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Chemometric approach 
to characterization of the selected 
grape seed oils based on their 
fatty acids composition and FTIR 
spectroscopy
Mašán Vladimír1,7, Arkadiusz P. Matwijczuk2*, Agnieszka Niemczynowicz3,7, 
Radosław A. Kycia4,5,7, Dariusz Karcz6,7, Bożena Gładyszewska2,7, Lidia Ślusarczyk2,7 & 
Patrik Burg1,7

Addressing the issues arising from the production and trade of low-quality foods necessitates 
developing new quality control methods. Cooking oils, especially those produced from the grape 
seeds, are an example of food products that often suffer from questionable quality due to various 
adulterations and low-quality fruits used for their production. Among many methods allowing for 
fast and efficient food quality control, the combination of experimental and advanced mathematical 
approaches seems most reliable. In this work a method for grape seed oils compositional 
characterization based on the infrared (FTIR) spectroscopy and fatty acids profile is reported. Also, 
the relevant parameters of oils are characterized using a combination of standard techniques such as 
the Principal Component Analysis, k-Means, and Gaussian Mixture Model (GMM) fitting parameters. 
Two different approaches to perform unsupervised clustering using GMM were investigated. The first 
approach relies on the profile of fatty acids, while the second is FT-IR spectroscopy-based. The GMM 
fitting parameters in both approaches were compared. The results obtained from both approaches are 
consistent and complementary and provide the tools to address the characterization and clustering 
issues in grape seed oils.

Globally, there are more than 120 million tons of edible oils and fats produced, of which approximately 80% are 
derived from various plant sources and thus referred to as vegetable oils1. Typical commercially available plant oils 
are colza, pumpkin, olive, sunflower and others. In terms of application on a larger scale, some new possibilities 
are offered by grape seed oil2. The raw material for its production is vine seeds, which are obtained from pomace, 
a waste product from the processing of grapes in the winery and makes up 20% (v/w) of the total amount of 
processed raw material. Pomace is traditionally considered an economic and environmental problem. It is now 
becoming increasingly recognized as a valuable commodity for the production of added value products3. Oil 
from grape seeds is an attractive raw material in the food industry for its dietary value as well as a substance for 
cosmetic and pharmaceutical applications4,5. It has a high content of essential fatty acids and tocopherols6. The 
production of these oils in the Czech Republic and abroad has been growing significantly and it opens up new 
possibilities for vineyard and winery operations in the application of the residual primary products7.
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According to the chemical composition, grape seed oil falls into the category of oils with a high content of 
unsaturated fatty acids8. On average, grape seed oil is 90% composed of poly- and monounsaturated fatty acids, 
which are responsible for its value as nutritive edible oil. In particular, linoleic acid (58–78%, 18:2n − 6), oleic 
acid (3–15%, 18:1n − 9), and minor amount of saturated fatty acids (10%) are its main constituents. Unrefined 
oils contain bioactive compounds, including tocopherols (5–52 mg/100 g) and numerous phenolic compo-
nents, consisting of low and high molecular plant phenolics, which may be responsible for various beneficial 
effects demonstrated by vegetable oils9,10. However, all the positive effects manifest primarily in oils of specific 
purity, especially those that are unadulterated and maintain their time of consumption11,12. One of the first use 
of Fourier Transform Infrared Spectroscopy (FTIR) for analysis of grapes and wine started with near-infrared 
spectroscopy13,14. Due to higher accuracy and more constituents and properties which can be quantified, the 
analysis of grapes and wine is nowadays based mainly on FT-IR spectroscopy combined with advanced statisti-
cal methods (also known as chemometrics analysis)15 and more frequently with the use of machine learning 
methods11,16. During the last decades the FTIR spectroscopy combined with the advanced statistics mentioned 
are increasingly used for extended studies on grapes and wines, and usually effects in excellent precision and 
accuracy of results obtained. These techniques are fast and reproducible for identifying the authenticity and 
adulteration of the wide variety of food and beverage products. The FTIR spectra coupled with statistical tools 
were used to evidentiate saccharides, alcohols, or other quality parameters. Among many qualitative chemometric 
methods, the Principal Component Analysis (PCA) is most often used. Moreover, there are many research works 
concerning authenticity and traceability, related to origin17–19.

Therefore in this work a various grape seed oils were compared with the use of chemometrics methods. Two 
different approaches namely the fatty acid profile-based and the FT-IR-based approach were applied. The strategy 
involved a combination of two clustering methods, namely the K-Means and Gaussian Mixture Model (GMM). 
Two-dimensional feature space resulting from a dimension reduction by Principal Component Analysis (PCA) 
was used in GMM for clustering various grapevine oils.

Results and discussion
Fatty acid compounds of the selected grape seed oils.  The fatty acid composition of the oils 
extracted from eight grape cultivars and 2 years of harvesting is shown in Table 1 linoleic (70.10–71.55%), oleic 
(15.33–17.28%), and palmitic (6.84–8.18%) acids were the predominant fatty acids in oils, consistent with previ-
ously reported data8,20. The differences between the selected acids compared to varieties and vintages are given 
in %-age units.

Chemometric analysis of fatty acid compounds and physical parameters of selected grape 
seed oils.  Correlation analysis.  Analysis of correlations between unsaturation and the physical parameters 
was the first step in characterizing selected grape seed oils. Therefore, the fatty acids were grouped into saturated 
fatty acid (SFA), monosaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA). The relationship be-
tween the number of unsaturation and the physical parameters was obtained by analyzing correlations between 
concentration of SFA, MUFA, PUFA, and the values of physical parameters: mass density and apparent viscosity. 
Pearson’s correlation coefficients were presented in Table 2. A high value of modulus of coefficients between two 
considered variables explains the direction of their relation.

The SFA concentration in analyzed oils has significant correlations with MUFA (|R| = 0.77) and PC2 
(|R| = 0.55), but small values of correlations coefficients with other variables (|R| < 0.5). A high correlation rela-
tions were observed between MUFA and PUFA (|R| = 0.71), MUFA and µ (|R| = 0.5), MUFA and PC2 (|R| = 0.61). 
The difference between concentrations of SFA and MUFA in analyzed oils is lower than the difference between 
SFA and PUFA. These relations are shown in correlation analysis. PC1 and PC3 present lower values of correla-
tion coefficients when compared to PC2.

Table 1.   The relative concentration of fatty acids in grape oils. The concentration of saturated, monosaturated, 
and polyunsaturated are presented along with the physical properties (measured at 20 °C), which are the 
apparent viscosity (µ) and the mass density (ρ).

Oils

Concentration of fatty acids in the grape oils (%)

SFA (%) MUFA (%) PUFA (%) ρ (g/ml) μ (mPa s)C16:0 C16:1n7 C18:0 C18:1n9c C18:2n6c C18:3n3 C20:1 Others

Dornfelder 2015 8.18 0.16 3.16 15.61 71.05 0.55 0.20 1.09 11.40 16.77 71.84 0.947 61.03

Páláva 2015 7.67 0.15 3.62 16.17 70.66 0.41 0.17 1.15 11.37 17.30 71.32 0.944 60.31

Riesling 2015 6.87 0.19 3.87 17.14 70.15 0.45 0.18 1.15 10.79 18.33 70.88 0.939 59.64

Pinot Gris 2015 7.45 0.15 3.76 15.33 71.55 0.42 0.21 1.13 11.27 16.45 72.27 0.907 60.84

Zweigeltrebe 2015 7.33 0.12 3.88 16.84 70.18 0.38 0.19 1.08 11.27 17.92 70.82 0.931 61.04

Tramin 2015 6.87 0.17 3.74 17.16 70.25 0.42 0.20 1.19 10.69 18.36 70.95 0.940 59.12

Hibernal 2017 6.92 0.17 3.87 17.14 70.10 0.42 0.20 1.18 10.87 18.34 70.79 0.942 59.77

Sauvignon 2017 6.84 0.17 3.79 17.28 70.12 0.45 0.21 1.14 10.70 18.45 70.85 0.939 59.96

Zweigeltrebe 2017 7.41 0.13 3.91 16.29 70.59 0.43 0.18 1.06 11.38 17.33 71.29 0.935 61.2

Neuburger 2017 7.83 0.15 3.54 16.70 70.20 0.39 0.16 1.03 11.47 17.69 70.84 0.944 59.01
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PCA.  In the first approach for characterization of grape seed oils the PCA was applied to analyze seven com-
mon fatty acids, three groups of fatty acids and two physical parameters to obtain a linear estimate of dimension-
ality. Based on the Kaiser criterion in PCA, three components having eigenvalue higher than 1 were determined. 
The first three main components explained 88.66% of the total variance, and two components explained above 
70% of it. Therefore, to simplify the description, we consider only the first two components in the following. The 
first component, PC1, explained 51.06%, the second PC2—19.2%, and the last, PC3-18.4%. The highest values of 
PC1 are for Pinot Gris 2015, Donfelder 2015, Paláva 2015, and Zweigeltrebe 2017. For PC2 dominant values are 
oils: Riesling 2015, Hibernal 2017, and Sauvignon 2017. According to the loadings the highest contribution of 
the fatty acid of PC1 take C18:2n6c and PUFA, while the mass density and C16:0 were for PC2.

k‑Means for two PCs.  The second step involved the selection of initial values for the means in the mixture 
model. This was done by applying the k-Means method for normalized principal components, i.e., for reduced 
data set. As initial values the centers (or the means) of the clusters were taken. The sum of squared errors (SSE) 
suggests that the five clusters are an optimal choice. The clustering result is presented in Fig. 1.

GMM for clustering.  Next, the values for the parameters in GMM based on the number of clusters obtained 
with k-Means clustering were calculated. Five Gaussian components using Bayesian Information Criterion (BIC) 
were chosen in order to estimate the optimal model for Gaussians (Fig. 2), resulting in ‘diag’ (covariance matrix 
is diagonal) optimal Gaussian model for five components. The values of parameters from the fit are presented in 
Table 3, and the split into clusters is presented in Fig. 3.

FT‑IR spectroscopy analysis.  The ATR-FTIR spectra for selected oil samples obtained from grape seeds of the 
selected cultivars harvested in the respective experimental years depending on the cultivar are presented in 

Table 2.   Correlation coefficients between the relative concentration of SFA, MUFA, PUFA physical properties, 
and PC2, PC2, and PC3 indexes.
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Fig. 4. The cultivars selected for the FTIR study included: Dornfelder 2015, Hibernal 2017, Neuburger 2017, 
Pálava 2015, Pinot Gris 2015, Riesling 2015, Sauvignon 2017, Tramin 2015, Zweigeltrebe 2015, and Zweigeltrebe 
2017. For better convenience of analysis, discussion, and comparison of the respective samples studied, the 
spectra were normalized at the maximum of 1745/cm. The samples were placed on a ZnSe crystal and studied 
under N2 atmosphere (see “Materials and methods” section for details). Table 4 presents all the characteristic 
bands present in the oil samples selected for the study (from the first and second measurement years) from the 
aforementioned selected cultivars, and a correlation of the functional group vibrations with the corresponding 
bands (with a detailed literature review).

It is worth noticing that all the infrared spectra (ATR-FTIR) of the selected oil samples, both in the first and 
the second year of the experiment, revealed highly intensive and distinct bands that could be correlated with 
specific functional groups vibrations originating from ingredients typically present in food products. A vast 
majority of edible plant fats, potential oily materials, are composed primarily of various fractions of triglycerides, 
differentiated mainly by the degree of unsaturation and the length of their respective hydrocarbon chains21,22. 
In many publications, the authors were able to match the particular bands present in the spectra of both animal 
and plant oils21–31 to specific vibrations of molecules or groups thereof. However, the majority of the literature 
available pertains to FTIR analyses of specific plants (e.g., rape) and animal oils, while only a few such studies 
have been carried out on the types of samples discussed in this work. Furthermore, a precise assignment of 
bands to a specific functional group is often problematic. Table 4 presents a detailed analysis of characteristic 
band frequencies with the most important widening observed in the oil spectra, and the correlations with their 
respective functional groups (including a review of relevant literature data21,22,28–31. Also, a subscript was used 

Figure 1.   k-Means clusters for standardized PCs in analysis for fatty acid profile.

Figure 2.   5 BIC score for various numbers of Gaussian components in GMM in analysis for fatty acid profile.
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to account for the intensity of bands of the typical spectra in the infrared region. It is noteworthy that identify-
ing stretching vibrations is significantly easier in this type of biological sample, especially when compared to 
deformation vibrations, which are often overlapped.

In the general characteristics of the selected oil samples spectra, vibrations of the methylene group located 
within the spectral range from 1350 to 1165/cm were observed21,22. In the case of our samples, these bands rep-
resented the stretching vibrations originating from the –C–H group bound to the –CH3 group (usually approx. 
1350–60/cm, in our samples approx. 1348/cm) as well as deformation vibrations of the same group (present at 
approx. 1160/cm, in our case—1157/cm). It is noteworthy that the stretching vibrations of the (C–O) ester bond 
composed of two combined asymmetric vibrations are, in this case, vibrations of the C–C(=O)–O and O–C–C 
groups31. In the former case, the intensity of vibration is significantly higher30. The bands are present in the 
region from 1300 (as C–C(=O)–O, in our case approx. 1271/cm, as enhancement of the band with the maximum 
at approx. 1238/cm) and at approx. 1000/cm (in our case approx. 1027/cm for this group). In turn, the bands 
associated with saturated esters such as: C–C(=O)–O are found between 1240 and 1160/cm (in the case of the 
grapeseed oils samples selected for the study at approx. 1238/cm), while in the case of unsaturated, the vibra-
tions usually emerge at lower frequencies21. At the same time, however, the O–C–O band often associated with 
primary alcohols is observed in the region from 1090 to 1020/cm (for the functional groups analyzed in our study, 

Table 3.   GMM parameters for standardized 2 PCs in analysis for the fatty acid profile.

Description Values

Means

μ1 = [− 1.01211656 − 0.49377868]

μ2 = [− 0.12413742 1.95111604]

μ3 = [1.63061743 − 1.91205632]

μ4 = [1.64397529 0.43813565]

μ5 = [0.29933675 0.49930627]

Weights

π1 = 0.4

π2 = 0.1

π3 = 0.1

π4 = 0.1

π5 = 0.3

Covariance matrix (diagonal elements)

Σ1 = diag(2.65286297 × 10−4, 5.10190581 × 10−2)

Σ2 = diag(1.0 × 10−6, 1.0 × 10−6)

Σ3 = diag(1.0 × 10−6, 1.0 × 10−6)

Σ4 = diag(1.0 × 10−6, 1.0 × 10−6)

Σ5 = diag(8.52136779 × 10−2, 0.139321639)

Figure 3.   GMM for standardized 2PCs in analysis for fatty acid profile.
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it was at approx. 1027/cm). In the case of secondary alcohols, the band usually emerges with the maximum at 
approx. 1100/cm (in our study approx. 1099/cm). Both types of esters described above are present in triglyceride 
molecules. However, authors often associate the band mentioned above (at approx. 1238/cm) exclusively with 
the out-of-plane bending vibrations of the methylene group32. The subsequent two bands presented in Table 4 
(and in Fig. 4) have the maxima at approx. 1421 and 1315/cm, respectively (band widening, see Fig. 4, both for 
samples from the first and second measurement year). The first of said groups of vibrations (with the maximum 
at approx. 1421/cm) may originate from the vibrations of methyl groups in the aliphatic chains of the selected 
oil samples21,32. The second group of bands (i.e., the band widening) with the maximum at approx. 1315/cm (in 
all analyzed samples) was observed simultaneously with weak bands with maxima at approx. 965 and 905/cm. 
The 905/cm band present in all oil samples is associated with the stretching vibrations of cis-substituted olefinic 
groups21 and may also be associated with vibrations of the vinyl group.

The selected samples of grapeseed oil obtained in the two experimental years produced largely similar infrared 
spectra, but it should be noted that depending on the cultivar, certain differences were nonetheless observed 
that seem to be relatively characteristic and easily identifiable. Firstly, the studies revealed noticeably significant 
differences in terms of the respective bands’ intensity (not represented as the band levels were equalized at the 
peak related to the vibrations of the carbonyl group C=O to facilitate easier interpretation of the results), which 
seems to be related to the differences between the respective cultivars.

Another very characteristic region of vibrations contained bands with the maximum at approx. 1745/cm 
characteristic of stretching vibrations of the C=O carbonyl group21 in esters. Apart from the band characteristic 
for vibrations of the carbonyl group, on the lower wavenumber side there was also an enhancement with the 
maximum at approx. 1709/cm (distinctly less intensive in samples from, e.g., the Pinot Gris 2015 cultivar), which 
also corresponded to vibrations of the carbonyl group but occurred in the acid groups of the oil samples selected 
for the study21,23,30. The next band, with the maximum at 1652/cm corresponded to the stretching vibrations of 
the –C=C– group (from the cis-transformation)21,28. A characteristic region also contains vibrations with the 
maximum at 1462/cm originating from the deformation vibrations of the –C–H groups in –CH2 and –CH3 
(bending vibrations). One should also mention vibrations in the region from 900 to 650/cm which represent 
characteristic deformation vibrations associated with the –HC=CH– groups (cis-conformation, out of plane) as 
well as the rocking vibrations of said groups ((–(CH2)n– and –HC=CH– (cis–))21,28.

As we proceed to vibrations in higher wavenumber regions, one should also mention the very significant 
stretching vibrations =C–H (trans-transformation) with the maximum at approx. 3066/cm (Table 4—very low 
intensity) originating from vibrations of the triglyceride fraction21,33 (in Fig. 4 with very low intensity—primar-
ily in the Zweigeltrebe 2015 cultivar). In turn, the stretching vibrations of =C–H in the cis-configuration were 
observed as very characteristic and intensive vibrations with the maximum at approx. 3011/cm (Fig. 4 and 
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Figure 4.   FT-IR spectra, normalised for the wavelength of 1745/cm, recorded for the respective grape seed oil 
samples: Dornfelder 2015 (dashed green), Hibernal 2017 (solid green), Neuburger 2017 (dashed gray), Pálava 
2015 (solid gray), Pinot Gris 2015 (dashed blue), Riesling 2015 (solid blue), Sauvignon 2017 (dashed red), 
Tramin 2015 (solid red), Zweigeltrebe 2015 (dashed black) and Zweigeltrebe 2017 (solid black) respectively. All 
spectra are presented in the spectral range of 700–3600/cm and recorded at 23 °C.
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Table 4). The vibrations with the maximum at approx. 2934, 2863/cm originate from the stretching –C–H vibra-
tions in the –CH3, CH2 groups belonging to triglyceride aliphatic groups21–29.

It should also be noted that the spectra of the analyzed oil samples produced from the seeds of various grape 
cultivars (and from different years of the experiment) (Fig. 4) reveal noticeable differences in the shape of bands 
in the region from 1770 to 1660/cm. For most of the analyzed samples, one can clearly observe a slight band 
enhancement at 1745/cm (corresponding to the vibrations of the C=O, as already discussed above) on the lower 
wavenumber side, with a clear maximum at approx. 1709/cm34, which can also be correlated with forming a 
hydrogen bond between the C=O⋯H–O– groups (more intensive in the first year for the Pinot Gris 2015 group). 
Simultaneously with the emergence of the band at 1709/cm, we can observe a distinct change in the intensity of 
bands at approx. 1150–1070, 721/cm28, which can also be correlated to the stretching vibrations of C–O and C–C 
groups (described above). The bands, given the possibly decreasing affinity of the associated molecules with the 
formation of the C=O⋯H–O–H hydrogen bond, may suggest a slight increase in intensity thereof.

The spectral changes seem to correlate very well with the changes in the fatty acid profile presented in Table 1 
and discussed in the first part of this section. Apart from the visible differences in the bands with the maxima 
at approx. 1710–1715, one should also emphasize the possibly most important observation, i.e., the emergence 
of a very clearly visible band with the maximum at approx. 840/cm (Fig. 4, Table 4) that may originate from the 
stretching vibrations on bonds existing between various acid fractions in the analyzed samples.

Chemometric analysis of FTIR spectra of selected grape seed oils.  PCA.  According to the previ-
ously adopted procedure, firstly, the PCA method was applied to approximate the dimensionality of spectra data 
in a linear manner. Based on the Kaiser criterion in PCA three components having eigenvalue higher than 1 
were determined. The first three main components explained 98.46% of the total variance, and two components 
explained above 95.18% of it. Therefore, we proceed further with our analysis using the first two components. 
The first component, PC1, explained 81.1%, the second PC2—14.09%, and the third, PC3, 3.27%. The highest 
values of PC1 takes for Zweigeltrebe 2017 and Neuburger 2017. In the case of PC2 dominant values are oils: Ries-
ling 2015, Hibernal 2017, and Sauvignon 2017, which is a similar result like in analysis from fatty acid profile. 
According to the loadings, the highest contribution of FTIR spectra of PC1 take the vibration of w(–HC=CH–, 
trans-) out-of-plane deformation from the range 700-1500/cm, while for PC2 the vibration of (–C=Ovst) in esters 
located in the region from 1600 to 2000/cm.

Table 4.   The location of the maxima of the FTIR absorption bands, with the assignment of particular 
vibrations to the respective samples: Dornfelder 2015, Hibernal 2017, Neuburger 2017, Pálava 2015, Pinot 
Gris 2015, Riesling presents all the 2015, Sauvignon 2017, Tramin 2015, Zweigeltrebe 2015 and Zweigeltrebe 
2017, registered within the spectral range of 700–3600/cm. ν stretching vibrations, δ deformation vibrations, s 
symmetric, as asymmetric, st strong, w weak.

FTIR

Type and origin of vibrationsPositioning of band (/cm)

3494 –C=Ow (overtone) and ν(=C–Hvw, trans-)

3011 ν(=C–Hm, cis-)

2934
νas(–C–Hvst, –CHa) and νs(–C–Hvst, –CHa) (aliphatic groups in triglycerides)

2863

1745 ν(–C=Ovst) in esters

1709 ν(–C=Ovw) in acids

1652 νvw(–C=C–, cis-)

1462 δvw(–C–H) in CH2 and CH3 groups, deformation (scissor)

1421 νvw(–C–H, cis-) deformation (wagging)

1374
νw, m, vw(–C–H, –CH3) and deformation

1348

1315 δm(–C–H, –CH3)

1271
νm(–C–O) or δm(–CH2–)

1238

1157 νst(–C–O) or δst(–CH2–)

1099
νm,vw(–C–O)

1027

965
δw(–HC=CH–, trans-) out-of-plane deformation

905

840

δ(–(CH2)n– and –HC=CH– (cis-) deformation (scissor)807

721
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k‑Means for two PCs.  Next, based on the SSE criterion, five components were selected as the optimal choice 
for k-Means clustering for two normalized PCs reduced FTIR data. In this way we distinguish five clusters. The 
first one contains the oils Hibernal 2017, Riesling 2015, and Sauvignon 2017. The second one constitutes the 
next three types of oils, namely Dornfelder 2015, Pálava 2015 and Tramin 2015. The third contains Neuburger 
2017 and Pinot Gris 2015 oils. The last two clusters are unit sets of oils Zweigeltrebe 2015 and Zweigeltrebe 2017, 
respectively. The clustering result is presented in Fig. 5.

GMM for clustering.  The parameters were extracted in GMM based on the number of clusters obtained with 
k-Means clustering. Estimation of the optimal model for Gaussians by five Gaussian components using BIC is 
presented in Fig. 6. Following the BIC criterion, the optimal Gaussian model for five components is ‘full’ (full 
covariance matrix). The values of the parameters from the fit are presented in Table 5 and the split into clusters 
is presented in Fig. 7.

Conclusions
This study evidenced the efforts to characterize the selected grape oils in an unsupervised classification, based 
on their fatty acid composition and physical parameters, and FTIR spectroscopy. To this end, Gaussian Mixture 
Model based on Principal Component Analysis was applied. Two different approaches were compared. The first 
approach was based on fatty acids profile linked with physical parameters such as the apparent viscosity and 
mass density, while the second approach was based on the FT-IR spectroscopic data. The results obtained from 

Figure 5.   k-Means clusters for standardized PCs in analysis for data of FTIR spectra.

Figure 6.   BIC score for various numbers of Gaussian components in GMM for data of FTIR spectra.
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these techniques help in the characterization and quality control of grape oils. In more detail, the fatty acids 
approach distinguishes the five clusters of considered grape oils. The first cluster contains each oil from the first 
class of FT-IR approach and one oil from the second FT-IR class (Riesling 2015, Tramin 2015, Hibernal 2017, 
Sauvignon 2017). The second approach consists of oils from the 2, 4 and 5 classes of FT-IR approach (Pálava 2015, 
Zweigeltrebe 2015, Zweigeltrebe 2017). The last clusters are created by oils from 3 and 2 classes of FT-IR approach. 
In general, the results obtained from both approaches are consistent and complementary with one another. 
The results of correlation analysis demonstrate that the concentration of MUFA is related to apparent viscosity.

In conclusion, the application of techniques associated with GMM-based clustering to classify features 
and characterize the grape oils may undoubtedly be considered as new tools to solve the characterization and 

Table 5.   GMM parameters for standardized 2 PCs for data of FTIR spectra.

Description Values

Mean

μ1 = [0.35639494, 1.2868471]

μ2 = [1.85262144, − 1.17630937]

μ3 = [− 0.793783, 0.07979547]

μ4 = [0.61405915, − 0.84843964]

μ5 = [− 1.76857353 − 1.22674042]

Weights

π1 = 0.3

π2 = 0.1

π3 = 0.3

π4 = 0.2

π5 = 0.1

Covariance matrices

�1 =

[

7.19461004× 10
−3

−1.97590685× 10
−2

−1.97590685× 10
−2

5.48141678× 10
−2

]

�2 =

[

1.0× 10
−6

−1.12412679× 10
−29

−1.12412679× 10
−29

1.0× 10
−6

]

�3 =

[

1.07131702× 10
−1

−6.63095448× 10
−2

−6.63095448× 10
−2

1.01725254× 10
−1

]

�4 =

[

3.57531835× 10
−2

6.20042065× 10
−2

6.20042065× 10
−2

1.07533499× 10
−1

]

�5 =

[

1.0× 10
−6

1.06496222× 10
−29

1.06496222× 10
−29

1.0× 10
−6

]

Figure 7.   GMM for standardized 2PCs for data of FTIR spectra.
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clustering problems. Therefore, there is a promising prospect that methods used in this work will provide a basis 
suitable for addressing issues arising from the differentiation and unsupervised clustering in grape seed oils.

Materials and methods
Samples preparation.  For the purpose of this work, the grape seed oils from 10 various grape types and 
2 years (2015 and 2017) were used. In 2015 were included the varieties Dornfelder, Pálava, Pinot Gris, Riesling, 
Tramin, Zweigeltrebe and in 2017 the varieties Hibernal, Neuburger, Sauvignon, Zweigeltrebe. The relevant per-
mission was obtained by the authors prior the samples harvesting from plants cultivated in South Morava, Czech 
Republic A prototype of a vibratory separator was used to separate the seeds from marc. For successful pressing 
of seeds and their storage, their initial moisture content was lowered to about 10% in a chamber dryer. The tem-
perature in the chamber dryer did not exceed 40 °C. The material was kept in a closed bag at room temperature 
until screw pressing. All methods were performed in accordance with the relevant UE guidelines/regulations/
legislation.

Oil extraction from grape seeds.  The oil was pressed on the screw press UNO FM 3F produced by the 
Farmet Company (Česká Skalice, CZ). This press model is designed for cold pressing of all oily seeds at 80 rpm. 
The pressing device components are: a matrix, 220 mm screw, head, heating mantle, nozzle holder, and nozzle in 
diameter 10 mm. After pressing, the oils were settled by gravity, then filtered, and poured into glass jars (volume 
500 ml). Oils were not technologically treated or stabilized in any way.

Physical properties.  The density of oils was determined pycnometrically according to ISO 6883:201735. 
The rheological evaluation of grape seed oils was prepared according to previously article33. The Rheometer 
Anton Paar MCR 102 (Graz, Austria) with the measuring geometry cone-plate was used. The gap between the 
cone and the plate was set at the stable value of 0.103 mm. The diameter of the cone equaled to 50 mm with the 
angle of 1°. Rheological tests were performed at the temperature 20 °C. The apparent viscosity was measured at 
the shear rate 5/s. Each physical properties analysis was performed in triplicate.

Fatty acid profile.  For our research we used the second part of ISO 12966 norm36, which specifies methods 
of preparing the methyl esters of fatty acids. Specifically, the boron trifluoride (BF3) transmethylation procedure 
was used. The isooctane solution thus obtained was prepared for analysis, by using the GC according to ISO 12966 
norm, part four37. The profile of fatty acids was determined by using GC Hewlett Packard 4890D (Palo Alto, CA) 
with a flame ionization detector (FID). The separation was performed on column DB-23 (60 m × 0.25 mm with 
a 0.25 μm film thickness) from Agilent Technologies (Santa Clara, CA). The temperature program was as fol-
lows: the initial temperature was 100 °C held for 3 min, then was increased at 10 °C/min to 170 °C, then again 
increased at 4 °C/min to 230 °C held for 8 min, and then again at 5 °C/min to 250 °C held for 15 min. The injector 
temperature was 270 °C, while the detector temperature was set to 280°C. The injection volume was 2 µl at a split 
ratio of 40/1. The helium was used as a carrier gas with a flow rate of 1.0 ml/min. Retention times of FAME stand-
ards were used to identified individual fatty acid methyl esters. The resulting chromatograms were processed 
using the station CSW (version 1.7, Data Apex, Praha, CZ). Results are reported as % fatty acid (area under the 
peak of particular fatty acid) of total fatty acids (total area under the peak of all fatty acids). Each GC analysis was 
performed in triplicate. Chemicals used in the analysis were from VWR International (Radnor, Pennsylvania, 
USA) and FAME standards were from Supelco (Sigma-Aldrich, Saint-Louis, Missouri, USA).

FT‑IR measurements.  Measurements of ATR-FTIR background-corrected spectra (25 scans for each sam-
ple) were carried out with the use of a HATR Ge trough (45° cut, yielding 10 internal reflections) crystal plate at 
20 °C, and were recorded with a 670-IR spectrometer (Agilent, USA). The Ge crystal was cleaned with ultra-pure 
organic solvents (Sigma-Aldrich). The instrument was continuously purged with argon for 40 min. before and 
during measurements. Absorption spectra at a resolution of one data point per 1/cm (to the highest measure-
ment accuracy) were obtained in the region between 4000 and 400/cm. Scans were Fourier-transformed and 
averaged with Grams/AI 8.0 software (Thermo Fisher Scientific, USA).

Chemometric methods.  The data were analyzed by correlations among variables were evaluated using 
principal component analysis (PCA), cluster analysis on normalized PCs (k-means and Gaussian Mixture Mod-
els <GMM>) to oils samples according to their acid and spectroscopy profile. The multivariate data analysis 
methods have found increased use during the last decades in all fields of spectroscopy-related research. Such 
methods are the state of the art of mathematical analysis. They perform a reduction of the dimensionality of data 
set and allows the visualization of underlying structure in experimental data and relationships between data and 
samples by identifying the directions in which most of the information is retained. The FTIR spectroscopy char-
acterization of oils from grape seeds was combined with statistical analysis, PCA and GMM being considered 
as classification method of unsupervised learning. Characterization of the samples was performed using the 
relative intensity of absorption band corresponding to the main classes of chemical compounds identified in the 
IR spectrum was measured21,22. The spectral range was divide into fourth areas. The first spectral area, between 
3050 and 4000/cm was not taken into account. It is known that this spectral range contains information that is 
not significant for oils discrimination (water absorbance) and it also can be derive of noise. The second spectral 
range 2605–3050/cm provided eight values of the absorption band intensity (every 50/cm) for analysis. The next 
spectral ranges, between 1600 and 2000/cm (every 50/cm) and between 700 and 1500/cm (every 50/cm) gave 9 
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and 17 values of the absorption band intensity for analysis, respectively38. Finally, we represented each IR spec-
trum as a vector with 34 values.

In order to discover underlying classes into which data of ten different oils set splits, the standard clustering 
methods from unsupervised learning were used in the following sequence.

1.	 Determine optimal Principal Components in PCA that explain above 70%.
2.	 Normalize PCs using standard scaler.
3.	 Using k-Means algorithm and the elbow rule to determine the optimal number of clusters into which nor-

malized PC split.
4.	 Use the optimal number of clusters from the previous step to fix the number of Gaussian distributions in 

Gaussian Mixture Model (GMM) and determine optimal Gaussian parameters from the following39,40:

(a)	 ‘full’—each component has its own covariance matrix;
(b)	 ‘tied’—one general covariance matrix for each component;
(c)	 ‘diag’—diagonal covariance matrices for each component;
(d)	 ‘spherical’—each component has its own diagonal covariance matrix with equal eigenvalues;

The GMM has the following parametrization

where πk is the weight of the k-th Gaussian with normalization 
∑n

k=1
πk = 1 , μk is the mean of the Gaussian (its 

center), Σk is the covariance matrix.
The optimal is made by minimizing Bayesian Information Criteria (BIC)38,41 for a given number of compo-

nents and models. The k-Means clustering as a way of choosing the optimal number of components prevents 
BIC selection to exclude one-cluster-per-point model. The trained model and the whole analysis pipeline can 
also be used for classifying new data. However, since the sample is small we did not do unsupervised machine 
learning here. In the analysis the version 0.20.0 of Scikit-Learn library39,40 was used.

Data availability
The samples of each material used in this study, namely the variety of grape seed oils are available on request 
from M.V and P.B laboratories.

Received: 25 April 2021; Accepted: 3 September 2021

References
	 1.	 Fasina, O. O. & Colley, Z. Viscosity and specific heat of vegetable oils as a function of temperature: 35 °C to 180 °C. Int. J. Food 

Prop. 11, 738–746. https://​doi.​org/​10.​1080/​10942​91070​15862​73 (2008).
	 2.	 Hamm, W. & Hamilton, R. J. Edible Oil Processing (Sheffield Academic Press; CRC Press, 2000).
	 3.	 Passos, C. P., Silva, R. M., Da Silva, F. A., Coimbra, M. A. & Silva, C. M. Enhancement of the supercritical fluid extraction of grape 

seed oil by using enzymatically pre-treated seed. J. Supercrit. Fluids 48, 225–229. https://​doi.​org/​10.​1016/j.​supflu.​2008.​11.​001 
(2009).

	 4.	 Lachman, J. et al. Determination of rheological behaviour of wine lees. Int. Agrophys. 29, 307–311. https://​doi.​org/​10.​1515/​intag-​
2015-​0036 (2015).

	 5.	 Fiori, L. Grape seed oil supercritical extraction kinetic and solubility data: Critical approach and modeling. J. Supercrit. Fluids 43, 
43–54. https://​doi.​org/​10.​1016/j.​supflu.​2007.​04.​009 (2007).

	 6.	 Garavaglia, J., Markoski, M. M., Oliveira, A. & Marcadenti, A. Grape seed oil compounds: Biological and chemical actions for 
health. Nutr. Metab. Insights 9, 59–64. https://​doi.​org/​10.​4137/​NMI.​S32910 (2016).

	 7.	 Burg, P. Studium biologicky aktivních látek v semenech a letorostech révy vinné a moznosto získávání oleje ze semen=The Study of 
Biologically Active Compounds in Grapevine Seeds and Annual Shoots and Possibilities Obtaining Oil from the Seeds (Vydavatelství 
Mendelovy Univ, 2014).

	 8.	 Baydar, N. & Akkurt, M. Oil content and oil quality properties of some grape seeds. Turk. J. Agric. For. 25, 163–168 (2001).
	 9.	 Firestone, D. Physical and Chemical Characteristics of Oils, Fats, and Waxes (AOCS, 2006).
	10.	 Frančáková, H. et al. Composition of fatty acids in selected vegetable oils. Potravinarstvo https://​doi.​org/​10.​5219/​556 (2015).
	11.	 Criado, M. N., Motilva, M. J., Goñi, M. & Romero, M. P. Comparative study of the effect of the maturation process of the olive 

fruit on the chlorophyll and carotenoid fractions of drupes and virgin oils from Arbequina and Farga cultivars. Food Chem. 100, 
748–755. https://​doi.​org/​10.​1016/j.​foodc​hem.​2005.​10.​035 (2007).

	12.	 Giuffrida, D., Salvo, F., Salvo, A., Cossignani, L. & Dugo, G. Pigments profile in monovarietal virgin olive oils from various Italian 
olive varieties. Food Chem. 124, 1119–1123. https://​doi.​org/​10.​1016/j.​foodc​hem.​2010.​07.​012 (2011).

	13.	 Hashimoto, A. & Kameoka, T. Applications of infrared spectroscopy to biochemical, food, and agricultural processes. Appl. Spec‑
trosc. Rev. 43, 416–451. https://​doi.​org/​10.​1080/​05704​92080​21081​31 (2008).

	14.	 Ough, C. S. & Amerine, M. A. Methods for Analysis of Musts and Wines (Wiley, 1988).
	15.	 Palma, M. & Barroso, C. Application of FT-IR spectroscopy to the characterisation and classification of wines, brandies and other 

distilled drinks. Talanta 58, 265–271. https://​doi.​org/​10.​1016/​S0039-​9140(02)​00244-8 (2002).
	16.	 Gyftokostas, N. et al. Laser-induced breakdown spectroscopy coupled with machine learning as a tool for olive oil authenticity 

and geographic discrimination. Sci. Rep. 11, 5360. https://​doi.​org/​10.​1038/​s41598-​021-​84941-z (2021).
	17.	 Chedea, V. et al. Composition in polyphenols and stability of the aqueous grape seed extract from the Romanian variety “Merlot 

Recas”. J. Food Biochem. 35, 92–108. https://​doi.​org/​10.​1111/j.​1745-​4514.​2010.​00368.x (2010).

p(x|µ,�) =

∑n

k=1
πkpk(x|µk ,�k),

pk(x|µk ,�k) =
1

√

2π |�|

exp

(

−1

2
(x − µk)�k(x − µk)

T

)

,

https://doi.org/10.1080/10942910701586273
https://doi.org/10.1016/j.supflu.2008.11.001
https://doi.org/10.1515/intag-2015-0036
https://doi.org/10.1515/intag-2015-0036
https://doi.org/10.1016/j.supflu.2007.04.009
https://doi.org/10.4137/NMI.S32910
https://doi.org/10.5219/556
https://doi.org/10.1016/j.foodchem.2005.10.035
https://doi.org/10.1016/j.foodchem.2010.07.012
https://doi.org/10.1080/05704920802108131
https://doi.org/10.1016/S0039-9140(02)00244-8
https://doi.org/10.1038/s41598-021-84941-z
https://doi.org/10.1111/j.1745-4514.2010.00368.x


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19256  | https://doi.org/10.1038/s41598-021-98763-6

www.nature.com/scientificreports/

	18.	 Coimbra, M. A., Gonçalves, F., Barros, A. S. & Delgadillo, I. Fourier transform infrared spectroscopy and chemometric analysis 
of white wine polysaccharide extracts. J. Agric. Food Chem. 50, 3405–3411. https://​doi.​org/​10.​1021/​jf020​074p (2002).

	19.	 Peña-Neira, A., Hernández, T., García-Vallejo, M., Estrella, I. & Suarez, J. A survey of phenolic compounds in Spanish wines of 
different geographical origin. Eur. Food Res. Technol. 210, 445–448. https://​doi.​org/​10.​1007/​s0021​70050​579 (2000).

	20.	 Crews, C. et al. Quantitation of the main constituents of some authentic grape-seed oils of different origin. J. Agric. Food Chem. 
54, 6261–6265. https://​doi.​org/​10.​1021/​jf060​338y (2006).

	21.	 Guillén, M. D. & Cabo, N. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 75, 1–11. https://​doi.​org/​10.​
1002/​(SICI)​1097-​0010(199709)​75:1%​3c1::​AID-​JSFA8​42%​3e3.0.​CO;2-R (1997).

	22.	 Guillén, M. D. & Cabo, N. Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between 
composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 74, 1281–1286. https://​doi.​org/​10.​
1007/​s11746-​997-​0058-4 (1997).

	23.	 Ismail, A. A., van de Voort, F. R., Emo, G. & Sedman, J. Rapid quantitative determination of free fatty acids in fats and oils by 
fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 70, 335–341. https://​doi.​org/​10.​1007/​BF025​52703 (1993).

	24.	 Lai, Y. W., Kemsley, E. K. & Wilson, R. H. Quantitative analysis of potential adulterants of extra virgin olive oil using infrared 
spectroscopy. Food Chem. 53, 95–98. https://​doi.​org/​10.​1016/​0308-​8146(95)​95793-6 (1995).

	25.	 Dupuy, N., Duponchel, L., Huvenne, J. P., Sombret, B. & Legrand, P. Classification of edible fats and oils by principal component 
analysis of Fourier transform infrared spectra. Food Chem. 57, 245–251. https://​doi.​org/​10.​1016/​0308-​8146(95)​00213-8 (1996).

	26.	 Kachel, M., Matwijczuk, A., Przywara, A., Kraszkiewicz, A. & Koszel, M. Profile of fatty acids and spectroscopic characteristics of 
selected vegetable oils extracted by cold maceration. Agric. Eng. 22, 61–71. https://​doi.​org/​10.​1515/​agric​eng-​2018-​0006 (2018).

	27.	 Tay, A., Singh, R. K., Krishnan, S. S. & Gore, J. P. Authentication of olive oil adulterated with vegetable oils using fourier transform 
infrared spectroscopy. LWT Food Sci. Technol. 35, 99–103. https://​doi.​org/​10.​1006/​fstl.​2001.​0864 (2002).

	28.	 Yang, H., Irudayaraj, J. & Paradkar, M. M. Discriminant analysis of edible oils and fats by FTIR FT-NIR and FT-Raman spectros-
copy. Food Chem. 93, 25–32. https://​doi.​org/​10.​1016/j.​foodc​hem.​2004.​08.​039 (2005).

	29.	 Vlachos, N. et al. Application of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 573–574, 459–465. 
https://​doi.​org/​10.​1016/j.​aca.​2006.​05.​034 (2006).

	30.	 Lerma-García, M. J., Ramis-Ramos, G., Herrero-Martínez, J. M. & Simó-Alfonso, E. F. Authentication of extra virgin olive oils by 
Fourier-transform infrared spectroscopy. Food Chem. 118, 78–83. https://​doi.​org/​10.​1016/j.​foodc​hem.​2009.​04.​092 (2010).

	31.	 Rohman, A. & Man, Y. B. C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with 
palm oil. Food Res. Int. 43, 886–892. https://​doi.​org/​10.​1016/j.​foodr​es.​2009.​12.​006 (2010).

	32.	 Gurdeniz, G. & Ozen, B. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. 
Food Chem. 116, 519–525. https://​doi.​org/​10.​1016/j.​foodc​hem.​2009.​02.​068 (2009).

	33.	 Cozzolino, D., Holdstock, M., Dambergs, B., Cynkar, W. & Smith, P. Mid infrared spectroscopy and multivariate analysis: A tool 
to discriminate between organic and non-organic wines grown in Australia. Food Chem. 116, 761–765. https://​doi.​org/​10.​1016/j.​
foodc​hem.​2009.​03.​022 (2009).

	34.	 Bendini, A. et al. Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality 
of virgin olive oils. J. Food Qual. 30, 424–437. https://​doi.​org/​10.​1111/j.​1745-​4557.​2007.​00132.x (2007).

	35.	 ISO 6883:2017 Animal and vegetable fats and oils—Determination of conventional mass per volume (litre weight in air). (2017).
	36.	 ISO 12966–2:2017 Animal and vegetable fats and oils—Gas chromatography of fatty acid methyl esters—Part 2: Preparation of 

methyl esters of fatty acids. (2017).
	37.	 ISO 12966–4:2015 Animal and vegetable fats and oils—Gas chromatography of fatty acid methyl esters—Part 4: Determination 

by capillary gas chromatography. (2015).
	38.	 Hanganu, A., Todasca, C., Chira, N., Maria, M. & Roşca, S. The compositional characterisation of Romanian grape seed oils using 

spectroscopic methods. Food Chem. 134, 2453–2458. https://​doi.​org/​10.​1016/j.​foodc​hem.​2012.​04.​048 (2012).
	39.	 Buitinck, L. et al. API design for machine learning software: Experiences from the scikit-learn project. API Design for Machine 

Learning Software: Experiences from the Scikit-learn Project (2013).
	40.	 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12 (2012).
	41.	 Burg, P., Trávníček, P., Mašán, V. R., Rutkowski, K. & Višacki, V. Comparison of rheological properties of varietal grape seed oils. 

Potravinarstvo Slovak J. Food Sci. 12, 63–69. https://​doi.​org/​10.​5219/​816 (2018).

Acknowledgements
The authors Vladimír Mašán and Patrik Burg acknowledge the project CZ.02.1.01/0.0/0.0/16_017/0002334 
Research Infrastructure for Young Scientists, which is co-financed from Operational Programme Research, 
Development and Education. R.K. work was supported by the GACR Grant GA19-06357S and Masaryk Uni-
versity Grant MUNI/A/0885/2019. A.N. and R.K. thank the SyMatCOST Action (CA18223) for partial support.

Author contributions
M.V. and P.B. provided and prepared the raw materials according to their varieties, carried out the separation 
and drying of grape seeds and the oil pressing. Chemometric analysis of fatty acid compounds and determina-
tion of physical parameters, including preparation of the related text parts and statistical evaluation of results. 
A.P.M., A.N. and R.K. contributed to the ideas and planned the general outline of the study. A.P.M. carried out 
the FTIR experiments. L.Ś., D.K. and B.G. run the FTIR measurements and data processing in Grams/AI 8.0 
software and prepared the results for publication. A.P.M. and D.K. carried out the interpretation of FTIR data 
and contributed to the relevant fragments of the manuscript. They also run the literature survey and contributed 
to an abstract, introduction, results, and discussion sections of the manuscript. A.N. and R.K. designed the data 
analysis/machine learning methodology and developed the software tools, which were then used to perform 
the analysis (PCA, k-Means and Gaussian Mixture Model). They also contributed to parts of the manuscript 
describing this analysis. All authors have read and approved the final version of the manuscript.

Competing interests 
The corresponding author is responsible for submitting a competing interests statement on behalf of all authors 
of the paper. Figures and tables can be referenced in LaTeX using the ref command, e.g. Fig. 2 and Table 5.

Additional information
Correspondence and requests for materials should be addressed to A.P.M.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1021/jf020074p
https://doi.org/10.1007/s002170050579
https://doi.org/10.1021/jf060338y
https://doi.org/10.1002/(SICI)1097-0010(199709)75:1%3c1::AID-JSFA842%3e3.0.CO;2-R
https://doi.org/10.1002/(SICI)1097-0010(199709)75:1%3c1::AID-JSFA842%3e3.0.CO;2-R
https://doi.org/10.1007/s11746-997-0058-4
https://doi.org/10.1007/s11746-997-0058-4
https://doi.org/10.1007/BF02552703
https://doi.org/10.1016/0308-8146(95)95793-6
https://doi.org/10.1016/0308-8146(95)00213-8
https://doi.org/10.1515/agriceng-2018-0006
https://doi.org/10.1006/fstl.2001.0864
https://doi.org/10.1016/j.foodchem.2004.08.039
https://doi.org/10.1016/j.aca.2006.05.034
https://doi.org/10.1016/j.foodchem.2009.04.092
https://doi.org/10.1016/j.foodres.2009.12.006
https://doi.org/10.1016/j.foodchem.2009.02.068
https://doi.org/10.1016/j.foodchem.2009.03.022
https://doi.org/10.1016/j.foodchem.2009.03.022
https://doi.org/10.1111/j.1745-4557.2007.00132.x
https://doi.org/10.1016/j.foodchem.2012.04.048
https://doi.org/10.5219/816
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19256  | https://doi.org/10.1038/s41598-021-98763-6

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Chemometric approach to characterization of the selected grape seed oils based on their fatty acids composition and FTIR spectroscopy
	Results and discussion
	Fatty acid compounds of the selected grape seed oils. 
	Chemometric analysis of fatty acid compounds and physical parameters of selected grape seed oils. 
	Correlation analysis. 
	PCA. 
	k-Means for two PCs. 
	GMM for clustering. 
	FT-IR spectroscopy analysis. 

	Chemometric analysis of FTIR spectra of selected grape seed oils. 
	PCA. 
	k-Means for two PCs. 
	GMM for clustering. 


	Conclusions
	Materials and methods
	Samples preparation. 
	Oil extraction from grape seeds. 
	Physical properties. 
	Fatty acid profile. 
	FT-IR measurements. 
	Chemometric methods. 

	References
	Acknowledgements


