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Nonlinear frequency analysis 
of COVID‑19 spread in Tokyo using 
empirical mode decomposition
Ran Dong1*, Shaowen Ni2 & Soichiro Ikuno1

Empirical mode decomposition (EMD) was adopted to decompose daily COVID‑19 infections in Tokyo 
from February 28, 2020, to July 12, 2021. Daily COVID‑19 infections were nonlinearly decomposed 
into several monochromatic waves, intrinsic mode functions (IMFs), corresponding to their periodic 
meanings from high frequency to low frequency. High‑frequency IMFs represent variabilities of 
random factors and variations in the number of daily PCR and antigen inspections, which can be 
nonlinearly denoised using EMD. Compared with a moving average and Fourier transform, EMD 
provides better performance in denoising and analyzing COVID‑19 spread. After variabilities of daily 
inspections were weekly denoised by EMD, one low‑frequency IMF reveals that the average period 
of external influences (public health and social measures) to stop COVID‑19 spread was 19 days, 
corresponding to the measures response duration based on the incubation period. By monitoring this 
nonlinear wave, public health and social measures for stopping COVID‑19 spread can be evaluated 
and visualized quantitatively in the instantaneous frequency domain. Moreover, another low‑
frequency IMF revealed that the period of the COVID‑19 outbreak and retreat was 57 days on average. 
This nonlinear wave can be used as a reference for setting the timeframe for state of emergency 
declarations. Thus, decomposing daily infections in the instantaneous frequency domain using EMD 
represents a useful tool to improve public health and social measures for stopping COVID‑19 spread.

The coronavirus disease of 2019 (COVID-19) is spreading around the globe and significantly influencing the 
restaurant industry and travel industry. Many studies have employed various methods to analyze the spread 
of COVID-19. For example, Farzanegan et al.1 conducted an empirical analysis investigating case fatality rates 
between different countries. In contrast, Cinarka et al.2 analyzed Google searches interested in COVID-19 to track 
its spread using dynamic conditional correlation analysis. Most studies are only based on the time domain and 
linear models. Alternatively, Iftimi et al.3 investigated the relationship between daily COVID-19 infections in the 
first and second waves in Reus, Spain, and found that COVID-19 spread was periodic with the implementation 
of public health measures. Therefore, an analysis method in the frequency domain is desirable when dealing 
with complex nonlinear data such as COVID-19 daily infections.

Huang et al.4 proposed empirical mode decomposition (EMD) to nonlinearly decompose composite signals 
collected in the real world. Using EMD, these waves can be decomposed into several pseudo monochromatic 
waves called intrinsic mode functions (IMFs) and a residual called a trend. Since the IMF is a pseudo mono-
chromatic wave, the Hilbert transform (HT) is employed to obtain the instantaneous frequency and  amplitude5; 
applying the HT to decomposed IMFs enables the analysis of the composited signal in the instantaneous fre-
quency  domain6. As a result, EMD is widely applied in nonlinear analyses in the instantaneous frequency domain. 
Thus, for analyzing the nonlinear spread of COVID-19, EMD is more suitable than using a moving average and 
a Fourier transform (FT).

Various research fields related to COVID-19 have also adopted EMD. Mahata et al.7 showed that EMD and its 
Hilbert spectrum could be adopted to analyze the stock market crash caused by COVID-19. In this case, EMD 
showed its highest performance when dealing with nonlinear data, revealing characteristics of the stock market 
crash during the COVID-19 pandemic as events unfolded. Hasan et al.8 proposed a method employing IMFs 
decomposed by EMD to train a neural network, predicting the spread of COVID-19. Qiang et al.9 examined 
the spread of COVID-19 in Pakistan using EMD, and demonstrated that decomposed IMFs could be used to 
analyze COVID-19 spread based on an autoregressive integrated moving average (ARIMA) model. Liu et al.10 
also conducted research analyzing COVID-19 spread using EMD based on the ARIMA model. However, all of 
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these studies only used EMD based on neural networks or statistical models. There has been no explanation or 
discussion about the meaning of each decomposed IMF regarding regional circumstances.

Since public health measures and social restrictions aimed at stopping the spread of COVID-19 vary between 
countries and regions, some studies have compared regional differences. Mishra et al.11 compared public health 
measures implemented by the United Kingdom, Sweden, and Denmark and demonstrated that COVID-19 spread 
differed due to unique measures that were applied in each region. Fraser et al.12 studied COVID-19 spread in 
Japan based on social ties and revealed that COVID-19 cases differed among 47 prefectures. Thus, the spread of 
COVID-19 varies between different areas that are under distinct circumstances. Meanwhile, Watanabe et al.13 
suggested that during the COVID-19 outbreak in Japan, there were intervention effects due to the public health 
measures taken by the government and information effects from the social measures that changed people’s 
behaviors. However, there has been no research of daily infections in Tokyo using EMD regarding regional 
circumstances based on intervention and information effects. Therefore, in this paper, EMD was adopted to 
analyze daily COVID-19 infections in Tokyo (the capital city of Japan that has experienced four waves since the 
original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was detected in Japan) with respect to 
intervention effects and information effects. We demonstrated meanings of social activities in the instantaneous 
frequency domain to reveal new knowledge regarding the COVID-19 spread. Additionally, we provide quantita-
tive indicators to guide policy developments for future public health and social measures.

This study analyzed daily COVID-19 infections in Tokyo from February 28, 2020, to July 12, 2021. This 
period was chosen because the delta variant of SARS-CoV-2 has a different spread pattern in Tokyo due to its 
strong  infectivity14, compared to the alpha variant, which was the primary variant in Tokyo until June  202115 
and which has almost the same infectivity as the original variant. Thus, for simplicity, our research only focuses 
on COVID-19 daily infections in Tokyo before the delta variant became dominant. Additionally, the frequency 
used in this paper is defined as cycles per day as EMD was adopted to analyze daily infections.

Methods
In this section, we briefly introduce empirical mode decomposition (EMD). EMD decomposes a real-world 
signal into several pseudo monochromatic waves, called intrinsic mode functions (IMFs). After decomposing 
the signal into each IMF, their instantaneous frequencies and amplitudes were obtained by Hilbert transform 
(HT) based on the analytic signal. Therefore, we briefly review analytic signal, HT, and EMD.

Analytic signals. Analytic signals are widely employed in signal processing research fields. An analytic 
signal has two parts that form a complex plane: One part is a real part, while the other is an imaginary part 
orthogonal to the real part. An analytic signal is defined by the following (1):

where zr(t) denotes the real part and zi(t) denotes the imaginary part. As shown in (1), amplitude a(t) and phase 
θ(t) change as time passes. Therefore, the instantaneous amplitude a(t), the instantaneous phase θ(t) , and the 
instantaneous frequency ω(t) can be calculated based on an analytic signal by (2):

Hilbert transform. As only the real part of an analytic signal can be collected in the real world, the imagi-
nary part must be calculated based on the real part (the observed signal). HT can convert the real part zr(t) into 
its imaginary part zi(t) by assuming zr(t) is a monochromatic wave a(t) cos(ω(t)t) . Hence, HT, as defined by (3), 
calculates the imaginary part zi(t) from the real part zr(t)5.

Here, PV represents the Cauchy principal value. After calculating zi(t) by HT, the analytic signal shown in (1) 
is obtained. Then, the instantaneous frequency and amplitude of the observed signal can be determined by (2).

Empirical mode decomposition. To calculate an imaginary part, HT requires that the signal be a mono-
chromatic wave a(t) cos(ω(t)t) . However, signals observed in the real world are usually composite waves. To 
apply HT to composite waves, EMD decomposes these waves into several pseudo monochromatic waves, called 
intrinsic mode functions (IMFs), and a residual called a  trend6. Hence, a composite wave observed in the real 
world x(t) can be defined by (4):

where 
∑n

i=1 ci(t) is the set of IMFs, and r(t) is the residual. The definition of IMF is as follows:

• The number of signal extrema equals zero crossings, or the difference is 1.
• The average value of the two extreme envelopes made by the maximum and minimum is 0 for any t.
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The trend is empirically defined by the  following16:

• A trend is a monotonic function or a function with at most one extremum, intrinsically fitting the data with 
a given span.

• Detrending is an operation that removes the trend, and variability is the residue removed trend within a given 
span.

Based on these definitions of IMFs and trends, Huang et al.4,6 proposed a one-variable EMD, as shown in Algo-
rithm (1). 

After decomposing the observed signal into several IMFs using EMD, their instantaneous frequencies and 
instantaneous amplitudes can be obtained by applying HT to each IMF. This entire process is also called the 
Hilbert-Huang transform (HHT). The frequency components of the original signal x(t) can be expressed by 
HHT, as shown in (5):

while the frequency components of the original signal x(t), obtained by Fourier transform (FT), are shown in (6):

By comparing (5) and (6), FT linearly decomposes a signal with constants aj and ωj while EMD nonlinearly 
decomposes data into finite IMFs with variables aj(t) and ωj(t) . Thus, for nonlinear data such as the spread of 
COVID-19, which is influenced by various nonlinear factors, frequency analysis using EMD is more suitable 
than FT.

In addition, Niu et al.18 proposed a weighted average frequency algorithm (WAFA) that can smooth the 
instantaneous frequencies of each IMF by treating instantaneous amplitudes as weights to reduce decomposition 
errors. Thus, WAFA was employed in this study to smooth IMFs and obtain averaged frequencies of each IMF.

Results
We adopted EMD to analyze daily COVID-19 infections in Tokyo, Japan. First, we demonstrate the decompo-
sition results of each IMF and the trend. The periodic meanings of each IMF were identified by analyzing the 
decomposed IMFs in the instantaneous frequency domain using HT. Next, to show that EMD can decompose 
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COVID-19 data nonlinearly, we compared EMD outcomes with the moving average and Fourier transform 
approach to denoise variabilities of (1) random factors; and (2) variations in the number of daily polymerase 
chain reaction (PCR) and antigen inspections. Finally, after daily COVID-19 infections were denoised, the peri-
odic meaning of other decomposed IMFs are discussed, and their applications are proposed.

Decomposition of daily COVID‑19 infections using EMD. Nonlinear frequency analysis using EMD 
was performed on daily COVID-19 infections in Tokyo, Japan. The COVID-19 infection data were published by 
the Tokyo metropolitan  government19. The analysis included data from February 28, 2020, to July 12, 2021. It is 
thought that most infections during this period were the alpha variant before the delta variant became rampant. 
Figure 1 shows the original daily COVID-19 infections data in Tokyo. Four waves of COVID-19 spread occurred 
from February 28, 2020, to July 12, 2021. The data is noisy as the daily infections represent weekly changes. In 
addition, it can also be seen that the spread of COVID-19 was nonlinear due to external influences such as the 
implementation of public health and social measures to restrict the spread of COVID-19, as suggested by the 
World Health  Organization20. For instance, the government of Japan issued three state of emergency periods 
during the timeframe of the analysis. As shown in Fig. 1, the state of emergency measures suppressed COVID-19 
spread, as all waves decreased during that period. Other measures, including partial cancellation and the preven-
tion of the spread of disease initiatives, were also used to control COVID-19 spread gradually. Alcohol could not 
be served in restaurants during these periods, and admission to department stores was restricted. These events 
can be thought of as public health measures taken by the government. On the other hand, social measures are 
related to people’s choice to voluntarily stay at home in response to media reports and a stay-at-home measure 
announced by the Tokyo metropolitan government. As shown in Fig. 1, the spread of COVID-19 was controlled 
under the stay-at-home measure without the need for a state emergency in the second wave.

To analyze the nonlinear spread of COVID-19, EMD was adopted to decompose the data into several IMFs, 
corresponding to distinct periods that could be attributed to the public health and social measures implemented 
by the government and media. Figure 2 shows the decomposition results of daily COVID-19 infections by 
EMD. The original data were decomposed into six IMFs from high frequency (IMF1 ) to low frequency (IMF6 ) 
and a trend. The trend suggests that the spread of COVID-19 is still progressing. To reveal the meaning of the 
decomposed IMFs (pseudo monochromatic waves), we applied HT to each IMF to obtain their instantaneous 
frequencies and amplitudes.

Figure 3 shows the Hilbert spectrum of daily COVID-19 infections in Tokyo, Japan, obtained by applying 
HT to each IMF shown in Fig. 2. As shown in the spectrum, IMF1 changes rapidly from 0.35 to 0.14 cycles per 
day while IMF2 is around 0.128 cycles per day in the high instantaneous frequency domain. IMF3 changes from 
0.8 to 0.2 cycles per day, while IMF4 is around 0.017 cycles per day. Low-frequency variabilities are represented 
by IMF5 and IMF6 (which have larger amplitudes than high-frequency variabilities); they can be treated as a 
part of the residual to reform the original data. All IMFs show high amplitude around the new year, evidencing 
the impact of the third wave.

To provide intuitive meanings for each decomposed IMF in the spread of COVID-19, WAFA was applied to 
take an average frequency of the series of events. Table 1 shows the average frequencies and average periods ± 
standard deviation (SD) with corresponding periodic meanings. SD was adopted to calculate the distribution 
of instantaneous frequencies decomposed by EMD. The lower the SD compared to the average period, the more 
the pattern would appear at a constant frequency. For instance, the pattern of IMF2 was most stable among all 
IMFs. The average period of IMF1 was 4.5 days (SD ± 1.312 days), indicating that IMF1 was noisy and unstable 
compared to other IMFs. As demonstrated by the Tokyo metropolitan government, the number of PCR and 

Figure 1.  Daily COVID-19 infections in Tokyo, Japan, from February 28, 2020, to July 12, 2021.
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Figure 2.  Daily COVID-19 infections in Tokyo, Japan, nonlinearly decomposed by EMD.

Figure 3.  The Hilbert spectrum of each decomposed IMF in the instantaneous frequency domain.

Table 1.  The average frequencies and periods of each decomposed IMF by WAFA and their periodic 
meanings.

IMF Averaged frequency ± SD (cycles per day) Averaged period ± SD (days) The meaning of periodic activities

1 0.221 ± 0.064 4.519 ± 1.312 Various random factors

2 0.128 ± 0.021 7.797 ± 1.267
Variations in daily PCR and antigen inspections on 
a weekly cycle

3 0.053 ± 0.017 18.988 ± 6.112 External influences restricting COVID-19 spread

4 0.017 ± 0.006 57.171 ± 19.261 COVID-19 outbreak and retreat in Tokyo
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antigen inspections was different for each day on a weekly  cycle19. Meanwhile, the average period of IMF2 was 
7.8 days, indicating that IMF2 corresponds to variability due to the variations in the number of PCR and antigen 
inspections. Thus, these two IMFs can be considered as noise to be removed in trend analysis of the COVID-19 
outbreak. The average period of IMF3 was 19.0 days. It was related to the external measures implemented to 
stop the spread of COVID-19, caused by the intervention effects and information effects of the public health 
measures and social measures, receptively. The average period of IMF4 was 57 days. It represents the period of 
the COVID-19 outbreak and retreat.

Since detectable lowest frequency depends on the time duration of analysis, the lower frequency IMFs than the 
COVID-19 outbreak and retreat will also be decomposed when analyzing more extended data. In this research, 
we analyzed COVID-19 spread from February 28, 2020, to July 12, 2021 (501 days). Thus, the detectable lowest 
frequency by EMD is 0.002 (1/501) cycles per day, which was the average frequency of IMF6 , and the average 
frequency of IMF5 was 0.006 (1/166) cycles per day. Consequently, IMF5 and IMF6 were less important when 
analyzing intervention and information effects during the COVID-19 outbreak and retreat in Tokyo. Thus, in 
this research, we only focused on discussing the periodic activity meanings of IMF1 to IMF4.

To demonstrate the meaning of each IMF’s periodic activity shown in Table 1, we discuss the IMFs based on 
theories and experiments. As shown in Fig. 3, although the average period of IMF1 was 4.5 days, its frequency 
changes dramatically compared to other IMFs. Additionally, according to previous  research6, IMF1 had higher 
white noise than other low-frequency modes because EMD decomposes nonlinear modes from high frequency 
to low frequency. Thus, IMF1 can be thought of as variability due to various random factors.

The daily PCR and antigen inspections are also published by Tokyo metropolitan  government19. To verify 
that IMF2 was generated by variations in PCR and antigen inspections, we decomposed the number of daily PCR 
and antigen inspections in Tokyo using EMD. The decomposition result indicated that IMF2 of daily PCR and 
antigen inspections had an averaged period of 7.177 days and the largest amplitude among the other decomposed 
IMFs. This indicates that the number of daily PCR and antigen inspections in Tokyo had a periodical pattern 
every week. In contrast, as shown in Table 1, IMF2 that decomposed from the daily infections had an averaged 
period of 7.797 days with SD = 1.267. Then, the averaged period (7.177 days) of IMF2 that decomposed from 
the daily PCR and antigen inspections was in the range of 6.530 to 9.064 days. In addition, this IMF2 also had 
the largest amplitude among other IMFs. Thus, IMF2 that decomposed from the daily infections corresponds 
to the variations in the number of PCR and antigen inspections. IMF3 and IMF4 will be discussed in detail in 
the following section.

Weekly denoising of daily infections using EMD. In this study, IMF1 and IMF2 were deleted from the 
original data when analyzing the outbreak of COVID-19 as IMF1 was random factors, and IMF2 was caused by 
variations in the number of daily PCR and antigen inspections. Since the period of IMF2 was close to one week, 
IMFs with longer periods were considered as weekly denoised trends.

To demonstrate the nonlinear denoising method using EMD, we compared our results with moving aver-
age and FT, as shown in Fig. 4. In contrast to the moving average and FT methods, EMD can decompose daily 
infections data nonlinearly with their period properties. Figure 4a shows daily infections denoised by taking the 
average over a 7-day window. The moving average over a 7-day window is widely used when analyzing COVID-19 
spread to remove weekly variability. As shown in Fig. 4a, weekly variability was denoised without considering 

Figure 4.  Comparison among (a) moving average, (b) FT, and (c) EMD in weekly denoised trends.
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any period properties. Figure 4b shows daily infections denoised weekly by FT. All of the periods that were less 
than seven days were removed. As shown in Fig. 4b, period properties were considered to present the periodic 
changes. However, as we mentioned above, FT linearly decomposes data such that the FT cannot provide periodic 
meanings regarding social activities when dealing with nonlinear data like the spread of COVID-19. Figure 4c 
shows daily infections denoised weekly by EMD, IMF1 and IMF2 were removed.

Although both Fig. 4b,c have periodicity, FT shows vibrations all the time as it decomposes data with constant 
frequency. As the yellow circles demonstrate, vibrations in daily infections denoised weekly by FT can be clearly 
observed, while daily infections denoised weekly by EMD has almost no vibration. It can be suspected that these 
frequency components obtained by FT only capture local frequency properties, while EMD can handle a global 
range with all COVID-19 daily infections in the frequency domain. Since social activities occur nonlinearly in 
the time series, EMD is more likely to decompose meaningful social activities than FT. Thus, EMD provides 
better explanations than other methods when analyzing the spread of COVID-19.

Nonlinear frequency analysis using EMD. Next, we employed EMD to analyze the effects of the inter-
ventions and information provided on the spread of COVID-19, which corresponds to IMF3 , and the COVID-
19 outbreak and retreat in Tokyo, which corresponds to IMF4 . Figure 5 shows the results of IMF3 with a weekly 
denoised trend. Nonlinear components of IMF3 existed around the four waves, becoming smaller after each wave 
(red circles). This finding suggests that IMF3 reflects the intervention effects and information effects described 
in the introduction. Nonlinear components become smaller as these effects diminish due to the cancellation 
of the state of emergency. The average period was 19 days, so it can be considered that information effects and 
intervention effects (social measures and public health measures) are implemented based on the incubation 
period of the SARS-CoV-2 virus. Then, the Hilbert spectrum of IMF3 was employed to evaluate and visualize 
these effects more clearly.

To verify that IMF3 was related to the effects of the interventions and information, we examined the cor-
relations between IMF3 and the public health measures and IMF3 and the social measures. During the state of 
emergency and the prevention of disease initiatives, serving alcohol was prohibited by the Japanese government 
and the Tokyo metropolitan government based on their respective policies to prevent droplet infections. Since the 
number of people going to restaurants declined during that time, the year-on-year (2019) change in the number 
of views of the restaurant information website in  Tokyo21 was taken to investigate the correlation between IMF3 
and the public health measures. In contrast, the COVID-19 information provided by social media increased 
following the outbreak of COVID-19. Consequently, people paid more attention to preventing the spread of 
COVID-19. In addition, according to previous research in  Japan22, people who use social networking services 
maintain social distancing more than those who do not. Google provides a service called “Google Trends” that 
can analyze the popularity of Google searches in different regions and  languages23. Thus, this study adopted the 
popularity of Google web searches for two words, “Tokyo” and “Corona” in Japanese (the most used words for 
obtaining information of COVID-19 in Tokyo), to investigate the correlation between IMF3 and social measures.

In the present research, we adopted the Pearson correlation coefficient to evaluate relationships between IMF3 
amplitude and restaurant information site views, IMF3 amplitude and the popularity of Google searches. We 
also applied p-value to ensure the results were statistically significant. Since restaurant information and Google 
Trends only provide data after averaging in one week, we also weekly averaged IMF3 amplitude to fit both of 
them (71 weeks). Figure 6 indicates the correlation between (a) decomposed IMF3 amplitude and views of res-
taurant information in Tokyo, and (b) IMF3 and the popularity of Google searches for “Tokyo” and “Corona.” In 
Fig. 6a, the blue line shows the weekly average of the year-on-year (2019) change in the number of website views. 
It changes rapidly during the four waves. The correlation coefficient between IMF3 amplitude and restaurant 
information site views was −0.241 ( p < 0.05 ), indicating a weak negative correlation. This result indicates that the 
IMF3 amplitude increased when restaurant information views decreased and vice versa, as shown in Fig. 6a. Since 
people panicked during the first wave, restaurant information views declined dramatically at the beginning of the 

Figure 5.  Comparison between weekly denoised trend and decomposed IMF3.
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pandemic. Additionally, the PCR testing system was not ready for the COVID-19 outbreak. For these reasons, 
when calculating the correlation between IMF3 amplitude and restaurant information site views from only the 
second wave to the fourth wave (61 weeks), a higher negative correlation was obtained ( r = −0.381 , p < 0.01 ). 
Thus, when the IMF3 amplitude becomes more significant, it reflects that people are keeping away from drinking 
and partying in restaurants, indicating that IMF3 was related to the public health measures.

In Fig. 6b, the blue line shows the weekly averaged popularity of Google searches for “Tokyo” and “Corona.” A 
value of 100 indicates that the keyword was the most popular, while 0 indicates insufficient data for that keyword. 
The correlation coefficient between IMF3 amplitude and Google popularity was 0.397 ( p < 0.001 ), indicating a 
positive correlation. This result indicates that the IMF3 amplitude increased when Google searches for “Tokyo” 
and “Corona” increased and vice versa, as shown in Fig. 6b. Since people panicked during the first wave, the web 
searches for “Tokyo” and “Corona” changed dramatically at the beginning of the pandemic. Therefore, when 
calculating the correlation coefficient between IMF3 amplitude and Google popularity from only the second wave 
to the fourth wave (61 weeks), a higher positive correlation was obtained ( r = 0.503 , p < 0.001 ). Hence, when 
the IMF3 amplitude became more significant, people were paying more attention to the spread of COVID-19, 
indicating that IMF3 was related to the social measures. Therefore, the correlation between the number of res-
taurant views and IMF3 was significantly negative, especially after the second wave, whereas its correlation with 
the Google Trends in “Tokyo” and “Corona” searches was significantly positive. Thus, people’s behaviors were 
restrained by the intervention and information effects that are significantly related to IMF3 , indicating that IMF3 
can be considered as a nonlinear mode corresponding to external influence stopping the spread of COVID-19.

Figure 7 shows the Hilbert spectrum of IMF3 with daily infections of COVID-19 weekly decomposed by 
EMD. Social measures and public health measures are also presented in the figure. If the effects occur, the 
amplitude of IMF3 becomes more significant. This can be clearly observed over the duration of the first state of 
emergency, the stay-at-home measure, the second state of emergency, and the third state of emergency. On the 
contrary, the amplitude disappears when these effects cease, enabling the spread of COVID-19.

Additionally, when social and public health measures were performed more frequently, the frequency of IMF3 
may become higher since it corresponds to the external influences aiming to stop the spread of COVID-19. The 
frequency of IMF3 may represent the frequencies of policy implementations and media coverage on COVID-
19. For example, policy implementations and media coverage were frequent at the beginning of the COVID-19 
outbreak, the first and second waves. As such, this can be considered one of the reasons why the second wave 
could be controlled without a state of emergency. In contrast, policy implementations and media coverage were 
less frequent in the fourth wave as the frequency of IMF3 became lower; consequently, people lost interest in 
COVID-19 infections. Thus, there is a possibility that information and intervention effects could be quantitatively 
evaluated and visualized by monitoring and analyzing IMF3 in the instantaneous frequency domain.

Figure 8 shows IMF4 with daily infections decomposed weekly. The four waves were synchronized with 
weekly decomposed daily infections. This observation indicates the IMF4 represents the period of the COVID-19 
outbreak and retreat in Tokyo, with a duration of 57 days. It should be noted that there were two waves near the 
third wave. The third wave caused this due to its large amplitude, which other IMFs could cancel when rebuild-
ing the original data, as shown in Fig. 4a. Since the cancellation of the state of emergency can be thought of as 
the end of the outbreak, the average duration of the state of emergency can be considered as the period of the 
COVID-19 outbreak and retreat in Tokyo. To prove that IMF4 was related to the COVID-19 outbreak in Tokyo, 
we calculated the average duration (53 days) from the first (49 days), second (53 days), and third (56 days) state of 
emergency periods. On the contrary, the average period duration of IMF4 was 57± 19 days, close to the average 
duration of the states of emergency. Thus, IMF4 represents the period of the COVID-19 outbreaks and retreats 

Figure 6.  Correlations between decomposed IMF3 and intervention effects (public health measures) and 
IMF3 and information effects (social measures). (a) Year-on-year (2019) change in the number of restaurant 
information site views in Tokyo. (b) The popularity of Google searches for “Tokyo” and “Corona” in Japanese, 
obtained by Google Trends.
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in Tokyo. Monitoring and analyzing IMF4 could provide a quantitative indicator when planning the duration 
of the state of emergency.

Discussion
In this paper, we adopted EMD to analyze daily COVID-19 infections in Tokyo, Japan, from February 28, 2020, 
to July 12, 2021. Our results showed that EMD decomposes daily infections into several IMFs, corresponding 
to nonlinear waves with periodic meanings of social activities.

First, our results revealed that IMF1 corresponded to various random factors, while IMF2 corresponded to the 
variations in daily PCR and antigen inspections in Tokyo since the number of inspections on weekends are low 
while the number of inspections on weekdays are  high19. Our results showed that the average period of IMF1 was 
4.5 days, and IMF2 was 7.8 days. As shown in Fig. 3, the instantaneous frequency of IMF2 was nearly constant, 
around 0.128 cycles per day, demonstrating that the number of inspection changes on a weekly cycle. By delet-
ing IMF1 and IMF2 from the original data, the trend of the COVID-19 spread in Tokyo could be visualized and 
analyzed more clearly. Compared with the moving average and FT methods, EMD showed better performance 
in dealing with nonlinear data regarding social activities during the COVID-19 outbreak.

Second, our study also demonstrated that IMF3 corresponded to external influences aiming to stop the spread 
of COVID-19. In Japan, intervention effects were related to public health measures implemented by the govern-
ment, and information effects related to people’s behaviors responding to information about the  pandemic13. The 
key to stopping the spread of COVID-19 was not strong measures but rather providing appropriate information 
to encourage people to change their  behaviors24. Thus, there are external influences (intervention effects and 
information effects) acting to gradually and continually stop the spread of COVID-19. As shown in Fig. 7, the 
amplitude increases when the intervention effects and information effects are ongoing. The first wave was con-
trolled by the intervention effects of the public health measures, such as the state of emergency. After that, the 

Figure 7.  Comparison between the weekly denoised trend and the decomposed IMF3 Hilbert spectrum.

Figure 8.  Comparison between the weekly denoised trend and decomposed IMF4 . Vertical lines indicate the 
four waves.
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amplitude of IMF3 diminishes, indicating that people’s behaviors returned to normal. The second wave was con-
trolled by information effects when daily infections were increasing. According to previous  research25, COVID-19 
infections are mainly caused by human mobility. Human mobility behaviors decreased by about 30% in Tokyo 
during the second wave due to the stay-at-home  measure26. Thus, the stay-at-home measure was effective because 
people were still paying attention to news about the virus at that time, demonstrated by the amplitude of IMF3 . 
However, the government instigated the “Go-to-travel-Tokyo” initiative, a campaign to encourage people to 
travel to Tokyo, which started on October 1, 2021. Although go-to-travel-Tokyo was discontinued later, people 
might no longer pay attention to guidance about stopping COVID-19 spread when the third and fourth waves 
occurred. Consequently, the second and third states of emergency were announced, and IMF3 shows that more 
powerful external influences (larger amplitude) were implemented to stop the spread of COVID-19, compared 
with the first and second waves. In addition, to verify that IMF3 corresponded to external influences stopping the 
spread of COVID-19, we examined the correlations between IMF3 and restaurant information views (interven-
tion effects) and the popularity of Google searches for “Tokyo” and “Corona” (information effects). Although 
the correlation coefficients were not strong (as there were too many factors influencing the spread of COVID-
19, such as higher temperatures and more intense UV radiation in summer which are likely to support public 
health  measures27), our results revealed that IMF3 had relevance with both intervention effects and information 
effects. Additionally, the frequency of IMF3 became smaller during the fourth wave compared to the third wave. 
This may suggest that people and governments were paying less attention to stopping the spread of COVID-19 
during the fourth wave compared to the third wave (but they still paid some attention during the third wave 
due to the higher number of infections). Thus, by analyzing and monitoring IMF3 , it is possible to evaluate the 
performance of public health and social measures and provide alerts on stopping the spread of COVID-19 that 
capture people’s attention.

Finally, decomposed IMF4 corresponded to the periods of the COVID-19 outbreak in Tokyo. Since mid-
February 2020, when people first became more aware of COVID-19 in Japan, there has been dramatic changes in 
people’s  behavior28. Gradual and continual public health measures are more effective than one-time government 
 interventions29. Thus, in Tokyo, a novel lifestyle with COVID-19 has started under public health measures, such 
as outdoor activity restrictions at schools and universities and the cancellation of public  events30. As a result, 
infection waves occur periodically. These periodical waves are reflected in IMF4 , indicating that the period of 
the COVID-19 outbreak and retreat occurs periodically in Tokyo, 57 days on average. Thus, by analyzing and 
monitoring IMF4 , it is possible to provide a quantitative indicator to help guide decision-making about the 
duration of states of emergency for future outbreaks in Tokyo.

Conclusion
The spread of COVID-19 has been studied from various perspectives. A specific epidemiological explanation 
as to why the COVID-19 outbreak in Tokyo can be controlled periodically remains unknown. Thus, this paper 
focused on daily COVID-19 infections in Tokyo and provided a nonlinear frequency analysis to demonstrate 
the effects of social activities during the outbreak of COVID-19 in Tokyo using EMD. The conclusions of our 
research are as follows:

• Empirical mode decomposition can be considered a powerful tool for analyzing the spread of COVID-19. 
By adopting EMD to decompose daily COVID-19 infections, we can extract meaningful high frequency to 
low frequency periods in COVID-19 spread. High-frequency waves correspond to variability due to random 
factors and variations in the number of PCR and antigen inspections. Low-frequency waves correspond to 
external influences aiming to stop the spread of COVID-19 and the period of the outbreak and retreat.

• High-frequency IMFs, with average periods of 4.5 days and 7.8 days, can be nonlinearly denoised by EMD to 
visualize and analyze the spread of COVID-19. Compared with the weekly moving average and FT methods, 
EMD performed better for analyzing the COVID-19 outbreak.

• A low-frequency IMF has an average period of 19 days, representing intervention effects and information 
effects on the spread of COVID-19 that are related to social activities. Therefore, public health and social 
measures can be evaluated and visualized quantitatively by analyzing the corresponding IMF.

• A low-frequency IMF has an average period of 57 days, periodically representing the COVID-19 outbreak 
and retreat. Analyzing the corresponding IMF can provide a quantitative indicator to guide decision-making 
about the duration of states of emergency.

In this study, we demonstrated that the decomposed nonlinear mode IMF3 , with an average period of 19 days, 
corresponds to intervention and information effects in time series and can help visualize and evaluate social 
and public health measures to stop the spread of COVID-19. However, further experiments and evaluations are 
required before adopting the instantaneous frequency of IMF3 to improve social and public health measures.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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