers, which were removed before any further statistical analyses. 
Genetic algorithm (GA) was used to determine the main spectral features to be included in the training process 
of PLS-DA. A population size of 64 and generation number of 100 were used in the GA spectral selection. Dou-
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ble crossover was set for the breeding crossover rule, and the mutation rate was 0.005. A supervised learning 
technique, PLS-DA, was applied to distinguish between different FM classes and identify the drug(s) present in 
the questioned FMs.

Validation tests. In this study, the internal validation of the PLS-DA model was carried out using the Vene-
tian blinds method of cross validation (CV) with ten splits. In theory, the internal CV allows for testing how well 
the available dataset supports the classification hypothesis. A true validation of a classification model requires its 
testing on an external data, which is not used for building the model and has a size of at least 30–40% of the train-
ing dataset. For these reason, we conducted both an internal CV and external validation. The Venetian blinds 
CV involved a sequence of steps, in which a subset of ten spectra was removed from the training dataset and a 
sub-model was constructed using the remaining spectra. As a result, each sub-model was tested with spectra, 
which have not been used to build the model. The iterations were continued until each spectrum in the training 
dataset was removed once.

To further increase the reliability of the proposed method, an external validation using an independent 
dataset was employed. In this study, natural and contaminated FMs were obtained from a second donor follow-
ing the same procedure mentioned above. The spectra were baseline-corrected by automatic weighted squares, 
normalized and mean centered and introduced to the PLS-DA model for prediction purposes. This validation 
demonstrated that the classification model built based on contaminated FMs obtained from one donor can be 
reliably applied for determining the NSAID drugs in contaminated FMs obtained from another donor.

Results and discussion
Spectral analysis of NSAIDs contaminated FM. FM residue is a complex mixture composed of 
numerous compounds originating from different sources and includes organic constituents (e.g., protein, lipids, 
vitamins and amino acids), ions  (Cl−,  K+,  Na+,  Mg2+) and trace metals (Zn, Cu, Fe) resulting from the natural 
secretions of the  skin5. While several factors can influence the chemical composition of FMs such as donor, 
environmental conditions, type of substrate, and substances that may have come in contact with the fingertips, 
such as drugs, cosmetics and explosives. Specifically, drug-contaminated FMs can be discovered in a variety of 
crime scenes, including suicide cases, drug abuse, drug handling or street drug diluents that pertain to several 
different forensic scenarios. Due to the large number of drugs that can be employed for these purposes, we 
selected NSAIDs tablets for our proof-of-concept study because they are common drugs that can be found in 
any household and can be purchased OTC without a prescription at a low cost. Additionally, despite NSAIDs are 
supposed to be safe drugs, they may lead to severe toxic effects in cases of acute overdosage and chronic abuse. 
NSAIDs misuse has been also reported in horse doping, therefore, they may be encountered in clinical, forensic 
toxicological analyses and in horse doping  control28.

Aluminum foil with an adhesive layer has been used to cover a glass slide and deposit the FMs Aluminum foil 
is an ideal substrate for Raman spectroscopy because it is readily available, inexpensive and most importantly 
it does not result in any significant interfering  signal29,30. A minimal (gentle) pressure was applied on the tablet 
by the fingers, which was just sufficient to hold the tablet, to mimic a real-life situation. A holding time of about 
10 s was used to make mock FMs samples. Although we did not investigate these two factors (pressure and time) 
quantitatively, no inconsistency or irreproducibility were noticed when the Raman spectra were analyzed. Most 
importantly, we were able to develop accurate classification model for drug differentiation.

Initially, FMs contaminated with aspirin were obtained from all five fingers of the left hand of one donor. 
Average Raman spectra collected from each of those FMs (Figure S1) are similar to each other indicating that 
the intra-donor variability has minimum effect. Consequently, the analysis of FMs contaminated with various 
drugs was conducted in this study using the index finger only. In this study, Raman spectroscopy was employed 
to detect traces of NSAID tablets in FMs and distinguish between natural FM components and FMs after contact 
with different NSAID tablets. Five pharmaceutical tablets containing aspirin, ibuprofen, diclofenac, ketoprofen 
and naproxen as active ingredients were utilized to produce NSAID-contaminated FMs. 54–56 Raman spectra 
were obtained from each FM sample using automatic mapping to account for the inherent heterogeneity of 
the sample. The Raman spectra of the natural and contaminated FMs showed variation in peak position and 
intensity, reflecting the differences in the chemical compositions of the FM samples, as illustrated in Fig. 1. The 
peaks corresponding to the eccrine and sebaceous components of the natural FMs, including C=O stretching 
from the secondary amide,  CH2 deformation and twisting from the aliphatic chain, and C=CH deformation 
from squalene and unsaturated fatty acids, were clearly observed in all the  spectra31. Additional Raman bands 
were observed in the spectra of the NSAID-contaminated FMs resulting from the contribution of the active 
tablet ingredients and other excipients present in the product. The most prominent band was attributed to ring 
stretching and was observed at 1598  cm−1 and 1629  cm−1 for the ketoprofen- and naproxen-containing tablets, 
respectively, while it was observed at 1606  cm−1 for the aspirin-, ibuprofen- and diclofenac-containing tablets. 
Table 1 shows the tentative assignment of the Raman bands of the natural FM and NSAID-contaminated FMs 
based on previous literature. Although Raman spectroscopy was able to detect traces of NSAIDs in the contami-
nated FM residues, we exploited chemometrics herein to generate a statistical model to classify and differentiate 
between the respective FM samples. This is the first step in identifying the components of natural FM and FMs 
generated after certain drug tablets were touched.

Statistical analysis of Raman spectral data. Statistical modeling was employed to study the varia-
tion in the Raman spectra of the natural and contaminated FMs, which account for the different functional 
groups present in the sample, as shown in Table 1. Initially, an unsupervised learning technique, PCA model, 
was applied to explore the dataset and to reduce the dimensionality of the multivariate data by generating several 
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uncorrelated variables that successfully capture the maximum variance in the dataset. Multivariate outliers were 
removed through PCA, defined as spectra with high Hoteling’s  T2 and Q residuals resulting in a total of 225 
spectra: 31 spectra of natural FM, 45 spectra of aspirin tablet FM, 43 spectra of diclofenac tablet FM, 28 spectra 
of ibuprofen tablet FM, 47 spectra of ketoprofen tablet FM and 31 spectra of naproxen tablet FM. The first five 
PCs described 84.5% of the total variance. For representation purposes, the PCA score plot of three PCs (PC 1, 
PC 2 and PC 5) for different FM samples is depicted in Fig. 2. This figure suggests that the three PCs were able to 
separate the dataset into six different groups corresponding to natural FM and aspirin-, diclofenac-, ibuprofen-, 
ketoprofen- and naproxen-contaminated FMs. However, the spectra of some of the drug-contaminated FM sam-
ples overlapped with those of the natural FM in the PCs projection. This result can be attributed to the contribu-
tion of the FM components in all the datasets. As PCA is an unsupervised statistical discrimination tool, such 
a contribution is expected to be prominent in the statistical model. Therefore, to provide sufficient separation 
between FM samples, a supervised learning technique, PLS-DA, was employed on the dataset.

Differentiating between natural fingermarks and NSAID tablet‑contaminated fingermarks 
using partial least squares‑discriminant analysis (PLS‑DA). PLS-DA is a versatile algorithm that 
can be employed for prediction and description as well as discrimination of variable selections. In theory, PLS-
DA is a linear classification method that combines dimensionality reduction and discrimination power of the 
classification technique, thereby offering a high differentiation power that can be used for class prediction within 
the  datasets38. Therefore, PLS-DA has shown great potential in modeling multivariate datasets for different pur-
poses, including food  analysis39, disease  diagnosis40, and, more specifically, analysis of forensic  evidence41. For 
instance, Lednev and coworkers pioneered the identification of all main bodily fluids for forensic purposes using 
PLS-DA  model42. High levels of discrimination between human and animal blood, menstrual and peripheral 
blood and phenotype profiling based on bloodstain analysis have been achieved using PLS-DA model combined 
with ATR FTIR  spectroscopy43–45. In the present study, we used this method to detect and identify five different 
drugs in contaminated FMs. We accomplished these goals by differentiating six classes of FMs, including natural 
FM that were free of any drugs and FMs contaminated with five different drugs. Specifically, after the spectra 
were baseline-corrected by automatic weighted squares, normalized by total area and mean centered, a PLS-DA 
model was built using five latent variables (LVs) to classify a total of 225 Raman spectra of natural and contami-
nated FM samples. Figure 3A shows the prediction results of cross validation (CV) based on individual spectra 
for different FM samples. A value of 1 corresponds to natural FM, a value of 2 corresponds to aspirin tablet-
contaminated FM, a value of 3 corresponds to diclofenac tablet-contaminated FM, a value of 4 corresponds to 
ibuprofen tablet-contaminated FM, a value of 5 corresponds to ketoprofen tablet-contaminated FM and a value 
of 6 corresponds to naproxen tablet-contaminated FM, whereas a score of 0 indicated unassigned prediction. 
The CV prediction plot showed that 18 spectra were unassigned, and 4 spectra were misclassified, resulting in 
90% correct classification of the cross validation test. Table S1 summarizes the prediction results on the PLS-DA 
model obtained from the CV test.

To improve the prediction results of the PLS-DA model, GA was proposed to select the regions that would be 
most informative for differentiating between the Raman spectra of different FM classes. GA is a machine learning 
technique that ultimately aims to optimize a given response function and is based on mimicking the theory of 
natural biological evolution. GA is a very useful method for variable selection in calibration and classification 
modeling, and more details about it can be found in the following  article46. In this study, GA was carried out, 
and several spectral regions that noticeably contributed to the distinction between FM samples were selected, as 

Figure 1.  The average Raman spectra of natural fingermark and fingermarks contaminated with aspirin, 
diclofenac, ketoprofen, ibuprofen or naproxen tablets. The experimental spectra were preprocessed by baseline 
correction and normalization.
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Table 1.  Raman band assignment for the natural and NSAID-contaminated fingermarks. The asterisks (*) 
indicate regions selected using the GA method.

Raman band  (cm−1) Source Band assignment Ref

1655 Eccrine C=O stretching (secondary amide) 31

1629* Naproxen Ring stretching, 32

1606* Aspirin Ring stretching and OH bending 33

1606* Ibuprofen Ring stretching 32

1606* and 1578 Diclofenac Ring stretching 37

1598* Ketoprofen C–C stretching (ring) 34

1485*, 1420* and 1168 Naproxen CH bending 32

1439 Sebaceous CH2 and  CH3 deformation (aliphatic carbon chain) 31

1307 Sebaceous CH2 twisting (aliphatic carbon chain) 31

1267 Sebaceous  = CH deformation (Squalene, unsaturated fatty acid, glycerides and wax esters 31

1250 Diclofenac C–C stretching CH rock, 35

1236 Diclofenac C–N–C stretching, CH rock,  C7H2 wagging 35

1207* and 1180 Ibuprofen CH bending and OH bending, 32

1194* Ketoprofen Ring deformation and C–C stretching 34

1194* Aspirin Φ, COC stretching (Φ: ring) 33

1178* Naproxen HCC in plane bending 36

1159* Aspirin CH and OH in-plane bending 32

1159* Diclofenac CH bending (ring) 37

1138* Ketoprofen Φ -C- Φ symmetric stretch (Φ: ring) 34

1124 and 1078 Sebaceous C–C stretching (aliphatic carbon chain) 31

1116 Ibuprofen CH bending and OH bending, 32

1073* and 1045* Diclofenac Ring breathing 37

1045* Aspirin C–H bending 33

1031* Ketoprofen CH in-plane bending 34

1009* Ibuprofen CH in-plane bending 32

1002* Ketoprofen Ring deformation and  CH3 rocking 34

1002 Eccrine Ring breathing (phenyl alanine) 31

961 Naproxen Torsion-HCCH 36

861* Diclofenac CH twisting 37

860* Eccrine Para-substituted ring vibration (Tyrosine) 31

748* Naproxen Torsion-HCCC 36

720* Diclofenac CH wagging 35

704* Ketoprofen CH out-of-plane bending 34

524 Naproxen HCC in-plane bending, Torsion-HCOC, Torsion-HCCO 36

Figure 2.  PCA scatter plot for individual Raman spectra of natural and NSAID-contaminated fingermarks.
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illustrated in Table 1. Within the selected regions, the main difference can be attributed to ring stretching of the 
NSAID tablets at 1598–1629  cm−1. Regions were also selected at 1159–1207  cm−1 and assigned to the -CH and 
-OH bending of aspirin, diclofenac, ibuprofen and naproxen tablets, and at the peak at 1194  cm−1 was assigned 
to ring deformation C–C stretching of the ketoprofen tablet. Other informative bands in the 1073–1002  cm−1 
and 704–861  cm−1 regions were distinctive of NSAID tablets, suggesting their significant contribution to distin-
guishing between the Raman spectra of different FM classes. Figure 3B demonstrates the CV prediction results 
of the PLS-DA model using regions selected by GA. The results were drastically improved upon applying GA, 
yielding 94% accuracy. Spectra of both the aspirin- and naproxen-contaminated FMs were perfectly assigned 
to their designated groups, while four spectra of natural FM and six spectra of diclofenac-contaminated FM 
were unassigned. In addition, both ketoprofen- and ibuprofen-contaminated FMs showed good separation in 
the model, and only two spectra were unassigned, while no misclassification was observed in the created model. 
This information is summarized in Table S2, which shows the confusion matrix of CV of the PLS-DA model 
using the strict class prediction method.

Method validation. To further support the reliability of the created model, external validation was per-
formed using FMs provided by a new donor. Both natural and contaminated FMs were obtained from this 
donor, a total of 137 spectra were loaded into the model as unknown, and each spectrum was then assigned 
to a specific class. Figure 4 illustrates the prediction results of the external validation, specifically, 130 spectra 
were correctly assigned to the respective natural and contaminated FM classes, while only seven spectra were 
unassigned. This means that 94% of the total external validation spectra were correctly assigned to their cor-
responding FM classes, indicating the excellent performance of the constructed model, as outlined in Table 2. 
Most importantly, over 85% of all spectra obtained for an individual FM were assigned correctly for each of the 
six classes of FMs. This result indicates that if we choose a threshold of 85%, then all samples used for the exter-
nal validation are assigned correctly, demonstrating 100% accuracy of the developed classification model. This 
proof-of-concept study offers a new approach to identifying natural and drug-contaminated FM components 
using Raman spectroscopy and multivariate statistical analysis.

Conclusion
This proof-of-concept study further develops Raman spectroscopy and chemometrics as a nondestructive and 
rapid method for the detection and identification of drugs in latent fingermarks (LFMs). Raman spectra were 
collected from natural FM and aspirin-, diclofenac-, ibuprofen-, ketoprofen- and naproxen-contaminated FMs 
obtained after the donor gently handled these tablets. Initially, PCA model was applied to identify spectral outli-
ers, which were removed from the dataset before any further statistical analysis. Thereafter, multivariate PLS-DA 
and GA were employed to differentiate between natural and NSAID-contaminated FMs. The PLS-DA model 
was created using a training dataset and enabled an excellent separation of natural FM, aspirin-, diclofenac-, 
ibuprofen-, ketoprofen- and naproxen-contaminated FMs according to Venetian blind cross validation (CV). In 
addition, the method was externally validated using FM samples obtained from a second donor, and the results 
of strict class prediction showed 94% correct classification based on individual spectra. Most importantly, the 
individual samples showed 100% correct identification. Thus, the reported results demonstrate the great potential 
of Raman spectroscopy and chemometrics for the detection and identification of trace NSAIDs and potentially 
other drugs in LFMs. When fully developed and implemented in practical forensics, this methodology holds 

Figure 3.  Cross validation prediction results of the PLS-DA model of each classification group using five latent 
variables: natural fingermark (red) and aspirin (green), diclofenac (navy blue), ibuprofen (light blue), ketoprofen 
(pink), and naproxen (orange) contaminated fingermarks (A) before applying GA and (B) after using the 
regions selected by GA.
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great promise in criminal investigations of drug overdose and handling, adulterant and suicide. Before the 
developed method can be applied by law enforcement agencies, further work is required to cover a wider range 
of drugs. In particular, we plan to expand the use of the current method and include several other drugs such 
as procuring and counterfeit drugs in addition to emerging synthetic cannabinoids in the future. Furthermore, 
the application of this method for examining other potential exogenous materials including explosives, gunshot 
residue, cosmetics and others in fingermarks will be also considered. Additionally, the variation in the chemi-
cal composition of the prints due to ungroomed or groomed types, potential interferences from environmental 
contaminants and common substrates as well as environmental conditions, including temperature, humidity, 
sunlight, should be addressed to simulate samples from real crime scenes.

Received: 6 October 2021; Accepted: 9 February 2022
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