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Bayesian‑based decipherment 
of in‑depth information in bacterial 
chemical sensing beyond pleasant/
unpleasant responses
Hiroto Tanaka1, Yasuaki Kazuta1, Yasushi Naruse2, Yukihiro Tominari1, Hiroaki Umehara2, 
Yoshiyuki Sowa3, Takashi Sagawa1, Kazuhiro Oiwa1,2,4, Masato Okada5, Ikuro Kawagishi3* & 
Hiroaki Kojima1*

Chemical sensing is vital to the survival of all organisms. Bacterial chemotaxis is conducted by multiple 
receptors that sense chemicals to regulate a single signalling system controlling the transition 
between the direction (clockwise vs. counterclockwise) of flagellar rotation. Such an integrated 
system seems better suited to judge chemicals as either favourable or unfavourable, but not for 
identification purposes though differences in their affinities to the receptors may cause difference in 
response strength. Here, an experimental setup was developed to monitor behaviours of multiple cells 
stimulated simultaneously as well as a statistical framework based on Bayesian inferences. Although 
responses of individual cells varied substantially, ensemble averaging of the time courses seemed 
characteristic to attractant species, indicating we can extract information of input chemical species 
from responses of the bacterium. Furthermore, two similar, but distinct, beverages elicited attractant 
responses of cells with profiles distinguishable with the Bayesian procedure. These results provide a 
basis for novel bio‑inspired sensors that could be used with other cell types to sense wider ranges of 
chemicals.

In higher organisms, a sophisticated neural network is essential for the identification of chemical substances. In 
mammalian olfaction, for instance, tens of thousands chemicals can be identified by only hundreds of receptors, 
each of which is expressed in a set of olfactory cells with axons projecting to the same  glomeruli1. However, it has 
not been addressed experimentally whether a neural network or an array of sensory cells with distinct receptors 
is essential for the detection of individual chemicals.

Escherichia coli, a unicellular organism, detects chemicals, processes chemical information and preforms 
various activities in response. Escherichia coli cells have machineries to respond to environmental  chemicals2–5. 
Here, we focus on the chemotactic behaviour of E. coli to test what sort of information we can extract from 
responses of E. coli cells. Chemotaxis of E. coli, which is a swimming movement toward attractants or away from 
repellents via flagellar rotation, has been extensively studied for  decades5–8 (Fig. 1a). All components involved 
in this process have been identified and characterised. Transmembrane sensor proteins, i.e. Tsr for serine and 
repellents, Tar for aspartate, maltose and repellents, Trg for ribose and galactose, Tap for dipeptides and Aer for 
redox state, detect various stimuli either directly or with the help of soluble  receptors9. An intracellular signal 
pathway integrates input signals to modulate the phosphorylation level of the response regulator protein CheY, 
which controls switching of the rotational direction of the flagellar motor. Attractant stimuli increase the prob-
ability of counterclockwise (CCW) rotation, whereas repellents augment clockwise (CW) rotation (Fig. S1a).

Single cell responses to various stimuli can be examined, for instance, with the use of a tethered cell  assay10, 
in which the rotation of a single flagellar motor is monitored as the rotation of the cell body (Fig. 1b). However, 
the responses of individual E. coli cells, even if genetically uniform, highly differ. The individuality of bacterial 
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Figure 1.  Experimental design. (a) Each flagellar motor of E. coli cells in steady state environment shows 
bi-directional motions stochastically (CW or CCW direction). When an attractant is added to the environment 
(chemical stimulus), cells detect differences in the amount of the attractant and bias flagellar rotation in the 
CCW direction. After a sufficient time (~ 400 s in case of c, d), under constant concentrations of attractants, 
each flagellar motor recovers bi-directional motion (adaptation). (b) Schematic drawing of the experimental 
setup (left) and tethered cell assay (right). Each experimental chamber consisted of a PDMS microchannel on 
a coverslip. E. coli cells applied to a chamber were adhered to a glass surface via cell bodies and/or flagella. The 
rotational motion of cell bodies, each tethered via flagellum by chance, was analysed. (c) Rotational directions of 
individual cells. Cells were stimulated by (left column) l-Glu (30 mM) and (right) l-Asn (3 mM). Vertical axes 
show the rotational directions (CW or CCW). Horizontal axes are common to (d) and represent time. Arrows 
indicate the times of chemical stimulations. We measured rotational motions of cells at every 10 ms (1 frame 
of our movies), and counted those more than 7.5 degrees/frame, which was more than two times larger than 
that of noise (< 3 degrees/frame). Most of cells rotated CCW immediately after chemical stimulation (attractant 
response) and recovered bi-directional rotations as in the initial phase over time (adaptation). Individual cells 
had varied response time courses. (d) Ensemble averages of rotational directions of cells. Vertical axes represent 
the CW bias, which was calculated as the fraction of CW motion (number of CW rotations) to all rotational 
motions (number of CW + CCW motions) at 1-s intervals. The motions of more than 100 of approximately 500 
observed cells were averaged.
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cells has long been  recognised11 and is presumably due to non-genetic variations of the levels of various proteins 
and metabolites. Indeed, recent comprehensive studies have revealed a wide range of cell-to-cell variation in the 
expression level of any  gene12–16. Despite such individuality, E. coli cells, as a population, perform reproducible 
chemotactic responses that seem idiosyncratic to attractant chemical species. Here, to reveal basic design of 
the chemotaxis system of E. coli, the collective responses were examined in detail by ensemble averaging of the 
behaviours of many individual cells to similar, but distinct, attractants.

Results
Experimental design. To analyse the collective responses of E. coli cells with reasonable accuracy, an 
experimental setup was constructed to monitor the responses of multiple cells stimulated simultaneously with 
the use of a tethered cell  assay10, in which the rotation of a single flagellar motor is monitored as the rotation of 
the cell body (Fig. 1b). Under optimised conditions, more than 100 of approximately 500 of E. coli cells observed 
in each microscopic field were found to be rotating. Rotating cells are considered to be fixed on the surface 
through only one flagellum, and we extracted this population and analysed. The rotational directions of the 
cells were analysed concurrently at 10-ms intervals with custom-made image and motion analysis programs 
(Fig. S2). Care was taken to reduce the influence of the viscous drag force of the solution by minimising the flow 
rate (see the supplementary information [SI] for details, Fig. S3). Using this setup, the responses of many cells 
to two standard amino acid attractants, l-glutamate (l-Glu) and l-asparagine (l-Asn), were measured. When 
exposed to either attractant, each cell exclusively rotated CCW and, within a relatively short time, resumed 
pre-stimulation behaviours, i.e. alternating the rotational direction between CCW and CW (Fig. 1c). However, 
the responses of individual cells to even the same attractant substantially differed in terms of the time course of 
stimulation and adaptation. Nevertheless, ensemble averaging of a large set of ‘noisy’ data revealed essentially 
similar, but apparently distinct, traces of the two attractants (Fig. 1d).

Comparison of ensemble averaged responses of E. coli cells to different attractants. Further 
analyses of the collective responses of E. coli cells to different attractants were conducted to determine whether 
the attractant responses were chemical-specific. First, the attractant responses (time courses of mean CW bias 
values) of more than 100 cells (hereinafter referred to as CW bias traces) to various concentrations of l-Glu and 
l-Asn were measured (Fig. 2a). Although the strength of stimulation differed between the two attractants, the 
higher the amino acid concentration, the longer the attractant response persisted (CW bias ≅ 0) (Fig. 2a). Next, 
for mathematical treatments, the intracellular signalling system was treated as a black box and each CW bias 
trace as a geometric figure that is presumably described by a simplistic template. Each time course of CW bias 
was fitted by a combination of six linear lines (Figs. 2b and S4, L1–L6), where L1 represents the pre-stimulation 
state, L2 the stimulated state, L3 to L5 the recovery processes and L6 the post-adaptation state. Consequently, 
the trace was converted to a vector consisting of 15 index values 

{

y1, . . . , y15
}

 (see SI for details) to collect 
training data of responses to each chemical, where y1 is the duration of L2 and y2 and y3 are the amplitude and 
slope of L3, respectively. In spite of the large deviations among cells that presumably result from preparation-to-
preparation variations, the distributions of these index values differed between the attractant species, which are 
presented as different coloured data points in Fig. 2c. These results raised the possibility that information could 
be extracted to identity the input stimulation (chemical species and concentration) by analysing the ensemble 
averaged time course of CW bias in one way or another.

Use of a Bayesian inference framework to analyse ensemble averaged responses. To deduce 
the identity of input stimulation out of complicated output responses (i.e. excitation-adaptation time courses), 
a statistical framework, Decipherment procedure of chemical Stimulus Inversely from Response Activities with 
Machine learning (DeSIRAM), was developed based on Bayesian inference and supported by machine lean-
ing. The index values indeed showed characteristic dependencies on the attractant species and concentrations 
(Fig. 2c). In DeSIRAM, we acquire model functions from the training data set prepared with various concentra-
tions of sample chemicals (Figs. 2c, 4b and SI). Using these functions as templates for Bayesian inference, we can 
perform discrimination of species from blind sample with unknown concentration and species. Here is a brief 
explanation of our chemical type deciphering procedure. Consider a case where parameter values of red dashed 
lines  (y1 = 150,  y4 = 70) are observed as a result of stimulation with a blind sample. Comparing sample concentra-
tions (green and purple arrows in upper and lower panels in Fig. 2c) estimated from the two models of l-Asn 
case and l-Glu case (green and purple lines), l-Asn shows a closer concentration value as the estimated value. 
In this case, the blind sample is likely to be l-Asn. These probabilities are calculated by Eq. (1). Figure 2d shows 
the rates of accurate identification of chemical species (l-Glu or l-Asn) with the use of DeSIRAM or random 
selection (RS) (see SI for details, the error bar indicates the theoretical standard deviation). The accurate identi-
fication rate obtained with DeSIRAM was significantly higher than by RS (0.91 vs. 0.50, respectively). The prob-
ability of an accurate identification rate of 0.91 by RS was 4.1 ×  10−12. Such an extremely low probability clearly 
demonstrates that DeSIRAM can distinguish responses to the two attractants.

Decipherment of input signals from collective responses of E. coli to well‑defined attract‑
ants. The performance of DeSIRAM was evaluated using six well-defined amino acid attractants with subtle 
differences in structure: i.e. l-aspartate (l-Asp), d-aspartate (d-Asp), l-Asn, l-Glu, l-cysteine (l-Cys) and l-ser-
ine (l-Ser) (Figs. S6 and S7). Here, 2 of 6 standard attractants were chosen and 15 (= 6C2) groups were created. 
In all combinations of blind tests, DeSIRAM was able to deduce the identity of the input chemical with varied 
accuracy rates (such identification is hereinafter referred to as decipherment). Accuracy rates of decipherment 
by DeSIRAM were higher than those by RS (≅ 0.5) in all combinations (Figs. 3a and S8a, Table S1). Notably, 
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even subtle changes in physicochemical properties which cannot be easily detected by artificial analysis, such as 
chirality (l-Asp vs. d-Asp) and the presence or absence of a single methylene group (l-Asp vs. l-Glu), were well 
discriminated. A blind test was also conducted with all six attractants at the same time. In this case, the accuracy 
rate of decipherment by DeSIRAM was 0.43, while the probability of accurate identification by RS was 1.3 ×  10−19 
(Fig. 3b, Table S5). The occurrence probability of the six-attractant group, which was much lower than that of 
any two-attractant group (Table S1), shows that DeSIRAM performed better in the former although the accuracy 
rate was lower. To compare groups consisting of 2, 3, 4, 5 and 6 standard attractants, values of self-information 
(i.e. entropy of a random variable) were calculated for all groups, where a decrease in self-information (DSI) 
corresponded to an increase in accuracy of decipherment performance. Although the accuracy rate decreased 
as the number of choices increased (Fig. 3c, blue makers), DSI increased as the number of attractants in a group 
increased (Fig. 3c, red makers). Thus, DeSIRAM works well to decipher information of input chemicals by ana-
lysing the chemotactic behaviour of E. coli cells, despite lacking complex detector arrays and neural networks.

The accuracy rates of DeSIRAM varied from 0.61 (discrimination of l-Asp and d-Asp) to 0.96 (l-Glu and 
l-Ser). This variation could be explained by types of relevant chemoreceptors. l-Glu and l-Ser are sensed mainly 
by Tar and Tsr receptors, respectively, whereas both l-Asp and d-Asp bind to Tar. The involvement of distinct 
receptors may cause distinct features in the response time course, which can be readily discriminated with 
relatively high accuracy. Notably, despite mainly activating the same receptors (Tar), the high rate of detection 
accuracy of l-Glu and l-Asn (black square in Fig. 3a) is remarkable and may indicate subtle differences in signal 
processing as well as the metabolism of individual chemicals.

Decipherment of unorthodox chemical mixtures. To test the versatility of DeSIRAM for decipher-
ment of input chemicals, a blind test was performed between two similar, but distinct, cola beverages (cola A and 
B) that were likely never encountered before by the laboratory strain of E. coli. Interestingly, the cells responded 
sufficiently to both cola A and B even when diluted to 1:2000 (Fig. 4a). These traces were very similar and indis-
tinguishable from one another. However, there was a significant difference in the concentration dependency of 
the index values of colas A and B (Fig. 4b). Accordingly, the accuracy of DeSIRAM to distinguish cola A from 
B was 0.80 (Fig. 4c). These results reinforce the notion that we can extract information of input chemicals from 
responses of E. coli cells to those chemicals. DeSIRAM can, therefore, also be applied to identify unusual chemi-
cal mixtures by analysing the response activities of organisms, rather than preparing an array of multiple cell 
types with distinct receptors.

Discussion
The results of the present study revealed the chemical-specific responses of E. coli cells beyond simple strong/weak 
attractant/repellent categorisation of input stimuli. Although responses of individual cells varied substantially, 
the ensemble averaged response reflects identity of input chemical species. Namely, we can extract in-depth 
information from relatively noisy responses of E. coli cells to discriminate encountered chemical species and 
even their concentrations. As mentioned earlier, multiple sensors elicit signals to regulate the activity of the 
histidine kinase CheA and hence the phosphorylation level of the response regulator CheY, which modulates 
the CCW/CW rotation of the flagellar motor. Various chemicals are sensed by different receptors with diverse 
abundances, kinase-regulating abilities and methyl-accepting properties involved in adaptation. Alternatively, 
different chemicals can bind to a common receptor with dissimilar affinities. In either case, individual attract-
ants have different effects on the time courses of the cellular level of phospho-CheY and hence CW bias of the 
flagellar motor. Although bacterial consumption of the input chemicals was negligible in the experimental 

Figure 2.  Decipherment of two input chemicals from output responses of E. coli cells. (a) Typical responses 
to l-Glu (left column) and l-Asn (right column). Output traces of CW bias show a common profile consisting 
of a strong attractant response immediately after chemical stimulation (CW bias ≅ 0.0) and a recovery phase 
returning to near initial CW bias after sufficient time. Each graph is coloured according to chemical species 
(purple, l-Glu; green, l-Asn). The concentrations of chemicals increase from top to bottom. (b) Construction 
of characteristic vectors. Individual vectors representing each CW bias trace were calculated by matching a 
geometric template consisting of 6 lines (L1–L6). The template shape (both amplitudes and durations of lines) 
was modified to fit CW bias traces and 15 arbitrary parameters were obtained (see SI for details). As examples, 
parameters of  y1,  y2 and  y4 are shown, where y1 is the duration of L2 and  y2 and  y4 are the amplitude and 
duration of L3, respectively. (c) Concentration dependencies of 2 indexes, y1, y4 , of characteristic vectors (all 
in Fig. S5). The values of y1, y4 (positions are indicated in b) of characteristic vectors obtained as response 
activities to l-Glu (purple) and l-Asn (green) are plotted. Each graph is coloured according to chemical species 
as in (a). Plot makers of ‘o’ indicate data used to successfully identify the blind samples, whereas ‘x’ indicates 
failure. Solid lines show model functions representing concentration dependencies. Based on these model 
functions, Bayesian estimation is performed using observation values of blind samples, and we decipher type 
of blind sample (see text for details). Dashed red lines, green and purple arrows are added as examples of 
observations for explanation. The accuracy rates of decipherment and model functions were evaluated with 
leave-one-out cross validation. (d) Accuracy rate of decipherment for attractants groups consisting of l-Glu 
(n = 32) and l-Asn (n = 32). The left bar shows the theoretical accuracy rate of RS (≅ 1/2). The black line on 
left bar represents the standard deviation calculated numerically (± 0.09 =  ± 5.7/64, see Table S1 and SI for 
details). The right bar shows the accuracy rate by DeSIRAM (decipherment accuracy = 0.91). The probability of 
an accurate identification rate of 0.91 by RS was 4.1 ×  10−12. This small probability confirms the validity of the 
procedure.

◂
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setting, the effects of metabolism, permeability and toxicity of the chemicals on bacterial physiology should 
still be considered. Metabolism of input chemicals, for instance, may affect the intracellular concentration of 
acetylphosphate, which can serve as a direct phosphate donor to response regulators, including  CheY17–19. The 
interplay of complicated signal transduction and metabolism networks produces chemical-specific responses. 
Furthermore, it has been reported that certain compounds (e.g. indole) affect swimming behaviour by directly 
binding to the flagellar  motor20. Such compounds, if their abundances are modulated differentially during our 
observations, could also contribute the input chemical-specific responses. Moreover, this may lead to the appli-
cation of our system to build a sensor based directly on motor output.

Whatever the molecular mechanisms, DeSIRAM, an analysis framework based on Bayesian inferences 
and machine learning, was able to identify input chemicals by detailed analyses of ensemble averaged output 
responses in spite of the wide range of deviations in responses of individual cells. DeSIRAM can be regarded as a 
conceptual prototype of cell-based sensors. For the development of such sensors, bacterial chemotaxis is suitable 
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Figure 3.  Discrimination of various attractants with DeSIRAM. (a) Accuracy rate spectrum of decipherment 
of chemical types of blind samples using DeSIRAM. Accuracy rates of decipherment of 15 groups consisting 
of 2 of 6 standard attractants. Vertical and horizontal axes indicate attractants included in the tested group. Six 
amino acid attractants are numbered arbitrary, l-Asp (1), l-Glu (2), d-Asp (3), l-Asn (4), l-Cys (5) and l-Ser 
(6). Black square shows data of Fig. 2d. (b) Accuracy rate of decipherment for attractant groups consisting 
of 6 standard attractants: l-Asp (dark blue), l-Glu (purple), d-Asp (red), l-Asn (green), l-Cys (yellow) and 
l-Ser (light blue). The left bar shows theoretical accuracy rate of RS (≅ 1/6 = 0.17). The black line on the left bar 
shows the standard deviation calculated numerically (= 0.04, see SI for details). The right bar shows accuracy 
rate by DeSIRAM. The decipherment accuracy of 0.43 is high relative to that by RS. The probability of an 
identification success rate of 0.43 by RS is 1.3 ×  10−19. (c) Dependencies of accuracy rate (blue makers) and DSI 
(red markers) on number of attractant (NA) including in the tested groups. Plotted values are presented as 
averages and error bars indicated the standard deviations (n = 15, 20, 15, 6, 1 for NA = 2, 3, 4, 5, 6, respectively). 
Numbers of data (N) varies with NA. Here, 6 amino acids were prepared as standard attractants. For instance, 
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because of its instantaneous responses and binary output, as well as easy handling of bacterial cells. The proposed 
system can readily monitor the responses of many cells simultaneously with high fidelity and a short lag time. 
The system proved sufficiently sensitive for detection of differences in the concentrations and structures of the 
input chemicals. Moreover, it was able to apply to discrimination between mixtures of unknown chemicals as well.

A remarkable feature of the biosensor system is that the front end is equipped with living cells, rather than 
proteins or other biomaterials. Moreover, the evaluation axis of the input chemicals can be set arbitrarily as 
demonstrated by the discrimination of two cola beverages. A single E. coli strain with a wild-type chemotac-
tic phenotype was used in all of the experiments. Use of various mutant strains, including those with altered 
metabolism or expressing engineered receptors for target chemicals, would help to optimise discrimination rates. 
Parallel processing of various types of cells in combination with the introduction of additional index values, 
such as those corresponding to speed and fluctuations in cellular rotation, could aid in the development of a 
novel system for appraisal of chemical information viewed from biological activities. Such improvements would 
meet application  demands21, such as precise discrimination of chiral isomers and high throughput evaluation 
of complex environmental samples.

In conclusion, decipherment of input chemicals that drive bacterial chemotaxis from output responses can 
be achieved, with reasonable accuracy, by ensemble averaging of highly varied chemotactic responses of indi-
vidual cells and application of a statistical framework based on Bayesian inferences and machine learning. 
These findings provide a basis for the development of bio-inspired sensors with the use of other cell types for 
the discrimination of wider ranges of  chemicals22–24 to obtain information that is difficult to detect and quantify 
with conventional technologies.

Material and methods
Bacteria and culture conditions. E. coli strain SYC12 was derived from strain RP437, which has the wild-
type chemotactic  phenotype25 and carries the fliC-sticky allele. Cells were grown overnight from frozen aliquots 
(0.1 mL) in lysogeny broth and stored at − 80 °C in 5 mL of T-broth (1% Bacto tryptone, Difco Laboratories) with 
10% (vol/vol) dimethyl sulfoxide and 0.5% sodium chloride at 30 °C for 5  h26.

Polydimethylsiloxane (PDMS) experimental chamber. Custom-made flow chambers were used for 
observation of tethered cells. The chambers were made of PDMS micro channels bound to glass coverslips. The 
PDMS micro channel device was used to measure rotational motion over time by reducing the solution exchange 
flow  speed27 in order to decrease the effects of physical perturbations that prevent rotation of the cell body, which 
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Figure 4.  Discrimination of unidentified chemical mixtures with DeSIRAM. (a) CW bias traces caused by 
chemical composition stimuli of two similar, but distinct, cola beverages, cola A (left) and cola B (right). 
Chemotactic responses to solutions diluted to 1:2000. (b) Concentration dependencies of first 3 indexes, 
y1, y2, y3 , of characteristic vectors. Each graph is coloured according to chemical solution species (purple, cola 
A; green, cola B). Plot makers and lines have the same meaning as in Fig. 2c. (c) Accuracy rate of decipherment 
for chemical compositions (cola A, n = 22; cola B, n = 22). The left bar shows theoretical decipherment accuracy 
of RS. The black line on the left bar indicates the standard deviation calculated numerically. The right bar shows 
the accuracy rate by DeSIRAM. Decipherment accuracy of 0.80 is high relative to that of RS. The probability 
of an identification success rate of 0.80 by RS is 4.0 ×  10−5. DeSIRAM with E. coli distinguished two solutions, 
although the compositions are not reported.
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allowed measurement of CW bias immediately after solution exchange (chemical stimuli) as shown in Figs. 1d 
and S2.

Microscopy and imaging. Populations of E. coli cells were imaged using an inverted microscope Ti-2000 
equipped with a Perfect Focus System (Nikon Corporation). A 20 × objective lens (Nikon CFI S Plan Fluor 
ELWD ADM20 × NA0.45) was used to obtain phase-contrast images of the cells. The large area image (approxi-
mately 400 µm × 300 µm) was recorded using a high-speed camera at 100 fps (LRH20000C-2741, Digimo Co., 
Ltd.).

Tethered cell assay and image analysis. Cells were adhered to glass coverslips via sticky flagella fila-
ments. Experiments were performed in motility buffer (10 mM potassium phosphate, pH 7.0, 0.1 mM ethylen-
ediaminetetraacetic acid, 70 mM sodium chloride) containing one attractant amino acid at various concentra-
tions (l-aspartic acid, 0.001–3 mM; l-Glu, 0.01–50 mM; d-aspartic acid, 0.01–50 mM; l-Asn, 0.05–30 mM; 
l-Cys, 0.01–3 mM; and l-Ser, 0.001–0.05 mM). All amino acid reagents were commercially available (Sigma-
Aldrich). Buffer exchange was achieved by flowing 10 μL of motility buffer with or without amino acids via 
differences in hydrostatic pressure by varying the altitude of the reservoir. For acquisition data, motility buffer 
containing one of six standard attractant chemicals (training solution) was applied to the experimental chamber 
and output responses to the attractant stimuli were observed. All experiments were conducted at room tempera-
ture. For the conventional chemotaxis assay, the motility solution contained l-methionine and lactate, which 
allows for long-term (~ 6 h)  observation28,29. However, in order to exclude any effect of these chemicals during 
the assay, no chemical was added to the motility solution. Therefore, the observation time was limited to 600 s.

Phase-contrast images of rotating cells were analysed by custom made program. The rotational direction of 
each cell was calculated based on the cell angles in sequential images. The CW bias of the cell population was 
calculated by averaging the rotational directions of all cells, which revealed an angular motion of > 7.5° after 1 
frame (10 ms).

Formulation of statistical procedure (DeSIRAM construction). For decipherment of chemical stim-
uli, both the type and concentration of a blind sample are unknown. The chemotactic response is a multivariable 
function dependent on the type and concentration of chemicals, thus it is difficult to differentiate chemicals 
when lacking this information. In order to overcome this difficulty, a mathematical framework based on Bayes-
ian  inference30 was developed to classify the response vectors of a blind sample as a standard chemical substance.

Here, a briefly outline of the DeSIRAM framework is presented (see the SI for details). When n types of 
chemical substances (chemical stimuli denoted by s = 1, 2, . . . ,N  ) are prepared as a standard, the biological 
responses (example in Fig. 2a) of organisms to chemical s are evaluated at a concentration of x . Here, CW bias 
trace was used as response activity and converted to 15 arbitrary characteristic values (a characteristic vector). As 
shown by the example in Fig. 2a, the CW bias trace is described with 6 lines (L1–L6). Generally, each chemical 
attractant (stimuli) provides one output vector, which is assumed to be characterised with a set of m index values, 
{

yi
}

 , ( i = 1, 2, . . . ,m ; in the present case, m = 15 ). Then, the chemical species, based on Bayesian inference, is 
deduced from observed 

{

yi
}

BTS
 of a blinded test sample. Although 

{

yi
}

 is affected by both the chemical species 
( s ) and concentration (x) , the focus of this report was the determination of sBTS . Therefore, the output probability 
distribution function obtained by applying the Bayesian inference from 

{

yi
}

BTS
 is described as,

(see SI for details). Then, the input chemical species sBTS is estimated as the probability of species identification is 
maximised. The proportional expression (1) of f (x|s, i) is a model function that describes relationships between 
the concentrations and index values of chemicals. Since no prior information about the relationships in E. coli 
was known, the model functions were determined by machine learning.

Machine learning to deduce the chemotactic responses of E. coli cells. Numerical calculation 
of machine learning was achieved with the use of a custom-made programme based on Bayesian inference 
with MATLAB (Mathworks, Inc.) and performed by a computer (MAS-i7WX, TOWA ELECTRIC Co., Ltd.) 
equipped with a general-purpose graphics processing unit (Tesla K20). A training set was used for machine 
learning to increase the overall rate of accurate chemical identification.

Received: 7 September 2021; Accepted: 4 February 2022

References
 1. Lledo, P. M., Gheusi, G. & Vincent, J. D. Information processing in the mammalian olfactory system. Physiol. Rev. 85, 281–317. 

https:// doi. org/ 10. 1152/ physr ev. 00008. 2004 (2005).
 2. Berg, H. C. E. coli in Motion (Springer, 2004).
 3. Micali, G. & Endres, R. G. Bacterial chemotaxis: Information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 

30, 8–15. https:// doi. org/ 10. 1016/j. mib. 2015. 12. 001 (2016).

(1)p
(

s|
{

yi
}

BTS

)

∝

∫

(

m
∏

i=1

(

A(s, i) · exp

(

−

(

yiBTS − f
(

x| s, i
))2

2
(

σs,i
)2

)))

dx

https://doi.org/10.1152/physrev.00008.2004
https://doi.org/10.1016/j.mib.2015.12.001


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2965  | https://doi.org/10.1038/s41598-022-06732-4

www.nature.com/scientificreports/

 4. Typas, A. & Sourjik, V. Bacterial protein networks: Properties and functions. Nat. Rev. Microbiol. 13, 559–572. https:// doi. org/ 10. 
1038/ nrmic ro3508 (2015).

 5. Webre, D. J., Wolanin, P. M. & Stock, J. B. Bacterial chemotaxis. Curr. Biol. CB 13, R47–R49 (2003).
 6. Mesibov, R. & Adler, J. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112, 315–326 (1972).
 7. Sourjik, V. & Wingreen, N. S. Responding to chemical gradients: Bacterial chemotaxis. Curr. Opin. Cell Biol. 24, 262–268. https:// 

doi. org/ 10. 1016/j. ceb. 2011. 11. 008 (2012).
 8. Yang, Y. et al. Relation between chemotaxis and consumption of amino acids in bacteria. Mol. Microbiol. 96, 1272–1282. https:// 

doi. org/ 10. 1111/ mmi. 13006 (2015).
 9. Bi, S. Y. & Sourjik, V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 45, 22–29. https:// doi. 

org/ 10. 1016/j. mib. 2018. 02. 002 (2018).
 10. Berg, H. C. & Turner, L. Torque generated by the flagellar motor of Escherichia coli. Biophys. J . 65, 2201–2216. https:// doi. org/ 10. 

1016/ S0006- 3495(93) 81278-5 (1993).
 11. Spudich, J. L. & Koshland, D. E. Jr. Non-genetic individuality: Chance in the single cell. Nature 262, 467–471. https:// doi. org/ 10. 

1038/ 26246 7a0 (1976).
 12. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186. https:// 

doi. org/ 10. 1126/ scien ce. 10709 19 (2002).
 13. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 

533–538. https:// doi. org/ 10. 1126/ scien ce. 11883 08 (2010).
 14. Waite, A. J. et al. Non-genetic diversity modulates population performance. Mol. Syst. Biol. https:// doi. org/ 10. 15252/ Msb. 20167 

044 (2016).
 15. Keegstra, J. M. et al. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. 

Elife https:// doi. org/ 10. 7554/ eLife. 27455 (2017).
 16. Bitbol, A. F. & Wingreen, N. S. Fundamental constraints on the abundances of chemotaxis proteins. Biophys. J. 108, 1293–1305. 

https:// doi. org/ 10. 1016/j. bpj. 2015. 01. 024 (2015).
 17. Lukat, G. S., Mccleary, W. R., Stock, A. M. & Stock, J. B. Phosphorylation of bacterial response regulator proteins by low-molecular-

weight phospho-donors. Proc. Natl. Acad. Sci. U. S. A. 89, 718–722. https:// doi. org/ 10. 1073/ pnas. 89.2. 718 (1992).
 18. Mccleary, W. R. & Stock, J. B. Acetyl phosphate and the activation of 2-component response regulators. J. Biol. Chem. 269, 

31567–31572 (1994).
 19. Hiratsu, K., Nakata, A., Shinagawa, H. & Makino, K. Autophosphorylation and activation of transcriptional activator PhoB of 

Escherichia coli by acetyl phosphate in-vitro. Gene 161, 7–10. https:// doi. org/ 10. 1016/ 0378- 1119(95) 00259-9 (1995).
 20. Yang, J. Y. et al. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc. Natl. Acad. Sci. U. S. A. 117, 

6114–6120. https:// doi. org/ 10. 1073/ pnas. 19169 74117 (2020).
 21. Yamamoto, K. et al. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. 

J. Biol. Chem. 280, 1448–1456. https:// doi. org/ 10. 1074/ jbc. M4101 04200 (2005).
 22. Elad, T., Seo, H. B., Belkin, S. & Gu, M. B. High-throughput prescreening of pharmaceuticals using a genome-wide bacterial 

bioreporter array. Biosens. Bioelectron. 68, 699–704. https:// doi. org/ 10. 1016/j. bios. 2015. 01. 067 (2015).
 23. Mannini, A., Trojaniello, D., Cereatti, A. & Sabatini, A. M. A machine learning framework for gait classification using inertial 

sensors: Application to elderly, post-stroke and Huntington’s disease patients. Sensors 16, 16. https:// doi. org/ 10. 3390/ s1601 0134 
(2016).

 24. Park, M., Tsai, S. L. & Chen, W. Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795. 
https:// doi. org/ 10. 3390/ s1305 05777 (2013).

 25. Parkinson, J. S. & Houts, S. E. Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J. Bacteriol. 
151, 106–113 (1982).

 26. Sowa, Y., Homma, M., Ishijima, A. & Berry, R. M. Hybrid-fuel bacterial flagellar motors in Escherichia coli. Proc. Natl. Acad. Sci. 
U. S. A. 111, 3436–3441. https:// doi. org/ 10. 1073/ pnas. 13177 41111 (2014).

 27. Walker, G. M., Monteiro-Riviere, N., Rouse, J. & O’Neill, A. T. A linear dilution microfluidic device for cytotoxicity assays. Lab 
Chip 7, 226–232. https:// doi. org/ 10. 1039/ b6089 90a (2007).

 28. Block, S. M., Segall, J. E. & Berg, H. C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323 (1983).
 29. Springer, M. S., Goy, M. F. & Adler, J. Sensory transduction in Escherichia coli: A requirement for methionine in sensory adapta-

tion. Proc. Natl. Acad. Sci. U. S. A. 74, 183–187. https:// doi. org/ 10. 1073/ pnas. 74.1. 183 (1977).
 30. Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, 2006).

Acknowledgements
We thank Shukichi Tanaka for advice for the development of the measurement system. We thank our colleagues 
of the Protein Biophysics Project (Frontier Research Laboratory, National Institute of Information and Com-
munications Technology) for their helpful comments and discussions.

Author contributions
K.O. and H.K. conceptualized and supervised the research project; H.T. designed the study; H.T. and Y.K. per-
formed the experiments; H.T., S.T., Y.N. and M.O. contributed new analytic tools; H.T. and H.U. analysed the 
data; H.T. and Y.T. designed the experimental chamber; H.T., I.K., Y.S. and H.K. wrote the paper; and I.K. and 
Y.S. provided the E. coli cells.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 06732-4.

Correspondence and requests for materials should be addressed to I.K. or H.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/nrmicro3508
https://doi.org/10.1038/nrmicro3508
https://doi.org/10.1016/j.ceb.2011.11.008
https://doi.org/10.1016/j.ceb.2011.11.008
https://doi.org/10.1111/mmi.13006
https://doi.org/10.1111/mmi.13006
https://doi.org/10.1016/j.mib.2018.02.002
https://doi.org/10.1016/j.mib.2018.02.002
https://doi.org/10.1016/S0006-3495(93)81278-5
https://doi.org/10.1016/S0006-3495(93)81278-5
https://doi.org/10.1038/262467a0
https://doi.org/10.1038/262467a0
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1188308
https://doi.org/10.15252/Msb.20167044
https://doi.org/10.15252/Msb.20167044
https://doi.org/10.7554/eLife.27455
https://doi.org/10.1016/j.bpj.2015.01.024
https://doi.org/10.1073/pnas.89.2.718
https://doi.org/10.1016/0378-1119(95)00259-9
https://doi.org/10.1073/pnas.1916974117
https://doi.org/10.1074/jbc.M410104200
https://doi.org/10.1016/j.bios.2015.01.067
https://doi.org/10.3390/s16010134
https://doi.org/10.3390/s130505777
https://doi.org/10.1073/pnas.1317741111
https://doi.org/10.1039/b608990a
https://doi.org/10.1073/pnas.74.1.183
https://doi.org/10.1038/s41598-022-06732-4
https://doi.org/10.1038/s41598-022-06732-4
www.nature.com/reprints


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2965  | https://doi.org/10.1038/s41598-022-06732-4

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Bayesian-based decipherment of in-depth information in bacterial chemical sensing beyond pleasantunpleasant responses
	Results
	Experimental design. 
	Comparison of ensemble averaged responses of E. coli cells to different attractants. 
	Use of a Bayesian inference framework to analyse ensemble averaged responses. 
	Decipherment of input signals from collective responses of E. coli to well-defined attractants. 
	Decipherment of unorthodox chemical mixtures. 

	Discussion
	Material and methods
	Bacteria and culture conditions. 
	Polydimethylsiloxane (PDMS) experimental chamber. 
	Microscopy and imaging. 
	Tethered cell assay and image analysis. 
	Formulation of statistical procedure (DeSIRAM construction). 
	Machine learning to deduce the chemotactic responses of E. coli cells. 

	References
	Acknowledgements


