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Controlling for background 
genetic effects using polygenic 
scores improves the power 
of genome‑wide association 
studies
Declan Bennett1, Donal O’Shea1,2, John Ferguson1,3, Derek Morris4 & Cathal Seoighe1*

Ongoing increases in the size of human genotype and phenotype collections offer the promise of 
improved understanding of the genetics of complex diseases. In addition to the biological insights that 
can be gained from the nature of the variants that contribute to the genetic component of complex 
trait variability, these data bring forward the prospect of predicting complex traits and the risk of 
complex genetic diseases from genotype data. Here we show that advances in phenotype prediction 
can be applied to improve the power of genome‑wide association studies. We demonstrate a simple 
and efficient method to model genetic background effects using polygenic scores derived from SNPs 
that are not on the same chromosome as the target SNP. Using simulated and real data we found that 
this can result in a substantial increase in the number of variants passing genome‑wide significance 
thresholds. This increase in power to detect trait‑associated variants also translates into an increase 
in the accuracy with which the resulting polygenic score predicts the phenotype from genotype 
data. Our results suggest that advances in methods for phenotype prediction can be exploited to 
improve the control of background genetic effects, leading to more accurate GWAS results and further 
improvements in phenotype prediction.

Linear mixed effects models (LMMs) are routinely applied to detect associations between SNPs and phenotypes 
in genome-wide association studies (GWAS) and many methods have been developed that enable these mod-
els to be applied efficiently to the large scale datasets that are typically now encountered in studies of complex 
 traits1–9. Compared to fixed effects models for  GWAS10, LMMs can be designed that have the advantage of being 
applicable to samples that include related  individuals1,11,12. LMMs for this purpose typically include a random 
effect with covariance proportional to the kinship matrix that indicates the degree of relatedness between pairs of 
individuals in the  sample12. The relatedness of individuals in the sample may be known a priori or may be derived 
from the genotype data by constructing a genetic relationship matrix (GRM), with entries corresponding to the 
genotypic covariance between pairs of individuals. When the entries of the GRM below a specified threshold are 
set to zero, the GRM is approximately equivalent to a family kinship matrix, with the degree of relatedness that 
the matrix captures controlled by this threshold. Thresholding the matrix to capture close family relationships 
(or cryptic  relatedness13) allows specialized computational methods for sparse matrices to be applied so that 
model fitting remains tractable for studies that include large numbers of  individuals9. This is the approach taken 
by fastGWA 9, a recently developed tool that has been shown to generate correctly calibrated statistical results 
efficiently for biobank-scale GWAS.

In addition to enabling application to samples containing related individuals, LMMs can also account for 
genetic background  effects11,14. When a statistical model is used to test for a relationship between a given SNP 
(the test SNP) and a phenotype, genetic variants in the genome that are not in linkage disequilibrium with the 
test SNP may also make a substantial contribution to the phenotypic variation. If this contribution to phenotypic 
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variation is not accounted for it contributes to the error term in the model. If the trait of interest is both highly 
polygenic and highly heritable this noise may be substantial. Failure to account for sources of variance in the 
response in a statistical model can reduce the power to detect a relationship of  interest15,16. A LMM with a full 
GRM (i.e. derived from all SNPs in the data and with no threshold applied on the level of genetic correlation 
between individuals) is equivalent to a model in which all variants are assumed to have a causal effect on the 
phenotype, with effect sizes consisting of independent samples from a Gaussian  distribution8. This is typically not 
a good fit to the true effect size distribution, and instead, the software package BOLT-LMM8 uses a spike-and-slab 
Gaussian mixture for the effect size distribution, with a component (the spike) close to zero corresponding to 
weak genome-wide effects and accounting for family relationships, and component with larger variance (the slab) 
corresponding to variants with large  effects8. Fitting this more sophisticated model requires specialist numeric 
methods, that are relatively computationally intensive. Consequently BOLT-LMM is much more computation-
ally intensive than fastGWA 9.

The full GRM is an N × N matrix, where N is the number of individuals in the study. The memory require-
ment of BOLT-LMM is kept tractable by not explicitly evaluating the GRM but rather BOLT-LMM solves the 
mixed model equations by computing the product of the inverse GRM and the phenotype vectors. Nonetheless, 
the overall compute time and memory requirements of BOLT-LMM are a function of both N and the number of 
model SNPs, M, that contribute to the GRM (with O((NM)1.5) compute time and NM4  bytes of memory required. 
Various options have been explored for which SNPs to include in the calculation of the  GRM11. Including SNPs 
in LD with the target SNP results in loss of power, as the effect of the target SNP is partially accounted for by 
the random effect through the GRM. This has been referred to as proximal  contamination14. On the other hand, 
including all (or most) SNPs that are not in LD with the target SNP, e.g. using a Leave One Chromosome Out 
(LOCO) approach, can result in dilution of the extent to which the relevant part of the genetic background is 
captured by the GRM. In the latter case, SNPs that are not relevant, in that they do not capture direct genetic 
effects or tag relevant population structure effects, effectively add noise to the  GRM14. Alternatively, the GRM can 
be built from only the SNPs that are found using a linear model to be associated with the phenotype. Although 
this results in an increase in statistical  power11,17,18, it does not fully control for population structure and is not 
recommended if population structure is of substantial  concern8,11. Methods have been developed that incorporate 
principal components into the GRM calculation built from significant SNPs; however, most of these methods 
are not suited to large biobank-scale data, without access to cloud computing or large compute  farms19–21. Back-
ground genetic effects can also be included in the statistical model as fixed effects and this is the recommended 
approach when there are SNPs with large effect  sizes11. A model fitting approach to determine the SNPs to include 
as fixed effects has been developed, and this also results in increased power in  GWAS14.

As the genomic architecture of complex diseases is uncovered with the help of large biobanks, there is an 
advancing prospect of predicting quantitative phenotypes and the risk of complex diseases from genotype data. 
Recent years have seen substantial success and emerging clinical utility in phenotype prediction from polygenic 
scores (PGS)22,23. PGS are constructed from weighted sums of allele dosages, with the weights corresponding to 
the effects size of the variants. Risk variants (variants associated with the phenotype) are typically inferred from 
the largest available GWAS, generally a meta-analysis. The clinical potential of PGS has already been shown in 
complex diseases such as coronary artery disease (CAD), diabetes and  cancer23–25. In CAD, the identification 
of individuals with similar risk to those with rare high-risk monogenic variants has been  reported24. Similarly, 
in breast cancer, pathogenic variants in BRCA1/2 account for 25% of familial risk of the disease with genome 
wide variants accounting for a further 18% of the  risk26,27. It is likely that in the future specialist machine learn-
ing methods will be developed to predict phenotype from  genotype23, potentially achieving higher accuracy by 
incorporating the possibility of non-additive effects.

Here, we set out an approach to GWAS that seeks to separate the model fitting at the test locus and estima-
tion of the genetic background effect. After carrying out an initial round of GWAS using an existing method, 
we derive a PGS for each chromosome, using the summary statistics for SNPs on the remaining chromosomes. 
We refer to this as the Leave One Chromosome Out Poly Genic Score (LOCO PGS). We then perform a second 
round of GWAS, including the relevant LOCO PGS as a fixed effect to account for the contribution to the vari-
ation in the phenotype of SNPs that are not on the same chromosome as the test locus. We tested this approach 
in two ways. Firstly, using simulated data we tested for an improvement in power on the task of recovering 
known causal variants as a function of study size, number of causal variants and trait heritability. In addition, we 
applied the method to three phenotypes from the UK Biobank and determined the number and characteristics 
of additional variants that were detected. For an objective assessment of performance on real data, where the 
true associations are unknown, we divided the data into test and training sets and predicted the phenotype in 
the test set. The improvement in performance on the critical task of complex phenotype prediction illustrates the 
utility of the PGS as a means of accounting for off target genetic effects. This straightforward, modular approach 
to accounting for genetic background effects in GWAS has the advantage of leveraging advances in phenotype 
prediction as they become available. It also offers significant improvements in speed relative to existing methods 
that correct for genetic background.

Results
We incorporated the LOCO PGS as a fixed effect in a linear mixed model using the existing tools, GCTA fast-
GWA, BOLT-LMM and  REGENIE8,9,28. We refer to the methods that result from including the LOCO PGS fixed 
effect by appending PGS and the name of the method used to calculate the PGS to the name of the original tool. 
For example, fastGWA with a LOCO PGS fixed effect, calculated using the pruning and thresholding (P&T29) or 
 LDpred230 methods are referred to as fastGWA-PGS-PT and fastGWA-PGS-LDpred2, respectively. We simulated 
data to evaluate the impact of including the LOCO PGS as a fixed effect in GWAS. The simulations consisted 
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initially of a normally-distributed continuous trait in 100,000 individuals. The trait had a narrow-sense herit-
ability ( h2 ) of 0.5 and there were 1000 causal SNPs with normally-distributed effects on the trait (see “Methods” 
section for details). To check the validity of our approach we performed simulations under the null model of no 
association between genotype and phenotype and found that the method was well calibrated (Fig. S1). This was 
the case both for the P&T method of calculating the LOCO PGS (with a fixed P-value threshold of 5× 10−5 ) 
and for the LDpred2 method and was in-line with our expectations, as the LOCO PGS is approximately uncor-
related with the genotype of the tested SNP (see Supplementary Material for a mathematical justification). The 
median false positive rate rose slightly when we used high P-value thresholds ( p < 0.05 and p < 0.5 ) with the 
P&T method to calculate the LOCO PGS (Fig. S1). In this case the majority of the variants contributing to the 
LOCO-PGS are likely to be false positives and this may cause the method to become unstable, as some individual 
simulations had false positive rates as high as 10% (in the case of the threshold of p < 0.5 ). We therefore recom-
mend against the use of these high thresholds if applying the P&T method to calculate the LOCO PGS. This issue 
did not arise for LDpred2, which does not require a P-value threshold to be specified (Fig. S1).

In 100 simulations we found that including a LOCO PGS resulted in a substantial improvement in power 
to detect the known causal SNPs (Fig. 1). When we included the PGS obtained using P&T as a fixed effect with 
fastGWA (i.e. fastGWA-PGS-PT) we recovered 82 additional causal variants, on average, below the conventional 
P-value threshold of 5× 10−8 compared to fastGWA (corresponding to a relative increase in power of 18.4%; 
p = 3.0× 10−32 from a paired T-test; Tables S1–S3). The performance was further improved when we used 
LDpred2 to calculate the LOCO PGS (fastGWA-PGS-LDpred2). This resulted in the recovery of, on average, 

Figure 1.  The proportion of causal variants recovered in 100 simulations. The boxplot shows the median 
(center line), upper and lower quartiles (hinges) and the maximum and minimum values not more than 1.5 
times the interquartile range from the corresponding hinge (whiskers). The simulations consisted of 100,000 
individuals and a continuous trait, with narrow-sense heritability of 0.5 and 1000 causal variants. BOLT-
LMM-165 denotes BOLT-LMM with a GRM derived from 165,684 variants resulting from strict LD-pruning. 
BOLT-LMM-664 refers to the use of BOLT-LMM with a GRM derived from all 664,393 variants in the 
simulations. Methods that include PGS in the name involved the use of a LOCO PGS fixed effect, derived either 
from pruning and thresholding (methods ending in PT) or using LDpred2.
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115 more causal variants than fastGWA alone (relative increase of 25.9%; p = 2.3× 10−36).We also simulated 
case control data for binary traits with h2 of 0.5 and 1000 causal loci, with disease prevalence, k, of 0.1 and 0.3. As 
with the quantitative trait simulations, inclusion of a LOCO PGS fixed effect always resulted in an increase in the 
average number of casual loci recovered, with an average of 28 more causal loci recovered for a disease prevalence 
of k = 0.1 ( p = 0.19 ) while, k = 0.3 recovered on average 48 more causal loci ( p = 0.03 ) (Fig. S2, Table S4, S5).

The contribution to phenotype variance of background SNPs can also be modelled as a random effect in a 
linear mixed model. This approach is applied by BOLT-LMM, which uses a normal mixture random effect, with a 
component corresponding to SNPs with large effects. The running time of BOLT-LMM is proportional to MN1.5 
and the memory requirement is approximately MN/4 bytes, where N is the number of individuals in the dataset 
and M is the number of SNPs included in the  GRM8. When we ran BOLT-LMM with a subset of 165,683 SNPs 
(see “Methods” section for how these were selected) we found that including the LOCO PGS as a fixed effect 
resulted in a substantial gain in power (Fig. 1), likely resulting from inability of the reduced GRM to account fully 
for genetic background. No further improvement was obtained by adding the LOCO PGS fixed effect to BOLT-
LMM with a GRM consisting of all of the 664,393 directly genotyped SNPs (Fig. S3); however, the power obtained 
with the smaller GRM with the PGS fixed effect was close to the power obtained with the larger GRM, but with a 
much lower memory requirement (Table 1). The highest power of all methods was achieved with fastGWA-PGS-
LDpred2, which slightly exceeded the power of BOLT-LMM, even when all variants contributed to the GRM 
(i.e. BOLT-LMM-665 in Fig. 1). Recently, a new fast method,  REGENIE28, has been released that also includes 
control of the genetic background effect based on prediction of the phenotype from SNPs that are not on the 
same chromosome as the test SNP. In our simulations the performance of REGENIE was higher than fastGWA 
but well behind fastGWA-PGS-LDpred2 and BOLT-LMM-664. REGENIE showed no improvement when the 
LOCO PGS was added as a fixed effect, suggesting that it accounts adequately for the genetic background effect.

We calculated receiver operator characteristic (ROC) curves to investigate whether the increased number 
of causal variants recovered when we included the LOCO PGS as a fixed effect reflected a reduction in P-values 
across the board for the phenotype-associated variants or also an improvement in the ordering of the variants, 
when the variants are ordered by the evidence of an association with the phenotype. Over 100 simulations we 
found that the area under the ROC curve (AUC) was always higher for fastGWA-PGS-LDpred2 than for fastGWA 
without the LOCO PGS fixed effect (Fig. 2). This was also the case for 99 of the 100 simulations when we added 
the PGS fixed effect to BOLT-LMM-165. The difference in sensitivity as a function of specificity (Table S6) showed 
that the sensitivity was consistently higher at a given specificity when the LOCO PGS-LDpred2 was included as 
a fixed effect, indicating an improvement in the ordering of the SNPs. The increase in mean sensitivity was up 
to 0.073 in the case of fastGWA-PGS-LDpred2 vs fastGWA, corresponding to a relative increase of 11.6% (at a 
specificity of 0.9988) over fastGWA. The addition of the LOCO PGS fixed effect led to a smaller but still consistent 
increase in sensitivity for BOLT-LMM-165. In this case, the greatest increase in the mean sensitivity was 0.028, 
corresponding to a 4.2% relative increase in sensitivity (at a specificity of 0.9991).

In addition to increasing the statistical power to detect causal variants, including the PGS fixed effect also 
resulted in an improvement in effect size estimates (Fig. S4). We found that when a fixed effect PGS was incorpo-
rated into the association study the median squared error (MEDSE) of the effect size estimate was substantially 
reduced (Fig. S4, Tables S7–S9). Interestingly, the MEDSE of the effect size estimate was largest across all methods 
for BOLT-LMM with the reduced GRM (Fig. S4).

Effects of trait heritability, number of causal variants and sample size. We simulated data over 
a range of values of sample size, h2 and of the number of causal SNPs to investigate how these parameters affect 
the impact of including the LOCO PGS as a fixed effect on GWAS power. For this analysis we used the P&T 
method to calculate the LOCO PGS, due to its lower computational cost (Table 1). For the larger sample size, 
a small improvement in power was obtained even for the lowest values of h2 (0.1) simulated, with a statistically 
significant improvement for h2 ≥ 0.2 (Fig. 3). The improvement was not statistically significant at this value of 
h2 when only 100,000 samples were used in the simulation, but even in this case the number of causal variants 
recovered was always at least as large and typically larger when the PGS fixed effect was included in the model 

Table 1.  Pipeline computation time and memory for simulations consisting of 100,000 individuals and 
664,393 variants. Analyses were performed on a single compute node with 32 Xeon(R) CPU D-1541 CPUs 
and 128 GB of RAM. Note that REGENIE was omitted from the table, as the simulation is based on a single 
phenotype and would unfairly disadvantage REGENIE, which is optimized for the task of performing 
association analyses on multiple phenotypes simultaneously.

Method

CPU Time (s)

Max memory (GB)GWAS LOCO PGS GWAS(22 chr) Total (CPU Time)

fastGWA 501.2 0.0 0.0 501.2 0.5

fastGWA-PGS-PT 501.2 245.8 2953.3 3700.2 0.7

fastGWA-PGS-LDpred2 501.2 58,880.0 2953.3 62,334.5 6.3

BOLT-LMM-165 92,108.0 0.0 0.0 92,108.0 3.9

BOLT-LMM-165-PGS-PT 92,108.0 245.8 614,514.4 706,868.2 3.9

BOLT-LMM-664 119,202.0 0.0 0.0 119,202.0 15.5
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(Tables S10, S11). This was somewhat surprising, given that it is assumed that large sample sizes are required for 
accurate phenotype prediction from  PGS31.

The improvement in power resulting from the inclusion of the PGS fixed effect increased consistently with 
increasing numbers of causal variants in the case of the larger sample size. This was not the case for the smaller 
sample size, for which the improvement decreased or was lost altogether when the number of causal variants 
was large (Fig. 3). This is likely due to the loss of power to detect true causal variants and to estimate their effect 
sizes accurately when the genetic effect is distributed over too large a number of causal variants, resulting in the 
inability to correct for the genetic background using the PGS. This suggests that larger sample sizes would be 
required for highly polygenic traits in order to obtain a benefit from using the LOCO PGS fixed effect. However, 
the larger sample size simulated is comparable in scale to the UK Biobank and with a sample of this size our simu-
lations suggest that a significant improvement in power can be obtained, even for a trait with 10,000 independent 
causal loci. For the case control simulation ( N = 100,000 ), a more modest increase in power was observed as 
heritability increased, whereas the power to recover smaller effect loci decreased dramatically compared to the 
quantitative simulation. However, we found that for all except three simulations the inclusion of a fixed effect 
LOCO PGS improved the power to detect associated loci (Fig. S5, Table S12).

Application to UK Biobank phenotypes. We assessed the impact of including the LOCO PGS fixed 
effect on the performance of fastGWA on real data using standing height, BMI, and heel bone mineral density 
(HBMD) in individuals of British ancestry ( Nheight = 395,133, NBMI = 395,149 & NHBMD = 229,191) from the 
UK Biobank. The distribution of P-values obtained from fastGWA with the LOCO PGS fixed effect was lower 
than that obtained using fastGWA, regardless of the method used to calculate the PGS (Fig. S6-8). At a genome-
wide significance level of 5x10−8 inclusion of a LOCO PGS always increased the number of independent loci 
recovered, compared to fastGWA (Table 2). We also applied BOLT-LMM to the real data. In this case we used 
all 556,516 lightly pruned HAPMAP3 variants for the GRM (see “Methods” section for details). Across height, 
HBMD, and BMI, BOLT-LMM identified the largest number of independent associated loci. Including the PGS 

Figure 2.  Difference in sensitivity (between fastGWA-PGS-LDpred2 and fastGWA) as a function of specificity 
for 100 simulations of a continuous trait with narrow-sense heritability of 0.5 and 1000 causal variants in 
100,000 individuals. The specificity (x-axis) is discretized in bins of size 0.0001. Each grey line shows the results 
of one simulation. The red line shows the mean difference over all simulations.
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fixed effect resulted in substantial increases in the number of independent associated loci, compared to fastGWA 
alone for all phenotypes (Table 2, Supplementary Table S13).

One way to determine objectively whether fastGWA with a LOCO PGS fixed effect outperforms fastGWA on 
real data is to apply the methods on the key task of phenotype prediction. We used summary statistics from the 
3 analyses above to calculate PGS scores using LDpred2 and P&T (see “Methods” section for details of how the 
independent training and test datasets were determined). For two of the three phenotypes (height and HBMD), 
the PGS fixed effect resulted in an increase in the correlation between the PGS and the phenotype in the test data 
(Table 2). In both cases the highest correlation with the phenotype was obtained using fastGWA-PGS-LDpred2, 
which out-performed BOLT-LMM on this task. For the remaining phenotype (BMI), the addition of the PGS 
fixed effected resulted in no change or a slightly worse correlation with the phenotype in the test data. In this 
case the highest performance was obtained by BOLT-LMM (but at a substantial computational cost; Table 1). 
However, even in this case, we found that including only the SNPs with low P-values in the polygenic score (as 
implemented by the P&T method) resulted in an improvement over fastGWA (Fig. S9).

Discussion
Omitting covariates that are associated with a response and independent of an effect of interest can result in a 
reduction in the efficiency of the estimation of the effect of  interest15,16. Complex traits are associated with the 
genotype of many loci across the genome, but the effects of genetic variants other than the variant being tested 
are often not fully modelled by GWAS methods. We evaluated a simple two-stage approach to accounting for 
this genetic background effect that consists of performing an initial GWAS and using the summary statistics to 

Figure 3.  Proportion of causal variants recovered in simulations of a quantitative trait over a range of values of 
h
2 and the number of causal loci. Simulations on the top (A) and bottom (B) panels were based on 100,000 and 

430,000 randomly sampled individuals from the UK Biobank, respectively.
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calculate a polygenic score and then including the polygenic score, derived from SNPs not on the same chromo-
some as the target SNP, as a fixed effect in a second round of association testing. Using simulated data, we found 
that this led to a substantial improvement in power of fastGWA, an efficient tool for biobank scale GWAS that 
does not fully control for genetic background effects. When we included the LOCO polygenic score as a fixed 
effect with fastGWA (which we refer to as fastGWA-PGS), the power exceeded that of  REGENIE28, a recent, 
computationally efficient tool for GWAS that uses ridge regression to control for genetic background effects. 
When BOLT-LMM8 was used with a GRM derived from all of the simulated variants, the LOCO PGS fixed effect 
did not provide any boost in power (Fig. S3); however, the equivalent (or slightly improved) performance of 
fastGWA-PGS-LDpred2 (Fig. 1) was achieved at a much lower computational cost (Table 1). Furthermore, we 
note, that our simulations were favourable to BOLT-LMM because the LOCO PGS was calculated from the same 
set of variants that were used in the GRM of BOLT-LMM. In practice, in the case of P&T millions of variants 
can be included in the LOCO PGS calculations, but the number of model variants, M, that can be included in 
the GRM of BOLT-LMM is constrained by memory and compute time, both of which scale at least linearly with 
M. A further key advantage of the approach that we propose is that it is modular. Any phenotype prediction 
method can be used to predict the combined effect of the LOCO genetic variants on the phenotype. As methods 
for phenotype prediction improve, we anticipate that the performance of this approach will increase.

The increase in power using the PGS fixed effect was largest for simulated phenotypes with high heritability 
and a large number of causal variants (Fig. 3). In these cases the many background SNPs collectively explain 
a substantial proportion of the phenotypic variance and summarizing the contribution of these background 
SNPs to the phenotype via the LOCO PGS is likely to result in a better estimate of the effect of the target SNP 
and its standard error. The boost in performance derived from including the LOCO PGS as a fixed effect also 
depended on study sizes. For example, when the number of causal variants became large (10,000) there was no 
substantial boost in performance in the simulation that included 100,000 individuals, presumably because in 
this case the study size was not sufficient to identify and accurately estimate the effects of the causal variants. 
Even with this large number of causal variants the larger simulation (with 430,000 individuals) still showed a 
significant improvement arising from the LOCO PGS fixed effect (Fig. 3). Across all the simulation parameters 
we investigated, the performance of fastGWA with a LOCO PGS fixed effect (calculated using the P&T method) 
was never worse than fastGWA without the fixed effect included. We also note that we calculated the P&T 
LOCO PGS using SNPs that were selected based on a fixed P-value threshold. Further increases in power may 
be possible by optimizing the SNPs that are used to calculate the PGS separately for each omitted chromosome, 
though care should be taken to avoid very high values of the threshold, which may result in an elevation in the 
false positive rate (Fig. S1). Thresholding based on a P-value was not required for LDpred2, which may help 
to explain why we achieved significantly better power when the LOCO PGS was calculated using this method 
rather than pruning and thresholding (Fig. 1).

We also applied the method to real data (standing height, heel bone mineral density (HBMD) and body mass 
index (BMI) in individuals of British ancestry in the UK Biobank). Consistent with the simulation results, we 
found more independent trait-associated loci using fastGWA-PGS-LDpred2 than with fastGWA alone for all 
three traits (30%, 19%, & 11% more for height, HBMD, and BMI, respectively; Table 2). Although, BOLT-LMM 
recovered the largest number of independent significant loci across all UK Biobank traits, this did not always 
translate into better correlation between a PGS calculated from the resulting summary statistics and the pheno-
type in the test dataset. In fact, the highest correlation was obtained by fastGWA-PGS-LDpred2 for two of the 
three traits. This could be explained by a higher proportion of true positives among the loci detected using the 
PGS-based methods or a more accurate estimate of the effects sizes by these methods, as suggested by Fig. S4. 
For BMI, the correlation was in fact lower between the PGS and the phenotype in the test dataset when the 

Table 2.  Number of independent significant loci identified and resulting phenotype prediction model fit. 
R
2 full is the coefficient of determination of a model that includes the PGS, sex, age & 10 PCs as covariates 

while R2 PGS is the coefficient for a model that includes only the PGS. BOLT-LMM was applied with a GRM 
consisting of 556,516 variants.

Method Significant loci R
2 full 95% CI R

2 PGS 95% CI Spearman’s ρ Phenotype

fastGWA 1381 0.696 0.689, 0.702 0.165 0.158, 0.170 0.382 Height

fastGWA-PGS-PT 1583 0.701 0.694, 0.707 0.173 0.166, 0.179 0.391

fastGWA-PGS-LDpred2 1717 0.703 0.696, 0.709 0.176 0.170, 0.182 0.395

BOLT-LMM 1804 0.703 0.697, 0.709 0.170 0.164, 0.176 0.388

fastGWA 450 0.151 0.146, 0.158 0.130 0.124, 0.135 0.351 BMI

fastGWA-PGS-PT 493 0.153 0.147, 0.159 0.130 0.125, 0.136 0.351

fastGWA-PGS-LDpred2 500 0.151 0.146, 0.157 0.127 0.121, 0.133 0.346

BOLT-LMM 583 0.155 0.150, 0.162 0.134 0.128, 0.139 0.356

fastGWA 324 0.216 0.204, 0.232 0.158 0.144, 0.171 0.427 HBMD

fastGWA-PGS-PT 365 0.221 0.208, 0.238 0.164 0.152, 0.178 0.439

fastGWA-PGS-LDpred2 385 0.225 0.210, 0.241 0.167 0.154, 0.182 0.444

BOLT-LMM 393 0.223 0.209, 0.238 0.165 0.152, 0.178 0.437
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LOCO PGS fixed effect was used (Table 2). However, even in this case a larger number of significant variants 
were recovered than with fastGWA.

The use of polygenic scores for phenotype prediction from genotype is an increasingly important applica-
tion of the results of  GWAS32. High polygenic scores can capture a substantial component of the risk of complex 
 diseases24,33 and guide interventions that can confer health benefits to individuals and reduce the stress on health 
 systems34. Performing GWAS on a subset of samples and predicting on the remainder, we observed an increase 
in the correlation of the PGS with the phenotype when we included the LOCO PGS as a fixed effect in two out 
of three traits considered, consistent with improved effect size estimates (Fig. S4). Our results suggest that a 
modular approach that integrates advances in phenotype prediction with efficient GWAS methods can have a 
significant impact on the power of GWAS and that this can, in turn, lead to more accurate phenotype prediction. 
A recent study showed that models that allow unequal a priori contribution of SNPs to trait heritability can lead 
to substantial improvements in the accuracy of  trait35. Although not explored in this work, the incorporation of 
external PGS instruments from large meta-analyses in the first round of GWAS may also provide an additional 
gain in performance, similar to what is proposed in Bulik-Sullivan36. Indeed, our results show that GWAS sum-
mary statistics can be used to account for genetic background effects, with results matching the performance 
of methods such as BOLT-LMM that require individual-level data for this purpose. As new efficient methods 
emerge from these and further insights, they can be easily substituted for the calculation of the LOCO PGS fixed 
effect. The current fast pace of methodological innovation in phenotype prediction supports the use, at least for 
the time being, of the simple modular approach to modeling genetic background effects evaluated here.

Conclusion
The tasks of detecting trait-associated variants and predicting the trait in a new sample from the summary sta-
tistics of these variants are closely intertwined. Improved performance on the trait-association task can result 
in more associated variants and better estimates of their effect sizes, resulting in improvement on the prediction 
task. On the other hand, improved methods for phenotype prediction can help to control for background genetic 
effects in methods that identify the trait-associated variants and their effects. The method that we have explored 
here consists of incorporating a LOCO PGS as a fixed-effect covariate to control for these background genetic 
effects; however, any method for phenotype prediction could play this role, once its application is restricted to 
variants that are not linked to the target SNP. We show here that incorporating the PGS as a fixed-effect covariate 
results in increased power to detect trait-associated variants in GWAS. The resulting trait-associated variants 
and effect size estimates can lead to an improvement in the PGS, as illustrated by improved performance in the 
task of predicting the phenotype in a test dataset.

Methods
Simulations. Genotype QC. The use of the UK Biobank Materials falls within UK Biobank’s generic Re-
search Tissue Bank (RTB) approval from the NHS North West Research Ethics Committee, UK. The simulated 
genotype data was based on autosomal genotyped data from the UK Biobank. To limit the effects of population 
stratification only individuals reporting white British ancestry (data field 21000; code 1001; N = 443,076 ) were 
included in these analyses. The genotype data for the simulation analysis was based on directly genotyped vari-
ants with minor allele frequency (MAF) greater than 0.05%. Variants with genotype missingness greater than 2% 
or that failed a test for Hardy–Weinberg equilibrium (HWE) at α= 0.0001 were excluded, resulting in a total of 
664,393 genetic variants. There were 429,359 samples remaining following filtering. The sparse GRM required by 
fastGWA was created by setting entries corresponding to sample pairs with an estimated relatedness of less than 
0.05 to 0. To account for population structure in the association studies, principal component analysis (PCA) 
was performed on a set of 165,684 variants LD-pruned with an R2 greater than 0.1 in a sliding window of size 
500 bp, sliding by 200 bp. This set was also used as the basis of the BOLT-LMM analyses with the reduced GRM 
size (referred to as BOLT-LMM-165 in Results). All genotype QC was implemented in  plink237.

Based on the above genotype data, we simulated a continuous phenotype using the GCTA software  suite38. The 
initial simulation (Fig. 1) consisted of 100,000 individuals, 1000 randomly sampled causal variants and h2 = 0.5 . 
This simulation was repeated 100 times with the 664,393 variants remaining after variant filtering for the GRM 
calculation. Power was calculated as the proportion of the causal variants recovered. Further simulations were 
carried out to investigate the effects of varying the number of causal SNPs (500, 1000, 2000, 5000 & 10,000), h2 
(0.1, 0.2, 0.3 0.4, 0.5) and the sample size (100,000 & 430,000) on method performance. In each case all param-
eters other than the ones being varied were the same as the initial simulation, and one simulation was performed 
per set of parameter values. The pROC R package was used to generate receiver operating characteristic (ROC) 
curves, variants within 1 Mb of the causal variants were  removed39. We applied the same simulation strategy to 
binary traits with two levels of disease prevalence, 0.1 & 0.3, using 1000 causal loci with h2 = 0.5 , and 100,000 
samples. To calculate the false positive rate we performed 100 simulations with 100,000 samples, h2 = 0.5 and 
1000 causal variants restricted to the even chromosomes.

Simulation association tests. Association testing was performed using fastGWA, REGENIE and BOLT-LMM. 
To account for known sources of covariation (technical batch effects, population structure, biological effects) 
10 PCs, sex, age, genotype batch and assessment centre were included as fixed-effect covariates in statistical 
models. For the PGS method we first performed GWAS (using fastGWA, REGENIE or BOLT-LMM) and calcu-
lated PGS scores on a Leave One Chromosome Out (LOCO) basis. This resulted in 22 sets of PGS values (one 
for each autosomal chromosome, calculated from the summary statistics of variants on all other autosomal 
chromosomes). Two PGS strategies were used in this study, pruning and thresholding (P+T), denoted with the 
suffix PGS-PT and LDpred2, denoted by the suffix PGS-LDpred2. The LOCO PGS-PT were calculated using 
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PRSice2 (version 2.2.12 (2020-02-20))29. To decrease computation time and reduce the likelihood of over-fitting 
a P-value threshold of 5× 10−5 was chosen, a priori, for the LOCO PGS-PT calculation. Association testing was 
then performed using fastGWA in a chromosome-wise manner, with the corresponding LOCO PGS included 
as a fixed effect. The bigsnpr R package (bigsnpr v1.6.130 & R v3.6.140) was used to calculate the LOCO PGS-
LDpred2 fixed effects. To reduce computation time, 22 LOCO genotype objects containing the SNP correlations 
were precomputed.

Application to the UK Biobank. UK Biobank association tests. The genotype selection, quality control 
and genetic relationship matrix were performed following the QC procedure in Jiang et al.9. The genetic relation-
ship matrix used with fastGWA and BOLT-LMM was calculated for all European individuals ( N = 458,686 ), 
using a set of 556,516 lightly pruned HAPMAP3 variants ( R2 greater than 0.9 in a 100 variant sliding window of 
size 1000 & MAF > 0.01)9. Association summary statistics were generated from a set of 1.1 million HAPMAP3 
variants ( MAF > 0.01 , HWE α= 1× 10−6 and missingness < 0.05)9. Principal components were calculated us-
ing a set of 34,775 variants (LD-pruned with R2

= 0.05 in a sliding window of size 1000 bp, sliding by 50 bp)41. 
To identify white British samples with similar genetic backgrounds we clustered samples based on the first 6 
principal  components41, resulting in a subset of 406,319 white-British samples. Sample pairs that had a KING 
kinship coefficient above 0.05, with one member of the pair within the white-British group and the other in the 
group self-reporting as white European were removed. This left 399,135 white British and 46,406 other European 
 samples41,42. To account for known sources of phenotype and genotype variation, 10 PCs, age, sex, genotype 
batch and assessment centre were included as fixed-effect covariates for the BOLT-LMM and fastGWA analyses. 
PRSice2 and LDpred2 were used to calculate the LOCO PGS. Independent loci were identified using the clump-
ing algorithm in plink2 (P-value threshold = 5× 10−9 , window size 5 Mb, and LD R2 threshold = 0.01).

UK Biobank phenotype prediction. To test the performance of fastGWA with a LOCO PGS fixed effect on the 
task of predicting standing height, BMI and HBMD, the UK Biobank data was partitioned into training and test 
datasets. The training data consisted of white British individuals with similar genetic backgrounds (as described 
above) and the polygenic score predictions were tested on the remaining independent European samples. Sum-
mary statistics were generated using fastGWA, fastGWA-PGS-PT, fastGWA-PGS-LDpred2 and BOLT-LMM. 
We used LDpred2 and PRSice2 to predict the phenotypic values in the test set. LDpred2 requires LD correlation 
data and we used a pre-computed set built on the 1.1 million HAPMAP3 variants for this purpose. The model fit 
was assessed for each method by fitting a linear model to the values of the phenotype in the test set as a function 
of their predicted values, accounting for known sources of phenotypic variation, i.e. sex, age, PC’s. We report 
both the proportion of variation explained collectively by the PGS, sex, age, the first 4 principal components and 
assessment centre as well as the R2 using only the PGS in the regression model.

Data availability
All genotype and phenotype data analyzed are available, subject to application, from the UK Biobank (application 
23739). Code to implement fastGWA-PGS-PT and fastGWA-PGS-LDpred2 as described in this work is available 
under MIT license from https:// github. com/ decla n93/ PGS- LMM/.
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