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AI‑based atomic force microscopy 
image analysis allows to predict 
electrochemical impedance spectra 
of defects in tethered bilayer 
membranes
Tomas Raila1, Tadas Penkauskas2, Filipas Ambrulevičius2, Marija Jankunec2, 
Tadas Meškauskas1 & Gintaras Valinčius2*

Atomic force microscopy (AFM) image analysis of supported bilayers, such as tethered bilayer 
membranes (tBLMs) can reveal the nature of the membrane damage by pore‑forming proteins 
and predict the electrochemical impedance spectroscopy (EIS) response of such objects. However, 
automated analysis involving pore detection in such images is often non‑trivial and can require 
AI‑based object detection techniques. The specific object‑detection algorithm we used to determine 
the defect coordinates in real AFM images was a convolutional neural network (CNN). Defect 
coordinates allow to predict the EIS response of tBLMs populated by the pore‑forming toxins using 
finite element analysis (FEA) modeling. We tested if the accuracy of the CNN algorithm affected the 
EIS spectral features sensitive to defect densities and other physical parameters of tBLMs. We found 
that the EIS spectra can be predicted sufficiently well, however, systematic errors of characteristic 
spectral points were observed and need to be taken into account. Importantly, the comparison of 
predicted EIS curves with experimental ones allowed to estimate important physical parameters of 
tBLMs such as the specific resistance of submembrane reservoir. This reservoir separates phospholipid 
bilayer from the solid support. We found that the specific resistance of the reservoir amounts to 
10

4.25±0.10 � · cm which is approximately two orders of a magnitude higher compared to the specific 
resistance of the buffer bathing tBLMs studied in this work. We hypothesize that such effect may be 
related in part due to decreased concentration of ionic carriers in the submembrane due to decreased 
relative dielectric permittivity in this region.

Atomic Force Microscopy (AFM) is increasingly used for studying interaction of lipid bilayers with proteins 
including pore-forming toxins (PFTs) and membrane disrupting  peptides1–3. AFM is capable of detecting inser-
tion of proteins, heterogeneous distribution of proteins in  membranes2 in phase separated  membranes3, forma-
tion of rings of  PFTs1 and other structural details important to understand how membrane protein interact with 
cell membranes.

While providing nanoscale-level structural details of reconstituted PFT’s and peptides in membranes, AFM 
does not directly access function of these proteins, neither it can predict the extent of dielectric damage by PFTs 
and peptide. Such information is important in establishing fundamental relation between structure and func-
tion of biological systems.

Because of evident reasons the AFM studies of membrane proteins are performed using solid supported 
phospholipid  bilayers4. In case the electrical conductance data reflecting functional effects of PFTs or peptides 
on membranes is sought the tethered bilayer systems are  used5,6. Also, both techniques, AFM and EIS, are used 
simultaneously or in parallel to characterize structure and function of PFTs in  membranes7–10.

The electrochemical impedance spectroscopy (EIS) is a method of choice for detailed studies of electrical 
effects of PFTs in membranes. The EIS allows accessing the dielectric properties and conductance data of tBLMs 
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(tethered bilayer membranes), and in some cases though not being structural method per se, provides insights 
into lateral distribution of defects in  membranes8–10. So far, however, there were no attempts to quantitatively 
relate structural data obtained by AFM and the membrane conductance data measured by EIS, even though 
experimental capabilities to apply both techniques on the same membrane samples are straightforward. Such 
comparative measurements would be of great value in studying function of both single and multiple ensembles 
of membrane damaging protein entities as well as in developing precision biosensors based on  tBLMs11,12.

Recently, significant progress has been made in the development of EIS data analysis of solid supported 
(tethered) phospholipid  membranes8–10,13. In particular, the theoretical analysis demonstrated that the amount 
of reconstituted protein pores per surface area can be retrieved from the EIS spectral data. Nevertheless, such 
theoretical approaches, strictly speaking, should be verified by using data from the independent structural 
techniques such as AFM.

The objective of current study is to explore the possibility to predict the electrochemical impedance spectra 
from the AFM images of membranes with reconstituted PFTs. The AFM technique allows to detect PFT entities 
which appear on tBLM surface upon exposure of bilayer to the protein solution. The coordinates of these enti-
ties may be measured, and the finite element analysis (FEA) can be applied to model EIS response of such sup-
ported membranes. The comparison of predicted and experimental EIS curves obtained from the same sample 
would allow (1) to independently verify the applicability of FEA approach to theoretically predict EIS spectra 
developed  earlier9,10 on real, AFM imaged surfaces, (2) to precisely evaluate the physical parameters of supported 
bilayer membranes, among which the specific resistance of submembrane reservoir separating bilayer from the 
solid support is of upmost importance. This parameter is strongly correlated with the density of PFT defects in 
 tBLMs13,14, therefore, independent verification by AFM can resolve the ambiguities related to such correlation.

Typically, only a tiny patch compared to a whole surface area is interrogated by the AFM technique. To 
establish representative defect densities and their distribution patterns, the sufficiently large areas, in our case, 
containing hundreds and thousands of defects must by tested. The determination of coordinates of large defect 
ensembles is a highly time consuming process. To overcome such and similar problems automated algorithms 
can be applied for AFM image analysis.

Typically, the features of different shapes in AFM images are detected via particle or grain analysis based on 
edge detection. In the majority of cases, a pre-processing takes place to make it easier to measure and observe the 
features that have been  measured15. AFM images are always affected by the geometry of a tip and external noise 
that disturb image features. Although basic image segmentation approaches work well for good-quality image 
data containing clear and easily distinguishable objects, analysis of noisy, low-resolution or otherwise degraded 
images requires more sophisticated methods. An important factor is the scarcity of such image data which 
limits the possibilities of applying machine learning or deep learning methods in a practical way. In some cases 
researchers still resort to manual work of annotating and quantifying objects of interest in microscopy  images7,16.

Despite the difficulties associated with the automated analysis of AFM images, substantial progress has been 
recently made in developing practical solutions for certain types of such problems. Meng et al.17 presented 
an algorithm based on local adaptive Canny edge detection and circular Hough transform which is suitable 
for recognizing particles in scanning electron microscope (SEM) or transmission electron microscope (TEM) 
images. Another study conducted by Venkataraman et al.18 showed that rotavirus particles in AFM images can 
be detected by applying a series of image pre-processing, segmentation and morphological operations. Marsh 
et al.19 proposed the Hessian blob algorithm for detecting biomolecules in AFM images and showed its superior-
ity against the threshold and watershed image segmentation algorithms. Other recent studies also showed that 
deep learning techniques can be successfully applied to detect complex-shaped objects in microscopy images. 
Sotres et al.20 used the YOLOv3 object detection model and a Siamese neural network to determine the locations 
of DNA molecules in AFM images and identify the same molecule in different images. Okunev et al.21 applied a 
Cascade Mask-RCNN neural network to detect metal nanoparticles in scanning tunneling microscopy (STM) 
images. In both of these cases the researchers used precision and recall metrics to measure the performance of the 
proposed models. One more study by Sundstrom et al.22 involved a supervised learning approach of estimating 
lengths of DNA molecules in AFM images. A software tool for the automated biomolecule tracing in AFM data 
(TopoStats) was also recently developed and presented by Beton et al.23

In this study we investigate the problem of automated detection of membrane bound PFTs in AFM images. 
Performing this task with adequate accuracy is of practical importance, as the determined coordinates would 
allow to theoretically calculate EIS spectral features and to compare those features with the experimental EIS 
data. In addition to applying and testing one of the popular computer vision techniques—convolutional neural 
network, we present a method for generating synthetic defect sets which resemble detection results of varying 
accuracy, similar to those obtained by using an actual object detection model. Such datasets are used to perform 
FEA modeling of EIS spectra and examine the relationship between defect detection accuracy and correspond-
ing variations of EIS spectral features. By doing so we address the question—whether there is some minimal 
requirement for the precision of the AI based image processing algorithm so that the EIS spectra prediction 
would fall into acceptable range of uncertainty?

Methods
AFM imaging. AFM image data was obtained by measuring three separate tBLM membrane cells. Assem-
bled tethered lipid bilayers were incubated for 30 min with vaginolysin (VLY). Aliquot of a toxin was added to 
the cell, so that final concentration of VLY was 1 nM . After incubation, cell was washed with 10 mL of phosphate 
buffer pH7.1 to remove any unbound protein debris, and disassembled under water. AFM imaging was carried 
out in aqueous environment. More detailed description of experimental settings can be found  elsewhere10.
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For each cell a surface patch of 6µm× 6µm was scanned by capturing one 2µm× 2µm fragment at a time. 
Each fragment was imaged with 512× 512 resolution, thus the overall stitched image consisting of 3× 3 frag-
ments had 1536× 1536 resolution. Each image fragment was manually annotated by marking center coordinates 
(X and Y) of each defect visible in the image. Image fragment sets of each cell were partitioned into training and 
test subsets by assigning 5 fragments for training and 4 for testing. Test fragments were selected to represent a 
cohesive 4µm× 4µm surface patch at the lower right corner of the fully stitched image. Table 1 shows the total 
number of annotated defects (N) and average defect density ( Ndef  ) for each AFM image cell and training/test 
subset. Defect density is expressed as the number of defects per square micrometer.

In addition to aforementioned parameters each surface image is also characterized by metric σ which is 
obtained by computing the Voronoi diagram for a given defect set and calculating the standard deviation of 
the normalized Voronoi sector areas (multiplied by defect density Ndef  ). This quantity summarizes the degree 
of defect clustering where higher values correspond to stronger clustering effect (example of defect cluster is 
highlighted in Fig. 1). Defect clustering has been shown to have significant influence on EIS spectra of tBLM 
membranes, as presented in earlier  research10.

Defect detection accuracy. Although membrane defects are primarily characterized by their center coor-
dinates and defect radius, these attributes can be used to express the defect position in the image as its bounding 
rectangle. By comparing two sets of bounding rectangles, corresponding to true and predicted defect positions, 
defect detection accuracy can be quantitatively evaluated.

To count the number of correct detections, the bounding rectangle of each true defect position ( Btrue ) is 
matched with its closest prediction ( Bpred ). The overlap between each such pair of true and predicted bounding 
rectangles is evaluated by the intersection over union (IoU) metric (1) (also known as Jaccard index), which is 
expressed as the ratio of bounding rectangle intersection and union areas (Fig. 2):

Higher IoU values correspond to a better match between both bounding rectangles. If IoU value is above the cho-
sen threshold (i.e. 0.5), the detection is assumed to be a true positive (TP). Otherwise, if no matching prediction 

(1)IoU =
Btrue ∩ Bpred

Btrue ∪ Bpred
.

Figure 1.  Example of an AFM image fragment with an instance of defect cluster zoomed in.

Table 1.  AFM image sets used for defect detection model training and testing.

AFM surface Subset Image fragments N Ndef σ

1 Training 5 202 10.10 1.18

2 Training 5 138 6.90 1.12

3 Training 5 170 8.50 0.77

1 Test 4 172 10.75 1.20

2 Test 4 97 6.06 1.02

3 Test 4 158 9.88 0.91
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exists for a given true position, such detection is counted as a false negative (FN). In the opposite case, when 
no true bounding rectangle can be matched for a given prediction, a false positive (FP) is assumed. By counting 
all such cases of correct and incorrect detections, overall defect detection accuracy is summarized by precision 
and recall  metrics24:

Both precision and recall can also be expressed by the F1 metric:

Synthetic defect set generation. In order to assess the relationship between defect detection accuracy 
and corresponding variations in EIS spectra, a substantial number of defect detection result sets is required. Such 
detection results should exhibit different precision and recall values distributed in a certain range. However, such 
specific detection results can be difficult to acquire by applying object detection models trained using real AFM 
images and annotated true defect positions. We chose an alternative approach of synthetically generating defect 
coordinate sets which would emulate defect detection results at different accuracy levels. Each synthetic case is 
generated by starting with the initial set of known true defect coordinates and applying certain modifications 
(defect addition, removal, coordinate shifting) to acquire a new defect set equivalent to the defects actually being 
detected by some model with imperfect accuracy.

The procedure for generating a series of such synthetic cases from a given true defect set consists of the fol-
lowing steps: 

1. Kernel density estimation (KDE)25 is applied for the set of true defect coordinates. The resulting distribu-
tion is used to reduce the chances of defect clustering changing significantly due to new defects being added 
or existing ones removed. Figure 3 shows an example of a clustered defect set and its corresponding KDE 
distribution, where warmer colors correspond to the higher values of its probability density function.

2. For each synthetic case: 

(a) True coordinates ( x(true) and y(true) ) of each existing defect are modified by adding normally-distrib-
uted random values: 

 This results in realistically imperfect matches between true and predicted bounding rectangles of 
the defects.

(b) A number nremove of defect coordinate pairs are sampled from the KDE distribution. True defects 
closest to the sampled coordinates are selected and removed from the initial defect set. This introduces 
false negatives (FN) into the generated defect set and reduces recall accordingly.

(c) A number nadd of new coordinate pairs are sampled from the KDE distribution and defects with 
these coordinates are added into the generated defect set. This represents false positives (FP) and 
corresponds to lowered precision values.

The described algorithm was used to generate the synthetic cases for each of three AFM test images indepen-
dently. KDE distributions were fitted using the Gaussian kernel and bandwidth parameter set to 400. The standard 
deviation parameter s of the normal distribution used for defect coordinate shifts was set to 4. Parameters nremove 
and nadd were initially set to 0 and then incremented throughout the generation process by a step quantity corre-
sponding to 3% of true defect count N until the maximum value of N/2 was reached. Table 2 shows the properties 

(2)Precision =
TP

TP + FP
.

(3)Recall =
TP

TP + FN
.

(4)F1 = 2×
Precision× Recall

Precision+ Recall
.

x(pred) = x(true) + δ; y(pred) = y(true) + δ; δ ∼ N(0, s2)

Figure 2.  Bounding rectangle overlap of true and predicted defect positions.
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of the synthetic defect sets generated by the described procedure. Due to stochastic nature of this algorithm, some 
variability of clustering effect (expressed in terms of σ ) is still present in the defect sets, as summarized in Fig. 4.

EIS modeling. Electrochemical impedance (EIS) spectra of each defect distribution are modeled by apply-
ing the finite element analysis (FEA) technique. Membrane models were implemented and solved in the same 
way as described in the previous  study9. Modeling was performed for each AFM surface from the test set by 
using the true defect distribution and each of the generated cases, described in “Synthetic defect set generation” 
and referred to as the predicted set. In order to quantify the discrepancy between the EIS spectra modeled for 
any given pair of true and predicted defect sets we used the positions of the minima points of the curves (exam-
ple in Fig. 5) along both frequency and admittance phase axes:

Figure 3.  KDE model of true defect coordinates (white dots) annotated for AFM test image #1. Background 
color represents the log probability density of the fitted KDE distribution.

Table 2.  Summary of generated defect sets for each AFM test image. Precision, recall and F1 values were 
computed against true defect sets annotated in the given AFM image.

AFM surface Generated cases Precision range Recall range F1 range

1 324 0.49 – 1.00 0.48 – 0.99 0.49 – 0.98

2 256 0.54 – 1.00 0.51 – 1.00 0.53 – 1.00

3 256 0.53 – 1.00 0.51 – 1.00 0.53 – 0.99

Figure 4.  Histograms of standard deviations ( σ ) of normalized Voronoi sector areas (multiplied by defect 
density Ndef  ) computed for synthetically generated defect distributions. Red dashed lines—Voronoi sector areas 
of true defect distributions.
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In order to characterize the relationship between the defect detection accuracy and deviations in the result-
ing EIS spectra, using F1 metric alone is not enough due to the fact that EIS spectral features are more strongly 
influenced by the defect size and density than by the specific positions of the defects in the membrane  surface9. 
For this reason, a predicted defect set might poorly match the true one and thus exhibit a low F1 value, although 
their corresponding EIS spectra might closely match, as long as the overall properties of defect count and size are 
similar. To take this effect into account we also use an additional QN metric which represents the ratio of defect 
densities (number of defects per square micrometer) from predicted and true defect sets:

Results and discussion
Defect detection with convolutional neural network. To perform the actual defect detection experi-
ments using AFM image data a convolutional neural network (CNN) model was chosen as the current state-
of-the-art approach for object detection tasks. Specifically, we used a popular SSD FPN architecture object 
 detector26 implementing a two-stage object detection approach, where the candidate locations of objects are 
first identified and then each region is classified separately. Initial  model27 was pre-trained with COCO image 
 dataset28 to detect objects of 90 different types. In order to adapt it for defect detection in AFM images, the model 
was re-trained to detect a single type of object (membrane defect) using 15 AFM images described in Table 1 and 
containing a total of 510 annotated defect instances. Each training image fragment with 512× 512 resolution 
was scaled to match the model input of 640× 640 color (RGB) images. Tensorflow 2.0 framework was used to 
train and evaluate the model and the training was performed using Nvidia GTX 1080 GPU hardware.

The trained model was evaluated with each of 12 test image fragments (Table 1) and the detection results were 
aggregated to match the layout of 4 stitched fragments per each AFM surface. Bounding boxes of all detected 
defect instances were equalized to match the width and height of 50 nm, corresponding to defects with circular 
radius of 25 nm. Defect instances predicted by the model were compared with the true defect positions and the 
overall model accuracy was evaluated using the precision, recall and F1 metrics for each AFM surface (Table 3).

Precision, recall and F1 scores indicate a significant number of inaccurate detections in the test images of 
all three AFM surfaces. Defect clusters (Fig. 6, left) proved to be difficult to resolve due to poorly visible surface 
features inside the clusters. However, the model performed fairly well for certain image fragments with no defect 
clusters present (Fig. 6, right). This is also illustrated by the fact that the test image of AFM surface 3 which 
indicates the lowest amount of defect clustering in terms of σ (Table 1) also have the highest overall F1 score.

How much inaccuracies in detection of defects affect the prediction of EIS response of 
tBLMs? As seen from the previous paragraph, the current AI-based algorithm has limited precision of detec-
tion of defects in real AFM pictures. Specifically, as seen from Table 3, both parameter F1, and number of enti-
ties QN are detected with max 75% (F1) and max 96% ( QN ) precision as judged from the tests on surfaces 1, 2 
and 3 (Table 3). It is however, important if inaccuracy in defect recognition can result in significant deviations 
in predictive power of EIS spectral features. To answer this question we compared the position of character-
istic points of EIS spectra obtained via FEA modeling of EIS curves based on coordinates determined by eye 
(“true coordinates”) and EIS curves obtained by applying the AI algorithm. The comparison of the curves are 
performed by calculating the position of the EIS Bode admittance phase curve minimum in the argY  vs log f  
plane. The deviation along the log f  axis is measured on a logarithmic scale as � flog and the deviation along the 
argY  axis is measured on a linear scale as � argY  . Table 3 summarizes the findings. It is obvious that the shift 
of the position of the phase minima is within the approximate interval 0.1 and -0.027, which translates into the 
range for relative error in the position of the minimum on a log f  scale from 2 to 6%. Even though modern EIS 
workstations provide much greater measurement precision, given limitations related to the reproducibility of a 

(5)� flog = log10(f
(true)
min )− log10(f

(pred)
min )

(6)� argY = argY
(true)
min − argY

(pred)
min

(7)QN = N
(pred)
def /N

(true)
def

Figure 5.  Spectral features of modeled EIS spectra involved in quantifying the difference between true and 
predicted defect set cases.
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specific tBLM experiment such error may be considered as acceptable. The position of the phase minimum on 
the log f  scale is a main parameter from which the defect density can be estimated from the EIS  spectra9,13,14. So, 
from this series of tests we may hypothesize that the precision of the prediction of defect density using AI-based 
algorithm can be increased by recalculating the defect density from the AI-algorithm predicted position of the 
log fmin using previously described  method9. For example, in sample 2, the AI-derived QN is 1.227, i.e, 22.7% 
more than is located in real AFM images. However, the � flog shift is only -0.013, which translates into -3% with 
respect to a true defect density value.

This result is of upmost importance because it suggests that the AI-based AFM image analysis allows to 
reconstruct EIS spectra with satisfactory precision, while combination of both theoretical analysis techniques, 
 EIS9 and AI-based AFM image analysis allows to precisely determine defect densities on real tBLM samples.

Simulation of inaccuracies in detection of defects in tBLMs. In the previous paragraph the evalu-
ation analysis of the AI-based AFM data analysis algorithm was evaluated using images of 3 real samples. To 
obtain statistically more significant estimate of how the precision of AI-based algorithm may affect the predic-
tion of the EIS spectral features we applied simulation of the inaccuracies in defect coordinate detection. This 
was done as described in “Synthetic defect set generation” . Starting with true distribution we aimed at generat-
ing a large number of defect distributions and determine deviations from true distributions which may arise 
due to lack of precision of AI-based defect detection algorithm. The simulation data is summarized graphically 
in Fig. 7. Green points in Fig. 7 plots correspond to the positions of characteristic points of samples 1, 2, and 3, 
which are included in Table 3.

As seen from Fig. 7 deviation of parameter F1 < 1 results in skewed dispersion of both parameters � flog and 
� arg Y (see Supplemental Material). Such asymmetry of parameter distribution introduces a systemic shift of 
� flog in AI-derived AFM image data, which for samples 1, 2, and 3 were found to be −0.168,−0.083 and −0.068 
respectively (see Supplemental Material) in the F1 values interval from 0.5 to 1.0. The standard deviations of 
parameter � flog are 0.16, 0.13 and 0.14 for samples 1, 2 and 3 correspondingly (F1 interval [0.5,1.0]). Relatively 
small, though consistent shift of � arg Y was also detected. Specifically, the following shifts were observed for 
samples 1, 2 and 3 respectively: −0.98 deg, −1.68 deg and −0.48 deg in the same F1 interval. The systematic shifts 
� flog decrease rapidly as F1 approaches 1. The � flog and its standard deviation for F1 interval from 0.95 to 1.0 
are 0.001 and 0.027, −0.002 and 0.031, and −0.016 and 0.027 for samples 1, 2 and 3 respectively.

Figure 6.  Examples of true defect positions (green rectangles) and predicted (red rectangles) ones by using the 
convolutional neural network. An instance of a defect cluster and the corresponding true and predicted defect 
positions is zoomed in on the left image.

Table 3.  Defect detection accuracy of the test AFM images and the resulting differences between EIS spectra 
of true and predicted defect sets.

AFM surface Precision Recall F1 QN � flog � arg Y

1 0.775 0.581 0.664 0.750 0.009 0.735

2 0.555 0.680 0.611 1.227 −0.013 0.681

3 0.757 0.728 0.742 0.962 −0.027 0.864
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Currently, we cannot provide any reasonable explanation for such negative shift. It is obvious that the systemic 
negative shift may vary in relatively wide intervals causing errors in predictions of EIS spectra features. We may 
state that the precision of AI-based algorithm reflected in parameter F1 may considerably affect the position of 
fmin so that the relative errors in predicting this parameter may exceed several tens of percent. In our sample 
surfaces 1, 2 and 3 the F1 values 0.664, 0.611 and 0.742 resulted in (see Supplemental Material Tables S2, S3 and 
S4, left panes) systemic shifts of � flog −0.174,−0.070 and −0.073 respectively.

Figure 7.  Dependencies between defect detection accuracy (expressed in terms of F1 and QN ) and deviations 
in corresponding EIS spectra. Coloured dots represent synthetically generated defect sets at varying detection 
accuracy levels (Table 2), squares with green borders indicate real detection results obtained with CNN model 
(Table 3). Scatter plot pairs A/B, C/D and E/F represent AFM surfaces 1, 2 and 3 respectively.
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Predicting physical parameters of tBLMs from comparison of AFM image derived and experi-
mentally measured EIS spectra. The comparison of AFM derived and experimentally measured EIS 
spectra allows one to make estimates of some important physical parameters of tBLMs. Specifically, the spe-
cific resistance, ρ , of submembrane layer separating phospholipid bilayer and metal/solution interface (Helm-
holtz layer) can be estimated. This parameter cannot be independently estimated from the analysis of the EIS 
response, because it is fully correlated with the defect density Ndef

13. Independent estimation of Ndef  using AI-
based AFM image analysis algorithm allows to resolve the uncertainty. In such exercise the range of defect radius 
can also be estimated because rdef  determines the position of the phase minimum of argY  vs. log f  plot of EIS 
spectra of tBLMs.

A series of FEA modeling tasks were performed with each pair of true (established by eye) and predicted 
defect sets for all three AFM surfaces (test data) separately. Two parameters were varied in each scenario: defect 
radius rdef  was adjusted from 1 nm to 13 nm with increments of 2 nm, while the specific conductivity of the 
submembrane layer ρsub was adjusted in logarithmic scale from 104 to 105 � · cm with power increments of 0.1, 
resulting in a total of 77 parameter combinations. Modeled curves of both true and AI-predicted defect sets were 
matched against the experimental EIS data by minimizing the L1 norm of minimum point coordinates (frequency 
and admittance phase axes) between a pair of curves. Figure 8 shows the modeled and experimental curves of 
each surface as well as the specific rdef  and ρsub values of the corresponding modeled cases.

The mean rdef  and ρsub values were found to span interval from 1 to 7 nm and 104.0 to 104.6 � · cm corre-
spondingly. The mean values of the parameters are correspondingly 2.7± 1.0 nm and 104.25±0.10 � · cm . While 
rdef  shows significant standard deviation, which is expected because sensitivity of EIS response to rdef  is small if 
relatively modest interval of rdef  variation is  considered13. In opposite, ρsub can be established with considerably 
better precision, so it is likely that the described AI-based AFM image analysis technique has a good perspec-
tive for the use in calibration of tBLMs systems for the precision measurement of defect densities which is of 
upmost importance in considering tBLMs as quantitative biosensors for the detection of pore-forming toxins.

Conclusions
In this study we investigated the possibilities of automated detection of defects in AFM images of tBLM mem-
branes and possibilities to predict the EIS response of such membranes. By applying the convolutional neural 
network for the formulated object detection task we demonstrated the potential advantage of this approach in 
comparison to manual defect annotation, although the results should be considered as preliminary due to the 
limited amount of image data used and no model tuning.

We also attempted to solve the defect detection problem by using TopoStats automated biomolecule trac-
ing  tool23 and compared its accuracy to the performance of the CNN approach (see Supplemental material, 

Figure 8.  Admittance phase data of experimental EIS measurements (blue curves) versus modeled cases 
(green and red curves corresponding to manually annotated defect coordinates and CNN model predictions, 
respectively). (A–C) correspond to AFM surfaces 1, 2 and 3.
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Table 5S). The precision of TopoStats proved to be comparable to CNN, while the recall was significantly lower 
for all AFM images, indicating that a large portion of actual defects were not detected by the tool (illustrative 
examples presented in Supplemental Material, Fig. 1S). Poor performance of TopoStats can be attributed to the 
presence of defect clusters in the images. This proves to be a significant obstacle for object detection approaches 
based on non-AI image processing methods.

Using three different samples of tBLMs we found that true and AI-derived sets of defect coordinates though 
being non-identical produce by FEA modeling similar EIS curves. One of the main EIS spectral features, the 
predicted position of the phase minimum in Bode plots of admittance was within 2–6% from the true values.

Test on larger sample sets, which coordinates were produced synthetically, indicate possibility of a system-
atic deviations of predicted EIS spectral features. These deviations are sensitive to the AI algorithm’s precision 
parameter F1, and they rapidly decrease as F1 approaches 1. Taken together these findings show that EIS spectra 
can be predicted sufficiently well however, the systematic errors need to be taken into account.

We also showed that automated AI-based algorithm of AFM image analysis allows one to make EIS spectra 
predictions which can be used to assess important physical parameters of tBLMs such as submembrane specific 
resistance. Using three different samples of tBLMs we found that the submembrane resistance is 104.25±0.10 � · cm , 
a value slightly lower compared to value previously used ( 104.5 � · cm ). This parameters allows calibration of 
tBLM biosensors for quantitative detection of activities of pore-forming toxins.

In conclusion we provide evidence of applicability of AFM to assess the geometry and density of membrane 
damaging defects such as pore-forming toxins in tBLMs. This data can be used to theoretically predict EIS 
response of tBLMs as well as calibrate this response for biosensor applications.

Data availibility
Modelling data and experimental data are available from authors on request.
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