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Nonstationary signal extraction 
based on BatOMP sparse 
decomposition technique
Shuang‑chao Ge* & Shida Zhou

Sparse decomposition technique is a new method for nonstationary signal extraction in a noise 
background. To solve the problem of accuracy and efficiency exclusive in sparse decomposition, the 
bat algorithm combined with Orthogonal Matching Pursuits (BatOMP) was proposed to improve 
sparse decomposition, which can realize adaptive recognition and extraction of nonstationary 
signal containing random noise. Two general atoms were designed for typical signals, and dictionary 
training method based on correlation detection and Hilbert transform was developed. The sparse 
decomposition was turned into an optimizing problem by introducing bat algorithm with optimized 
fitness function. By contrast with several relevant methods, it was indicated that BatOMP can improve 
convergence speed and extraction accuracy efficiently as well as decrease the hardware requirement, 
which is cost effective and helps broadening the applications.

Background information. Signal extraction and signal–noise separation are always two of the research 
focuses in modern signal  processing1, which are commonly used in biomedical signal features extraction, vibra-
tion signal analysis, seismic signal  detection2, sound signals  recognition3. In practical applications, such signals 
are often submerged in a variety of vibration or electromagnetic noise, and the occurrence times of the target 
signals are random, which are typical nonstationary signals. Fourier transform is one of the most classic signal 
analysis and extraction method, but it cannot accurately describe nonstationary  signals4. In recent years, new 
theories and technologies continue to appear in signal extraction. For example, wavelet decomposition (WD)5,6, 
empirical mode  decomposition7, Hilbert–Huang Transform (HHT), variational mode decomposition (VMD) 
 algorithm8. These methods need to meet certain conditions to work, for example the decomposition levels, 
modal number, and termination thresholds.

To achieve a more flexible, concise and adaptive signal decomposition, researchers proposed sparse decom-
position. This method represents the signal with as few atoms as possible in a given redundant dictionary by 
matching pursuit (MP)  algorithm9, which is a greedy algorithm for sparse decomposition. Various new evalua-
tion criteria and basis pursuit, orthogonal matching pursuit algorithm (OMP)10, and time–frequency spectrum 
segmentation  methods11 were generated to select a set of optimal atoms from the constructed over-complete 
dictionary. In principle, if the dictionary redundancy is high enough and the iterations is large enough, the target 
signal can be perfectly extracted by OMP. On this basis, some general improved algorithms were proposed for 
example Regularized Orthogonal MP (ROMP)12 and Compressive Sampling MP (CoSaMP)13. These methods 
require the signal Sparsity K for efficient execution, but K is generally unknown in practice. Sparsity Adaptive MP 
(SAMP) was proposed for signal reconstruction without prior information of the sparsity, but it is more complex 
than other greedy algorithms under large sparsity  level14. And improper initial step size will lead to excessive 
decomposition for SAMP. The accuracy of signal sparse decomposition mainly depends on the redundancy and 
refinement accuracy of the redundant dictionary. Over or under estimation as well as long-time running will 
appear in these algorithms under the condition of large sparsity. Generally, the greater the redundancy and refine-
ment, the greater the probability of accurate signal decomposition. However, for the greedy algorithm mentioned 
above, these are at the cost of algorithm efficiency. The accuracy and efficiency are exclusive.

Aiming at two main research hotspots including sparse decomposition algorithm and over-complete atom 
dictionary of signal sparse  decomposition15, we designed two typical universal atoms, and proposed an adaptive 
feature-based atom construction method for the extraction of non-stationary signals with unknown sparsity. 
Redundant dictionary is obtained by extending the feature-based atoms, which can balance the completeness 
and redundancy. A signal matching tracking extraction algorithm was developed based on the bat algorithm 
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and OMP, which successfully combined the accuracy and efficiency and could effectively realize nonstationary 
time domain signal extraction.

Classical signal sparse decomposition algorithms. Signal sparse decomposition represents a signal 
by specific combinations of some atoms in a dictionary. For a given dictionary, the optimal combination can be 
accurately determined when all possible combinations were calculated. However, exhausting all combinations 
in a dictionary is a non-deterministic polynomial problem that is almost impossible to achieve for large diction-
ary bases. So, the requirement was changed to finding a suboptimal combination from the dictionary with the 
lowest possible number of atoms and the smallest possible extraction error. This will reduce the computational 
complexity significantly, and the MP algorithm is one of the algorithms that can achieve this requirement.

Assume that the represented signal is x with length of N. Let ℝ denote the Hilbert space in which a diction-
ary matrix D composed of a set of vectors {g1, g2,…,gn}. Each vector is an atom with the same length N and these 
vectors have been treated as normalized as 

∥∥g
∥∥
2
= 1.

With ξ1 = x, the MP algorithm selects one atom at a time from the dictionary matrix D that best matches x, 
satisfying (1),

where ibest is the index of the best matching atom in D. �·� is the inner product function.
The signal x is then decomposed into two parts, a sparse approximation ⌢x and an approximation residual ξ2:

Continues to select the atoms that best matches ξ2, iterating repeatedly and eventually the signal x can be 
approximated as a linear sum of these atoms:

For MP algorithm, the non-orthogonality between the vertical projection of the signal (or residuals) on the 
selected atoms and the residuals will lead to suboptimal iterative results instead of the best optimal, and conver-
gence requires many iterations. The OMP algorithm is the orthogonalization of all selected atoms at each step of 
the decomposition, which makes the convergence faster with the same accuracy requirement. The convergence 
process of MP and OMP are described by a dictionary D with length of three, as shown in Fig. 1. However, 
although the OMP algorithm reduced iterations to some extent, it had to calculate the current residual and the 
inner product of all atoms within the current dictionary during each iteration, resulting in unsatisfied effective-
ness. Therefore, this paper introduced the bat algorithm (BA) to optimize the matching tracking algorithm.

Bat algorithm presentation. The basic flow of bat algorithm is as follows:

 (1) Initialization: the best fitness Fitbest, bat population number Npop,, the max bat generation Ngen,, the current 
generation n = 0, initial flight frequency f0 = {fi

0|i = 1,2,…, Npop}, acoustic loudness A0 = {Ai
0|i = 1,2,…, Npop} 

and pulse emission frequency r0 = {ri
0|i = 1,2,…, Npop}. The initial location of the bat colony is randomly 

generated according to (4):

(1)ci =
∣∣〈x · gibest

〉∣∣ = max
i∈(1,...n)

∣∣〈x · gi
〉∣∣,

(2)x = ⌢
x + ξ2 =

〈
x · gibest

〉
gibest + ξ2.

(3)
⌢
x =

n−1∑

i=0

〈
ξi · gibest

〉
gibest , x− = ξn.

Figure 1.  Convergence process of MP and OMP.
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 (2) The best position Pn
best is determined by the fitness function Fitn.

 (3) Update the velocity and position of the individual bat:

where r1 was a random number, satisfying r1∈[0,1]; fi was the search pulse frequency of the i-th bat; vi
n 

denoted the velocity of the i-th bat in the n-th igeneration, Pi
n denoted the position of the i-th bat in the 

n-th igeneration; and Pn
best is the current global optimal solution.

 (4) Generate a random number r2i ∈ [0,1] for each bat and update bat position according to (7).

where: η was a random number, satisfying η ∈ [− 1; 1] and Ān was the mean fitness of the bat population.
 (5) Update the fitness

 (6) For each bat, a random number r3i is generated, and update the position:

 (7) The fitness and pulse emission frequency are updated:

where, λ ∈ (0,1), γ > 0, when n → ∞ , An
i → 0 , rni → r0.

 (8) Find the current matching atom based on the optimal solution.
 (9) The random perturbation of the current optimal solution in step 4 can effectively avoid the iterative 

result from falling into a local optimal solution, which helped to find the global optimal solution fast and 
accurate.

 (10) The Ackley function iss used to test the BA. The expression of the Ackley function is as follows:

In this study, n = 2, c1 = 20, e = 2.71289. the Ackley function was taken as the fitness function and the global 
minimum of this function was searched by the above methods. The particle swarm optimization (PSO)16, arti-
ficial fish school algorithm (AFSA)17 and Cuckoo Search (CS)18 are used for comparison. The population size 
and iteration numbers of these intelligent algorithms are the same to ensure rigorous comparison. The search 
paths and results are shown in Fig. 2.

The detailed values are shown in Table 1. The comparison of the tracking trajectory and the optimization 
results show that BA has advantage of high convergence speed and computational accuracy because the gradient 
of the optimization deviation is the largest and the optimization results are closest to the true value.

Methods
BatOMP sparse decomposition. General atomics designed for typical signals. For sinusoidal-like and 
one-sided decaying oscillatory signals, g-atoms are constructed:

where c is the normalization factor to ensure that the original signal has the same energy as its sparse decompo-
sition results; d: the attenuation factor; t: the sampling time; t1: start point of atomic appearance; t2: the ending 
point; f: signal frequency and ϕ: phase. The time domain waveforms of g-atoms with different parameters are 
shown in Fig. 3.

(4)P0=
{
P0i

∣∣i = 1, 2, ...,Npop

}
, P0i ∈ (Pmin Pmax),

(5)Fitn
(
Pnbest

)
= arg min

Npop

(
Fitn

)
.

(6)






fi = fmin + r1 ×
�
fmax − fmin

�

vni = vn−1
i +

�
Pbest − Pn−1

i

�
· fi

Pni = Pn−1
i + vni

,

(7)
{
globaloptimization : Pn+1

i =Pn
i + vn+1

i , r2i ≤ rni
localoptimization : Pn+1

i =Pn
i + �ri

__
An ∗

(
Pmax − Pmin

)
, r2i > rni

,

(8)Fitn+1(i)=Fit
(
Pn+1
i

)
.

(9)
{
Pn+1
i =Pn+1

i , r3i > An
i &&Fit

n+1
i < Fitni

Pn+1
i = Pni , Fitn+1

i = Fitni , otherwise
.

(10)
{
rn+1
i =r0i

(
1− e−γ n

)

An+1
i = �An

i

.

(11)f (x) = −c1 exp



−0.2

���� 1

n

n�

j=1

x2j



− exp



 1

n

n�

j=1

cos (2πx)



+ e.

(12)g
(
c, d, t1, t2, τ , f ,ϕ

)
=

{
ce(−d(t−t1)) cos

(
2π f (t − t1)+ φ

)
, t ∈ [t1, t2]

0, others
,
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When the attenuation factor d = 0, the g-atom degenerates to standard sine wave; when d increases, the g-atom 
performs sinusoidal damped oscillation. Therefore, this atom has a strong match with sinusoidal signals, and 
single-sided oscillatory decay signals.

For kind of triangle waves, charge–discharge waves, and bilateral decay oscillation signals, tr atoms are 
constructed:

where d1 and d2 are the bilateral damping factors; t0 is the bilateral boundary of the atomic; [t1, t2] is the atomic 
time range; and η is the bilateral scaling factor.

The time domain waveforms of tr-atoms with different parameters are shown in Fig. 4. When the bilateral 
scaling factor η = 0, the tr-atom degenerates to single-sided oscillating atom (reverse-order g-atom); when 0 < η < 1 
and the atomic frequency is low enough, the tr-atom behaves as a charge–discharge triangle wave; when η = 1, 
the tr-atom with low-frequency behaves as a triangle-like wave, and behaves as bilateral oscillating decay signal 
with high-frequency.

The above analysis shows that the constructed g-atoms and tr-atoms are very flexible and could match almost typical 
testing signals by parameter adjustment.

(13)tr(c, d1, d2,t0,t1,t2,f,ϕ,α) =






c × e(−d1∗(t1−t)) × cos
�
2π f (t1 − t)+ φ

�
, t ∈ [t0, t1]

0, others

η × c × e(−d2∗(t−t1)) × cos
�
2π f (t − t1)+ φ

�
, t ∈ [t1, t2]

,

Figure 2.  The optimal trajectory of different methods. (a,b) Show the 3D view and contour attempt of the 
optimal trajectory, respectively. Colors: black: the merit-seeking trajectories of PSO, blue: the merit-seeking 
trajectories of AFSA, green: the merit-seeking trajectories of CS, red: the merit-seeking trajectories of BA.

Table 1.  Results analysis of different methods. The ideal search results are [0, 0] and ideal solution is 0.

Algorithm Search results Optimal solution Time running

PSO [0.0644, 0.0518] 0.4025 0.484925

AFSA [0.0011, 0.0052] 0.01583 0.585477

CS [0.0083, 0.0198] 0.06764 0.254225

BA [0.0023, − 0.0014] 0.007828 0.154801

Figure 3.  Time domain waveforms of g-atoms with different parameters.
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Dictionary training algorithm. A dictionary training algorithm based on feature parameters was studied to determine 
the key parameters of feature base-atom and to balance the completeness and redundancy for redundant dictionary 
library construction.

When constructing the redundancy dictionary, we firstly use the short-time Fourier transform to initially determine 
the frequency fs and phase ϕs of the target signal in the original data x. Then, standard sine atom s0 = sin(2πfst + ϕs) is 
constructed. The correlation detection technique is used by calculating the correlation function of the original data and 
the sine atom, and the upper and lower envelopes of the correlation function are obtained by searching the positive 
and negative peaks of the correlation function. The points of the maximum positive gradient between the positive and 
negative peaks are the extracted range of the target signal. Thus, the signal sample Ei in the original observation sequence 
is extracted. The time information section obtained by the above calculation determines the time domain parameters 
such as t0, t1 and t2 of the characteristic atom.

Accurate time and frequency domain parameters are obtained by Hilbert transform of Ei.

where: h(t) is the Hitch transform factor.
Complex analytic signal as follows is constructed:

where, A(t) is the amplitude function:

and, ϕ(t) is the phase function:

The instantaneous frequency of Ei is given by (18):

The base-atom is obtained with the time information gained by the correlation detection and localization algorithm 
and the time–frequency parameter information obtained by Hilbert transform as the reference. And the redundant 
dictionary of this feature atom is constructed by performing equal-step discrete expansion of the time–frequency 
parameters on both sides of the reference values.

where, D(:, j) = {gj
i|i = 1,2,…,N}, denoting the set of atoms consisting of extensions of the characteristic base-atom 

gi
0. Atoms has the same length N as x.

BatOMP improved sparse decomposition algorithm. The optimization-seeking process can be viewed 
as a global optimization problem. In order to solve the problems of large computation and low efficiency of existing 
matching tracking algorithms, the adaptive matching tracking algorithm, BatOMP, with fast convergence and accurate 
approximation is studied by combining BA into the OMP algorithm.

For BatOMP, the bat individual positions Pi represent the atoms column index in the redundant dictionary D, thus: 
gi = D(:,Pi). And for noise-containing signal extraction, the fitness function of the traditional sparse decomposition is 
improved to take the ratio of the ℓ-2 norm of the residual and the inner product as the fitness function. The target sig-
nal tends to be regular signals and most random noises obeys Gaussian distributions with zero mean error. So, the ℓ-2 
norm of the former is greater than the latter. In consequence, the smaller the fitness indicates that the residual sequence 

(14)R(t) = Ei(t)× h(t),

(15)z(t) = x(t)+ iR(t) = Aeiφ(t),

(16)A(t) =
√

E2i (t)+ R2(t),

(17)φ(t) = arctan
R(t)

Ei(t)
.

(18)f (t) =
dφ(t)

dt
.

(19)D =






g11 , g
1
2 , . . . g

1
M

g21 , g
2
2 , . . . g

2
M

...
gN1 , gN2 , . . . gNM





,

Figure 4.  Time domain waveforms of tr-atoms with different parameters. ‘ita’ represents η. 
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contains smaller effective signal components and higher signal-to-noise separation. In addition, the larger the inner 
product, the better matchs between the atom and the residual. So, the optimal individual bat position Pb is determined 
and saved according to (20).

and

where A is the matched dictionary, composed by the selected best matching atoms.
The flow chart of BatOMP is as follows:

(20)Fitn
�
Pnbest

�
= Fitn

�
gnbest

�
= arg min

Npop





���ξn+1
i

���
2�

ξi · gi
�



,

(21)ξn+1
i = ξni − AT

(
AT × A

)−1
× AT ∗ ξni ,A =

[
g1, g2, . . . , gn

]
,
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The overall flow chart of the proposed signal extraction algorithm is shown in Fig. 5. The flow of sparse 
decomposition based on BA and MP (BatMP), CoSaMP and SAMP are also presented for comparison. Different 
algorithms are distinguished by different border colors. All of the four methods consist of four main modules: 
1. redundant dictionary construction, 2. algorithm initialization, 3. circulative iteration and optimization, and 
4. result output. In this paper, module 1 and 4 are almost same for the different methods, module 2 is slightly 
different, and the differences are mainly reflected in module 3.

Experiments. We constructed a nonstationary signal x to test the methods described above:

where s is nonstationary target signal including pulse signal s1 and partial discharge signal s2 distributed in 
different regions, and ns is background noise subjecting to Gauss distribution. The sampling rate fs = 1500 Hz, 
sampling time T = 1 s, and SNR is 7.402 dB. Thus, the sequence length N is 1500.

The PC for the testing features a i7-8550U CPU Core(TM) @ 1.80 GHz with 16.0 GB RAM, 4 cores and 8 
Logic processors, running the 64 bit operating system.

Time–frequency parameter calculation. First, time and frequency analysis was performed, and results 
were shown in Fig. 6. From Fig. 6, after 0.4 s, s1 decreases to zeros with the action of attenuation term.

Secondly, time information of the target signal was calculated by the correlation detection and localization 
algorithm described above, shown in Fig. 7. L1 and L2 are the calculated start and end indexes of the target seg-
ments, and L is the length of the segmentations. Accordingly, t1 = L1/fs ≈ 0 s, t2 = L2/fs ≈ 0.415 s for ŝ1, and t1 = L1/
fs ≈ 0.501 s, t2 = L2/fs ≈ 0.671 s for ŝ2.

Different dictionaries construction and testing. After determining the key parameters of s, the redun-
dant dictionary GT consisting of the two new atoms was created by dictionary training algorithm. And two 

(25)

x = ns + s =






ns + s1, t1s < t < t1e

ns + s2, t2s < t < t2e

ns, otherwise

=






wgn+ 20× exp



− 5e−4�
(1−0.00052)

× (2π × 90× (t− 0.156))2



× cos(2π × 90× (t− 0.156)), 0 < t < 1 0 < t < 1

wgn+ 180×
��exp(− 15× t)× sin(2π × 30× t + π/2)

��, 0.5 < t < 0.67

wgn, otherwise

,

Figure 5.  The overall flow chart of signal extraction algorithms.
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typical redundant dictionaries were built by Discrete Cosine Transformation (DCT) and Gabor dictionary for 
comparison. The dictionaries’ sizes are shown in Table 2.

Since the OMP method will iterate over the whole dictionary repeatedly, the extraction results are relatively 
accurate. In view of this, we take the results of OMP from statistical analyses to illustrate the performance of the 
different dictionaries, as shown in Fig. 8. The vertical axis represents the deviation between the extracted signal 
ŝ and actual signal s:

We quantified the errors by RMS, the root mean square value of Amperr. The time–frequency parameters were 
not considered when building the DCT dictionary by MATLAB, so there was the maximum deviation in the 
correlative results. The atom expression of Gabor dictionary is as follows:

We can see the lack of unilateral oscillation atoms by contrast with g-atom and tr-atom. Relatively, GT dic-
tionary is completer and more accurate, so OMP based on GT dictionary gave minimum errors and the shortest 
optimizing time.

Algorithm performance testing. The algorithms involved in the article including MP, OMP, SAMP, 
CoSaMP, BatMP and the proposed BatOMP were carried out for performance comparison.

The extraction results and corresponding errors obtained by different methods were shown in Fig. 9. Fig-
ure 9a,c,e display the extracted signals ŝ by different methods based on DCT, Gabor and GT dictionary respec-
tively. And Fig. 9b,d,f presente corresponding errors obtained by Eq. (26).

The efficiency analysis of different algorithms and dictionaries are shown in Fig. 10 and Table 3.
Because that the MP and OMP method traversed through the whole dictionary, the accuracies are relatively 

high and the latter is superior to the former.
The step length l of SAMP and sparsity q of CoSaMP were determined by expert experience. Because a certain 

amount atoms have to choose every time, there are clearly overextraction for these two methods. It’s important to 
note that better parameters may be obtained by trial and error, but it is not suitable for real-time data processing.

For BatOMP, the best match atoms are determined by bat colony optimization. Every time before the search-
ing, the bat individuals randomly scattered over the whole dictionary, and then gradually gather to the optimum 
solution through local optimization and global optimization. The optimal trajectories of ten bat individuals were 
randomly selected to show the convergence process, as shown in Fig. 11. The optimum solution is the index of 
the optimum matching atom in the redundant dictionary.

The difference between BatMP and BatOMP is similar to MP and OMP. BatOMP based on GT dictionary 
occupied the highest precision, probably because that MP and OMP took the inner product as the fitness func-
tion which leading to suboptimum for signal extraction. So, the results reflect the availability of the new fitness 
in some extent.

Moreover, the first four methods executed vast and complex matrix computations many times during the opti-
mizing period, so they are time-consuming and require very high CPU occupancy rate compared with BatOMP. 

(26)Amperr = s − ŝ.

(27)gabor(i) =
1
√
a
× exp

(
−π ×

(
i −�t

z

)2

× cos(2π f (i −�t)+ φ)

)
.

Figure 6.  Waveform of the testing signal. The upper and lower subplot denote the time domain and frequency 
domain waveforms, respectively; red and blue lines in the upper subplot denote the original signal x and the 
target signal s = s1 + s2, respectively.
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In other words, BatOMP can be widely used even on low lever machines. This is important for the occasions 
without algorithmic workstation and high-performance computer, i.e. field data processing or low cost testing.

Conclusion
For nonstationary signal extraction, the dictionary training algorithm based on feature parameters is firstly 
used to determine the key parameter range of feature atoms, which can effectively reduce the redundancy 
while ensuring the completeness of the redundant dictionary; the bat algorithm combined with OMP is pro-
posed to transform the signal sparse decomposition problem into an optimization problem with ratio of the 
ℓ-2 norm of the residual and the inner product as the fitness, which can improve the efficiency of the sparse 

Figure 7.  Target segment extraction based on correlation detection technique. The upper and lower subplot 
denoted the segmentation result of signal components s1 and s2, respectively. In the upper subplots, the black 
solid lines are cross-correlation functions; red and blue scatters describe the envelopes of the effective correlated 
windows; and red dotted line are calculated time range. The green cycles indicate the start–end of the target 
segments.

Table 2.  The dictionary sizes. When built the DCT dictionary, perfect square was required for the column 
length, so the nearest perfect square 1444 around N was selected.

Dictionary Size

Gabor 1500 × 863,952

DCT 1444 × 1,048,576

GT 1500 × 593,190
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Figure 8.  Dictionary testing.

Figure 9.  Signal extraction results. Colors: jasper: the target signal s; red: result of BatOMP; black: result of 
BatMP; bule: result of CoSaMP; green: result of SAMP; pink: result of OMP; skyblue: result of MP.
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decomposition algorithm. The experimental results showed that compared with other methods, the BatOMP 
algorithm is occupied with high efficiency, which can extract nonstationary signals form noise background 
without over constrained prior knowledges and avoid excessive decomposition. Testing results show that the 
proposed algorithm outperforms previous method in speeding up the convergence procedure and meanwhile 
ensuring high accuracy. Compared with the existing sparse decomposition algorithm, BatOMP requires much 
lower levels of hardware configuration. So, the new method will be helpful for to reducing data processing cost 
and enlarging the application fields.

Figure 10.  Quantitative analysis of experimental results. Blue bares mark the running time (the left axis) and 
red bars indicate the extraction errors (the right axis). For each method, the three bars of a sort from left to right 
represent the result of DCT, Gabor and GT dictionary respectively.

Table 3.  Quantitative analysis of experimental results.

Algorithm

Elapsed time (s) Square error (V)

CPU occupancy rate (%)DCT Gabor GT DCT Gabor GT

MP 248.45 185.62 87.38 1.92 1.00 0.93 58

OMP 208.91 154.34 32.57 1.89 0.96 0.70 57

SAMP 183.6 37.70 15.51 3.74 2.34 0.89 70

CoSaMP 150.11 41.41 18.01 3.59 2.63 1.92 55

BatMP 35.26 58.19 51.16 1.97 1.89 1.16 26

BatOMP 25.09 34.35 12.77 1.61 1.77 0.65 26

Figure 11.  A complete search process of the bat colony. Obviously, the bats gradually converge to the best 
solution from the original scattered position.
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