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Explaining COVID‑19 outbreaks 
with reactive SEIRD models
Kunal Menda  1*, Lucas Laird2, Mykel J. Kochenderfer  1 & Rajmonda S. Caceres  2

COVID-19 epidemics have varied dramatically in nature across the United States, where some 
counties have clear peaks in infections, and others have had a multitude of unpredictable and non-
distinct peaks. Our lack of understanding of how the pandemic has evolved leads to increasing 
errors in our ability to predict the spread of the disease. This work seeks to explain this diversity in 
epidemic progressions by considering an extension to the compartmental SEIRD model. The model 
we propose uses a neural network to predict the infection rate as a function of both time and the 
disease’s prevalence. We provide a methodology for fitting this model to available county-level data 
describing aggregate cases and deaths. Our method uses Expectation-Maximization to overcome the 
challenge of partial observability, due to the fact that the system’s state is only partially reflected in 
available data. We fit a single model to data from multiple counties in the United States exhibiting 
different behavior. By simulating the model, we show that it can exhibit both single peak and multi-
peak behavior, reproducing behavior observed in counties both in and out of the training set. We then 
compare the error of simulations from our model with a standard SEIRD model, and show that ours 
substantially reduces errors. We also use simulated data to compare our methodology for handling 
partial observability with a standard approach, showing that ours is significantly better at estimating 
the values of unobserved quantities.

Having an accurate understanding of the spread of COVID-19 is essential to containing the virus effectively, 
and necessary for the deployment and allocation of resources. In order to understand why the spread appears to 
differ between communities, we require a mathematical model of disease spread capable of expressing the dif-
ferences. A standard model of disease spread is the SEIRD model, in which each individual is either susceptible 
(S), exposed (E), infected (I), recovered (R), or dead (D)1,2. Compartmental SEIRD models consider only the 
aggregate number of individuals with each disease state, and specify a set of differential equations that govern 
how the compartmental populations change with time.

The well-studied compartmental SEIRD model is popular because of its simplicity2. This standard model, 
however, only predicts a single, clear peak in infections. While certain counties in the northeast of the United 
States appeared to exhibit this behavior for a while, most other counties do not.

In this work, we seek to extend the model and fit it to available data that can account for the diversity in 
COVID-19 outbreaks across the US. Specifically, we seek to learn a model that predicts clear peaks for counties 
in the northeast that had them, and predicts multiple, flatter peaks for those that did not.

In order to build models capable of expressing more realistic behavior, we relax two assumptions made by 
the standard compartmental SEIRD model: 

	(A1)	 Stationarity—the disease parameters remain constant over time, and,
	(A2)	 Non-reactivity—the disease parameters remain constant regardless of the prevalence, i.e., the fraction of 

the population infected by the disease.

We hypothesize that relaxing these assumptions allows us to better explain the diversity of behavior seen in real-
ity. Specifically, allowing disease parameters to vary with time allows us to account for implicit dependencies on 
virus mutations, weather, and changing cultural norms. Allowing them to depend on prevalence allows us to 
account for the reactive nature of a population’s behavior to the perceived threat of the virus, and heterogeneous 
patterns of interactions within populations in different geographical areas, which reflect in the peak prevalence 
levels reached.
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To relax these assumptions, we consider a “reactive” compartmental SEIRD model (R-SEIRD) in which the 
transmission rate is a function of both time and the number of infected individuals. To avoid imposing an incor-
rect prior on the functional form of this relationship, we use a neural network to model it.

A common difficulty in fitting such models to available data is that of partial observability. SEIRD models 
have states that vary with time according to their dynamic parameters. Because the available data are not time-
series of the models’ states, but only partial observations of it (daily new cases and deaths), we employ tools from 
system-identification3 in order to fit these models. Specifically, we use a technique called Certainty-Equivalent 
Expectation-Maximization (CE-EM)4, which was recently shown to be a reliable and low-variance method for 
learning the parameters of partially observable dynamical systems. A key benefit of this methodology is that 
we do not assume knowledge of the initial state of the population, an assumption typically made by related 
approaches5–8.

In this work, we present a methodology for fitting R-SEIRD models to available data, and validate our hypoth-
eses by showing that learned models can explain the diversity of behavior seen across the United States, and that 
is more robust to partial observability. Through our experiments, we show that: 

1.	 Learned R-SEIRD models produce behavior consistent with what was observed in counties across the United 
States,

2.	 The simulation error of R-SEIRD models is lower than that of standard SEIRD models when compared 
against trajectories from outbreaks across the United States, and,

3.	 CE-EM is better than standard methodologies for fitting SEIRD models to partially observed data.

The contributions of this work are, therefore, to: 

1.	 Propose a novel model that relaxes the assumptions of the standard SEIRD model,
2.	 Provide a methodology that is novel for fitting such a model to available data, and,
3.	 Experimentally demonstrate that this model is capable of expressing the diversity of behavior observed 

across the United States, and that our methodology outperforms standard approaches in partially observed 
settings.

This paper is organized as follows. In the “Background” section, we formalize compartmental SEIRD models 
and review the CE-EM algorithm, as well as related approaches to fitting such models to data. In the “Methodol-
ogy” section, we introduce the R-SEIRD model and describe our methodology for fitting it to available data. In 
the “Fitting COVID-19 epidemics across The United States” section, we fit the model to data from a selection 
of representative counties across the United States and show that it is able to reflect the observed behavior. In 
the “Inferring versus Assuming Initial Conditions” section, we compare CE-EM and a baseline methodology 
in their ability to fit partially observed disease data. Finally, in the “Conclusion” section, we discuss possible 
limitations to the scope of our work, as well as directions for further study.

Background
In this section, we review compartmental SEIRD models, as well as CE-EM, an algorithm for fitting partially 
observed state-space models to data. We also discuss the literature addressing related problems.

SEIRD models.  SEIRD models are mathematical models of the spread of an infectious disease. Every indi-
vidual in a population is in one of five states—they are either susceptible (S) to the disease, exposed (E) to the 
disease, infected (I) by the disease, or who have recovered (R) or died (D) from the disease2. In this context, we 
assume an exposed individual is ‘pre-symptomatic’, i.e., they can spread the disease but have not yet tested posi-
tive for it, while infected individuals are symptomatic and have tested positive for the disease. There are numer-
ous extensions to this model2,6,8. For example, a SEIR model typically groups those who have recovered and 
died from the disease into a single state. SEIRD models may also differ in their modeling of reinfection, limited 
testing, or asymptomatic and quarantined individuals.

Compartmental models.  In reality, each individual interacts with only a subset of individuals in the population. 
Thus the spread of the disease ought to be considered as propagating over a social interaction network of sparsely 
connected nodes. However, by introducing this fidelity into the model, the system’s state grows exponentially 
with the number of individuals, and the task of fitting the model to data becomes difficult. A compartmental 
SEIRD model ignores the network structure of a population by assuming that the population is homogeneously 
mixed. That is, we assume that every individual in the population is equally likely to interact with any other 
individual in the population on a given day. By making this assumption, we can dramatically simplify the state of 
the system. We need only track the number of individuals in each disease state, referred to as the compartmental 
populations, and not specific individuals.

We can model the dynamics of the state xt = [St ,Et , It , (RD)t ]
⊤ as the following deterministic system of 

differential equations:
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Here, the parameters βE and βI (referred to as the infection rates) are interpreted as the average number of indi-
viduals that an exposed or infected individual comes in contact with per unit time, multiplied by the probability 
that the contact results in disease transmission, respectively. The parameter γ specifies the average number of 
exposed individuals who transition to the infected state, per unit time, and � specifies the average number of 
infected individuals who recover or die, per unit time. We define infected individuals to be those who have 
tested positive for the disease, and thus γ−1 is the average amount of time it takes for someone who contracted 
the disease to test positive for it. The recovered-deceased (RD) compartment includes both individuals who have 
truly recovered from the disease and those who have died from it. Hence, �−1 is the average amount of time it 
takes for someone to no longer be infectious after having tested positive, as a result of recovery or death. If we 
assume a fixed mortality rate µ for the disease, then we can compute the number of individuals who have died 
from the disease as Dt = µ(RD)t , and those who have recovered from it as Rt = (1− µ)(RD)t.

The above framing describes a deterministic dynamical system. There are many methods for framing com-
partmental SEIRD systems using stochastic differential equations9, and one such formulation will be discussed 
in the “Methodology” section.

It is worth noting the various effects not modeled here. In this model, we do not account for individuals who 
never develop symptoms. Furthermore, this model assumes an individual’s infectiousness changes when they 
test positive—the truth of which may depend on the delays experienced with RT-PCR testing. SEIRD models 
can be extended to account for these effects, though such extensions may introduce more parameters and not 
be identifiable from the available data.

It would be straightforward to learn the parameters θ = [βE ,βI , γ , �,µ] from data if we could directly observe 
the compartmental populations. However, the available data is typically only of the aggregate transitions from 
the E compartment to the I compartment, when individuals test positive for the disease, and aggregate transi-
tions from I to R, when individuals recover from or die due to the disease. As a result, estimation of θ must be 
performed under partial observability. Methods for doing so, including CE-EM, will be discussed next.

Certainty‑equivalent expectation maximization.  Suppose we seek to find the parameters of the fol-
lowing state-space dynamical system:

Here, xt is the state of the system, fθ (t, xt) is a parameterized model of the dynamics, wt is an additive process 
noise term, and pw is the distribution from which wt is sampled. Furthermore, yt is an observation of xt , hθ (t, xt) 
is a parameterized observation model, vt is the observation noise term, and pv is the distribution from which vt 
is sampled. In a nonlinear Gaussian system, pw and pv are multivariate Gaussian distributions.

Methods for parameter estimation typically attempt to quantify the likelihood p(y1:T | θ) of a time-series of 
observations y1:T given some choice of parameters θ . A set of methods called approximate Bayesian computing 
(ABC) use this estimate to characterize the Bayesian posterior p(θ | y1:T ) using approximate methods such as 
Markov Chain Monte Carlo10,11. Maximum-likelihood (MLE) methods attempt to find the likelihood maximizing 
parameters θML = argmax

θ

p(y1:T | θ) . Both methods rely on being able to estimate the data likelihood p(y1:T | θ) 

with low-variance.
In order to estimate the data likelihood, we must marginalize over the unobserved states of dynamical system:

Many approaches to fitting SEIRD models to data assume known initial conditions x1 when estimating p(y1:T | θ)
5,6,12. Key drawbacks to such approaches are their sensitivity to the choice of x1 , as well as a degradation in their 
ability to find global optima if being fit to long time-series. Since computing this expectation is generally intrac-
table without knowing initial conditions and for long time-series, many approaches instead find the posterior 
distribution over states, i.e. p(x1:T | y1:T , θ) , and then approximate quantities of interest using Monte-Carlo 
samples13.

In a subset of MLE methods, the smoothing distribution p(x1:T | y1:T , θ ) is used to estimate the joint data 
log-likelihood:

The function Q(θ , θk) is then maximized to yield θk+1 , and this two-step procedure is repeated until convergence 
in an algorithm called Expectation-Maximization (EM)14. Such approaches overcome the need to precisely know 
x1 and can straightforwardly handle long time-series4.

Various algorithms differ in how they compute the smoothing distribution. ParticleEM uses particle smooth-
ing, an approach that uses sequential Monte-Carlo to approximately sample from the smoothing distribution13,15. 

(1)
d

dt







S
E
I
RD






=









−

�

βE
StEt
N + βI

St It
N

�

βE
StEt
N + βI

St It
N − γE

γE − �I
�I









.

(2)
xt+1 = fθ (t, xt)+ wt; wt ∼ pw(·),

yt = hθ (t, xt)+ vt; vt ∼ pv(·).

(3)p(y1:T | θ) =

∫

p(y1:T , x1:T | θ) dx1:T .

(4)Q(θ , θk) = Ex1:T∼p(·|y1:T ,θk)

[

log p(y1:T , x1:T | θ)
]

.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17905  | https://doi.org/10.1038/s41598-021-97260-0

www.nature.com/scientificreports/

Though this approach makes very few assumptions, it can require a prohibitive number of Monte-Carlo samples 
to yield sufficiently low variance estimates of Q(θ , θk).

The Certainty-Equivalent EM (CE-EM) algorithm makes the approximation that p(x1:T | y1:T , θ) can be 
modeled by a Dirac-delta function located at the smoothing distribution’s mode4. In the case where pw(·) and 
pv(·) are Gaussian distributions, the assumptions made allow CE-EM to find an estimate for θML using block-
coordinate ascent. By doing so, CE-EM finds solutions with significantly higher efficiency and lower variance 
than other estimation procedures4. However, by making this approximation, the algorithm is known to be biased 
in the presence of large process noise.

In this work, we propose using CE-EM to fit SEIRD models, including our proposed extension to available 
county-level data. As one might expect, such an approach should yield inaccurate results if the disease progres-
sion is highly stochastic, or poorly modeled by a compartmental model. However, we will show that even when 
fitting a single model to data from six counties with diverse epidemics, simulations from the model appear to 
reflect reality.

Related work.  Since the dawn of the COVID-19 pandemic, many efforts have been directed at forecast-
ing its evolution, as well as fitting modified SEIR models to specific outbreaks16,17. Approaches vary in their 
characterization of the model, assumptions made, and their methodology for parameter estimation under par-
tial observability. Korolev5 demonstrates issues with the identifiability of the SEIRD model and presents an 
estimation technique for the basic reproduction number R0 . They fit a standard SEIRD model to COVID-19 
data, but assume known initial conditions to address partial observability—an assumption that can only be 
made in restricted settings. He et al.6 use particle swarm optimization to optimize the parameters of a SEIR 
model extended to account for hospitalized and quarantined individuals. Sun and Wang7 fit an extended SEIR 
model that accounts for a threshold in recovery rate, as well as asymptomatic patients. Both of these studies also 
address partial observability by assuming known initial conditions, but only fit to a single, short trajectory of 
data from the Hubei province and Heilongjiang province in China, respectively. Arik et al.8 introduce additional 
data sources such as mobility as covariates to expand the explanatory power of SEIR models, and specify a 
distribution over initial conditions to overcome partial observability. One of the more successful approaches to 
forecasting the early pandemic progression also fit SEIR models with a subset of variables that vary with time12. 
Their approach also assumes a known initial condition and finds parameters by minimizing simulation error. In 
contrast, our methodology does not need to assume knowledge of initial conditions, and instead infers unob-
served states such that they maximize the likelihood of the data.

Recent works18–20 have also attempted to use neural networks to forecast the spread of COVID-19. While 
Wieczorek et al.19 and Melin et al.20 do not use neural-networks to model relationships within a SEIR model, 
Dandekar and Barbastathis18 use them to model a quarantine control function. Similar to other discussed meth-
odologies, they assume initial conditions to overcome partial observability. Yang et al.21 fit both a SEIR model 
with additional compartments, as well as a black-box LSTM to a short time-series of COVID-19 infection data 
from Hubei, China, and compare their forecasting ability. Unlike our model and most other approaches, their 
SEIR model is not fit to the data by attempting to reproduce a time-series, but by linearizing the model around 
certain set points and assuming values for unknown quantities.

The methods mentioned above attempt to fit disease models that assume the population to be in one of many 
disease states, and specify differential equations that govern their rate-of-change. Once model parameters are 
estimated with a dataset, the methods perform forecasts by simulating the estimated disease states forward in 
time. Another approach commonly taken to forecasting the near-term future of a disease outbreak is to use 
statistical methods that directly attempt to predict a given quantity at some future point in time. For example, 
Castillo and Melin22,23 construct a fuzzy model that uses linear and nonlinear fractal dimensions of a time-series 
in order to make forecasts of future cases and deaths. Though such statistical models are useful for forecasting the 
evolution of the disease, they often lack interpretability and behavioral guarantees provided by disease models 
using differential equations to govern transitions between disease states.

To our knowledge, our work is the first to use a neural network to model the relationship between time, preva-
lence, and infection rate, the first to use Certainty-Equivalent EM for the purpose of parameter estimation under 
partial observability, and also the first to fit a single model to multiple time-series from across the United States.

Methodology
This section describes data sources used in this work, the proposed modification to SEIRD models yielding 
R-SEIRD models, the formulation of R-SEIRD models as nonlinear Gaussian systems, and a procedure for fit-
ting these models to available data.

Data sources.  In this work, the primary data source considered is the Novel Coronavirus (COVID-19) 
Cases Dataset, provided by JHU CSSE24, which provides a time-series of daily reported COVID-19 cases and 
deaths for every county in the United States.

R‑SEIRD models.  As stated in the “Introduction” section, we propose to relax the assumption that the infec-
tion rate βE is constant with time. Instead, we model it to be a function of time and the observed prevalence of 
the disease. Specifically, we let:

(5)βE(t) = β̃E · σ

(

NNθ̃

(

t,
It

Nt

))

.
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Here, Nt = St + Et + It + (RD)t is the effective population size at time t, a quantity that we allow to vary with 
time25 and be dynamically inferred during learning. Additionally, It/Nt is the observed prevalence, NNθ̃ is a 
neural network mapping R2 → R , σ(·) is the sigmoid function, and β̃E is a learned coefficient. For simplicity, 
we assume βI = 0 , which implies that the number of infections caused by an individual after they test posi-
tive for COVID-19 is negligible compared to the number of infections prior to them knowing they have the 
disease. Furthermore, since much is now known about the typical duration between exposure and symptom 
onset, and symptom onset and death, we rely on literature to provide estimates of γ and �26,27. Our methodology 
does, however, allow us to treat them as learned parameters. We treat the mortality rate µ as learned, and thus 
θ = [β̃E , θ̃ ,µ] are the learned parameters.

With the modification that βE depends on time, we allow the model to reflect changes in the infection rate 
that may depend on changing behaviors over time, such as climate, and the dominant strain of the virus. With 
the modification that it depends on prevalence, we allow for changes in infection rate in response to the level of 
infection in a county, as well as account for heterogeneous interaction patterns between geographies, that may 
affect the peak infection rates reached in those geographies.

R‑SEIRD as a nonlinear Gaussian system.  In order to effectively learn the parameters of an R-SEIRD 
model using CE-EM, we represent it as a nonlinear Gaussian system. To do so, we must specify the state xt , 
discrete-time dynamics function fθ (t, xt) , observation yt , and observation function hθ (t, xt).

Though the state of a SEIRD system is described by the number of individuals in each compartment, we note 
two facts about these quantities:

•	 The number of individuals in any compartment is a positive quantity, and,
•	 These quantities scale various orders of magnitude24.

For this reason, it is sensible to let the state xt of the system correspond to the logarithm of each compart-
ment’s population as opposed to their absolute value. As a result, applying Gaussian process or observation 
noise to these quantities loosely corresponds to assuming that noise is proportional to the absolute value of the 
quantity it is applied to. Specifically, let the state of the system be xt = log [St ,Et , It , (RD)t ] , and the observation 
be yt = log [�Ct ,�Dt ] . Here, �Ct corresponds to the number of new confirmed cases on day t and tracks the 
total number of individuals that have transitioned from the E to the I compartment, and �Dt corresponds to 
the number of new deaths on day t.

The dynamics and observation models for the R-SEIRD model are then specified as follows:

where βE(t) is computed according to Equation 5. The process noise covariance �w and observation noise 
covariance �v are hyperparameters that can be chosen to be identity or diagonal matrices scaled by σ 2

w and σ 2
v  

respectively. Integration is performed using a Runge-Kutta method28.
Since the parameters β̃E and µ are positive, we optimize their logarithms as opposed to their absolute values. 

Framed as a nonlinear Gaussian system, the R-SEIRD model can straightforwardly fit a batch of observation time-
series from multiple counties simultaneously by using CE-EM4. To improve fit reliability and eliminate periodic 
drops from weekends, we apply a 7-day moving average filter to daily case and death data before fitting to them.

In our experiments, we fit the R-SEIRD model to data from six counties in the United States exhibiting diver-
sity in how COVID-19 has spread, and show that it is capable of expressing this diversity.

Experiments
In this section, we first perform an experiment to fit SEIRD and R-SEIRD using CE-EM to COVID-19 data from 
counties across the United States. In a second experiment, we generate simulated data to compare the use of 
CE-EM and a baseline methodology in their ability to fit partially observed disease data.

Fitting COVID‑19 epidemics across The United States.  Our experiment aims to achieve the follow-
ing goals: 

1.	 Fit a single R-SEIRD model to data from a variety of counties across the United States,
2.	 Show that the learned model, when simulated with realistic initial conditions, can reproduce observed 

behavior, and,
3.	 Justify the modifications to the SEIRD model by showing that the mean squared error (MSE) of simulations 

under the R-SEIRD model is much lower than that of a fit SEIRD model.
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To achieve these goals, we fit models to data from three counties in the northeast of the United States (Middlesex, 
MA, Kings, NY, and Fairfield, CT), as well as three counties across the United States that have had diverse epidem-
ics (Los Angeles, CA, Miami-Dade, FL, and Cook, IL). We consider data from February 22, 2020, to September 
27, 2020, because during this period, the counties in the northeast exhibit single, clear peaks in infection, though 
the remaining counties exhibit multiple peaks. The remaining worst-hit counties in each of the United States 
compose a test-set to evaluate the model.

We fit both an R-SEIRD model and a standard SEIRD model (where we learn just the constant parameters βE 
and µ ) to data from these six counties, and then attempt to see if the learned models can reproduce the behavior 
of all six counties, as well as of counties not trained on, from appropriate initial conditions. We visually compare 
simulations on select counties to show that deterministic simulations of the R-SEIRD system can express multiple 
peaks while those of a SEIRD system cannot. We also visualize the learned relationship between time, prevalence, 
and infection rate, to provide an intuition for how the model can express such behavior. We then compare the 
MSE of simulations from both learned models on the worst-hit county of each of the United States (not in the 
training set), showing that simulation error is much lower when using the R-SEIRD model. The codebase for 
running these experiments can be found at https://​github.​com/​sisl/​rseird.

Experimental setup.  Here we detail the hyperparameters used when training the R-SEIRD and SEIRD 
models, the methodology for selecting appropriate initial conditions for states when evaluating the models, as 
well as metrics for evaluation.

Hyperparameters.  When learning the R-SEIRD model or SEIRD model, we specify the values of γ and � . 
The literature suggests that the median time from exposure to developing symptoms is five days27 and that the 
median time between symptom onset and recovery is 21 days26. As a result, we let γ = 1/5 and � = 1/21 . We 
let σw = σv/10 , assuming that corruptions to observations are an order of magnitude noisier than corruptions 
to the process. Furthermore, we let the observation noise on deaths be double that on cases, since reporting is 
typically noisier when the number of deaths is small. The neural network used in the R-SEIRD model has three 
hidden layers with 32 hidden units each and tanh activation functions. Both models are optimized in the CE-EM 
learning step using an Adam optimizer with a learning rate of 5× 10−4 , which is harmonically decayed over 
time, and CE-EM trust-region parameters of ρx = 0.5 and ρθ = 0.014. We additionally smooth the observed 
data using a 7-day moving average filter to smooth high-frequency noise, including the expected drop in cases 
over weekends.

Initial condition selection.  When evaluating learned models, partial observability makes it such that we do 
not know the initial conditions (i.e., the number of individuals in each disease compartment) to simulate the 
models from. Related work often assumes the population is almost completely unexposed at t = 1 , and assumes 
the susceptible population is a community’s true population6. However, as stated in the “Methodology” section, 
we allow the population size to be determined by the sum of the compartmental population, and therefore be 
a free parameter. Doing so is necessary because, for trajectories in our dataset, it is unreasonable to assume the 
population is initially unexposed.

For these reasons, we optimize for the initial conditions from which deterministically simulated trajectories 
minimize the MSE of the observed number of daily cases. We optimize the initial conditions by using the Cross-
Entropy Method29, selecting the top 100 candidates at each epoch, perturbing each candidate to generate 1000 
candidates for the next epoch, and running the optimizer for 10 epochs.

Evaluation metrics.  When selecting initial conditions, we measure the MSE between the log of the daily cases 
in simulation (i.e., log(γEt) ), and reality (i.e., log�Ct ), and use the distribution over this metric to compare the 
R-SEIRD and standard SEIRD models. We compare histograms of these errors on data from counties not in the 
training set.

Results.  In Fig. 1, we see the simulated number of cases from optimized initial conditions for the six counties 
on which the R-SEIRD model was trained. As is clearly seen, the model can express both a single clear peak 
present in the northeastern counties and the multiple irregular peaks present in the other counties. Since the 
simulations are deterministic, they are smooth and only approximately reflect the trends in the trajectories they 
are supposed to match.

In contrast, and consistent with expectation, a SEIRD model, even when fit to the same data and simulated 
from optimized initial conditions, cannot reflect the multiple peaks in the training data. Furthermore, in an 
attempt to fit the multi-peak behavior in three counties, the fit is severely compromised in counties with a single, 
clear peak.

In Fig. 2, we compare the learned R-SEIRD and SEIRD models on three hard-hit counties not in the train-
ing set. Again, the SEIRD model cannot express more than a single peak, and thus cannot capture the behavior 
reflected in reality. Despite not being trained on data from these counties, the R-SEIRD model is, however, able 
to reflect the double-peaks seen in the data, which vary in onset and magnitude.

We quantify the difference in simulation quality by measuring the MSE between the simulations (from 
optimized initial conditions) with the observed trajectories. In Fig. 3, we show a histogram of these errors for 
simulations on the worst-hit county of each of the United States (not in the training set). Consistent with the 
improvement visible in Fig. 2, we see that the MSE of simulations by the learned R-SEIRD model is significantly 
lower than that of the SEIRD model.

https://github.com/sisl/rseird
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To gain an intuition for how the R-SEIRD model is able to express multiple irregular peaks, we visualize 
the learned mapping between time, the prevalence of the disease ( It/Nt ) and the basic reproduction number 
R0 = βE(t, It/Nt)/γ , which indicates a growing epidemic for values greater than 1. In Fig. 4, we see the learned 
mapping, which suggests that βE decreases initially as prevalence increases, up until a point, after which it begins 
to surge again before decreasing. This behavior would be consistent with a two-tiered response, in which weak 
restrictions were adopted until they lost effect, and then stronger restrictions were imposed. Over time, we see 
that βE begins to require larger prevalence levels to decay and bring R0 below one, suggesting that communities 
are growing more reluctant to adopt the weak restrictions when infection rates are low.

Inferring versus assuming initial conditions.  Our second experiment aims to compare CE-EM with 
a baseline methodology that assumes known initial conditions, for fitting compartmental models to partially 
observed data. Specifically, we aim to show that: 

1.	 CE-EM more accurately estimates the values of unobserved quantities, such as the number of exposed and 
infected individuals at a given time, and,

2.	 Estimating the effective population size with CE-EM leads to better fits to the data than by assuming its value.

To do so, we simulate a disease spreading through a population of sparsely connected individuals, but only 
partially observe the aggregated disease states of the population. We then attempt to fit a compartmental SEIRD 

Figure 1.   Simulations of the learned R-SEIRD and learned SEIRD systems on the six counties the models are 
trained on. The trajectory in blue is the 7-day moving average of observed daily confirm cases. These results 
demonstrate the expressiveness of our model. In particular, our model (orange) is able to track observed disease 
progression (blue) much closer than the canonical SEIRD model (green). In addition, it is able to identify the 
observed multiple peak behavior for which SEIR is not designed to capture. These results are consistent across 
diverse geographic areas of US.

Figure 2.   Simulations of the learned R-SEIRD and learned SEIRD systems on the three counties the models 
are not trained on. The trajectory in blue is the 7-day moving average of observed daily confirm cases. These 
results demonstrate the generalizability of our model against unseen data. We show representative results across 
different geographic regions of how our model can more accurately predict the different signatures of disease 
progression. Note that the SEIRD model consistently under-estimates the prevalence of disease spread, which 
has significant implications for policy-making decisions on the severity of intervention.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17905  | https://doi.org/10.1038/s41598-021-97260-0

www.nature.com/scientificreports/

model to the observed data using both CE-EM and a baseline methodology. We demonstrate that CE-EM is bet-
ter at recovering unobserved states than the baseline methodology, and produces a better quality fit to the data.

Baseline methodology.  We baseline against a common approach5,6,8,12 that assumes the initial conditions of 
unobserved state-variables are known, which we refer to as the Fixed Initial Condition (FIC) baseline. Specifi-
cally, we let x̃1 be the assumed initial condition, and let θ be the parameters of a deterministic compartmental 
disease model xt+1 = fθ (xt), yt = gθ (xt) . We can forward-simulate the initial conditions according to the dis-
ease model to yield a state-trajectory x̃θ1:T , and observation-trajectory ỹθ1:T = gθ (x̃

θ
1:T ) . We can then define a loss:

and minimize the loss with respect to θ.
To overestimate the performance of the FIC baseline methodology, we provide the baseline methodology 

with the exact initial condition of the unobserved disease state. Furthermore, L(θ) is nonconvex, and thus we 
optimize the objective using Differential Evolution to explore more of the space for a global optimum.. It is pos-
sible to use a global optimizer on this problem because the dimensionality of θ is low.

Simulated data.  To generate simulated diseases data, we consider a population in which individuals are 
sparsely connected to one another. We generate this graph by sampling the ‘locations’ of 10,000 individuals as 
random points on a unit square. We then assign an edge between two individuals i and j with a probability that 

(8)L(θ) = �ỹθ1:T − y1:T�
2
2

Figure 3.   Comparison of prediction errors between R-SEIRD and SEIRD for the epidemic in the worst-hit 
county of each of the United States. We observe the errors of our model are substantially smaller than the 
canonical SEIRD model.

Figure 4.   The learned mapping between time, prevalence, and the infection rate. The infection rate is 
represented by the R0 value and represented by the intensity of the color, with higher values reflecting more a 
infectious disease. This analysis aids to the interpretability of the deep learning model. It can lead to meaningful 
insights about potential intervention strategies.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17905  | https://doi.org/10.1038/s41598-021-97260-0

www.nature.com/scientificreports/

exponentially decays with the distance between them. In this experiment, individuals have an average of 6.126 
connections between them.

Individuals in the population can each be in one of five states: susceptible (S), exposed (E), infected (I), 
recovered (R), or dead (D). At a given instant in time, a susceptible individual becomes exposed with probability:

where N (i) is the set of individuals that individual i is connected to, and E(j) is 1 if individual j is exposed, and 
otherwise 0. Furthermore, every exposed individual transitions to the infected state with probability γ , and 
every infected individual to the recovered state with probability �(1− µ) , and to the dead state with probability 
�µ . We simulate an outbreak initialized with 1% of randomly chosen individuals in the exposed state, and the 
remainder in the susceptible state. We let βE = 0.06, γ = 1/5, � = 1/21 and µ = 0.1 , and we simulate 175 days 
of the outbreak. At every time-step, we observe only the number of individuals who have transitioned from the 
E to I compartment, and the number who have transitioned from the I to D compartment.

In Fig. 5, we see both a depiction of the graph connecting the population, and the aggregated number of 
individuals in each disease state over the course of the simulation. Since the population is sparsely connected 
(which is a realistic property of observed interaction networks), only ∼ 30% is ever infected with the disease.

Results.  In Fig. 6, we show the aggregated number of exposed and infected individuals over the course of the 
simulation. These two quantities are not directly observed during training, and are thus estimated by the com-
pared algorithms. Overlaid on these trajectories are the trajectories estimated by CE-EM and the FIC baseline 
methodology. We see that the trajectories estimated by CE-EM almost perfectly align with the ground truth in 
their shape, peak location, and peak magnitude. Those estimated by the FIC baseline methodology, however, 
align poorly with the ground truth.

We quantitatively compare the mean-square-error (MSE) of predicted observations to those observed during 
the simulation. We predict observations using the models learned by each method and the states estimated by 
each learning methodology. We find that the MSE of predicted observations is 0.046 when using CE-EM and 
0.241 when using the FIC baseline methodology.

The qualitative and quantitative comparisons between these methods show that CE-EM more accurately 
estimates the values of unobserved quantities, such as the number of exposed and infected individuals at a given 
time. They also show that estimating the effective population size instead of assuming its value, CE-EM leads to 
better fits to the data than by using the FIC baseline methodology.

Conclusion
In this work, we proposed an extension to the compartmental SEIRD model that relaxes the assumptions of static 
model parameters and non-reactivity to disease prevalence called the R-SEIRD model. We did so by training a 
neural network to map the time and the prevalence of the disease to the infection rate. In order to fit available 
data, we employed Certainty-Equivalent Expectation-Maximization (CE-EM), which is a technique suited to 
fitting nonlinear Gaussian state-space models to data without direct observation of the system’s state variables, 
and does not assume knowledge of the system’s initial conditions. We provided a methodology for framing the 
R-SEIRD model as a nonlinear Gaussian system, and for fitting it to available data on daily confirmed cases and 
deaths.

(9)pS→E
i = 1− (1− βE)

∑

j∈N (i) E(j),

Figure 5.   (Left) Depiction of the graph connecting the population, and the individuals infected or left 
uninfected over the course of the simulation. (Right) Aggregated numbers of individuals in each disease state 
over the course of the simulation. We see that due to the network’s sparsity, the disease only propagates through 
a subset of the population, affecting just ∼ 30% of individuals.
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Our experiments fit both the R-SEIRD and standard compartmental SEIRD models to data from six coun-
ties across the United States. We showed that the R-SEIRD model learned is capable of expressing the range of 
multi-peak behavior exhibited not only in the training data, but also on counties not trained on. We showed 
quantitatively that the simulation error when trying to reproduce the behavior of the worst-hit counties in the 
United States is much lower when using the R-SEIRD model compared to the standard SEIRD model. We fur-
ther justify the use of CE-EM as a methodology for fitting compartmental disease models in partially observed 
settings by showing it achieves better fits to simulated data than baseline methodologies that assume initial 
conditions are known.

This work showed that by allowing the infection rate to be time-varying and reactive, that the much more 
complex behaviors exhibited by the epidemic across the United States can be recovered. However, we do not 
suggest that the R-SEIRD model definitively explains why a given outbreak progressed the way it did, but instead 
proposes a hypothesis that is consistent with observations. To come closer to a definitive explanation, we must 
depart from another assumption made by both standard compartmental SEIRD and R-SEIRD models—that 
of homogeneous mixing. By explicitly modeling the observed heterogeneous social interaction patterns in a 
county’s population, we gain the capacity to account for super-spreading individuals, as well as non-uniform 
population densities.

In follow-on work, we propose a SEIRD model that accounts for the network structure of a community and 
an estimation procedure for fitting it to data. With such a model, we gain another explanatory tool to analyze the 
diversity in outbreaks and a model that can be used to evaluate localized containment strategies at a community 
level. We intend to expand on the ideas behind CE-EM by using probabilistic programming to perform inference 
in network-based epidemiological simulations, thereby explicitly modeling the dependence on known interaction 
patterns. Additionally, we intend to apply these methodologies to outbreaks in other parts of the world, which 
might differ substantially from the United States in climate, cultural norms, disease variants, and containment 
measures. While R-SEIRD is flexible enough to be directly applied to aggregated data from any locality, certain 
regions may warrant the relaxing of assumptions beyond that which is done in this work. In a future study, we 
seek to understand which regions of the world sufficiently share characteristics with the United States, so that 
we may use a single model to explain behavior across regions.

Data availability
The datasets generated and/or analyzed during the current study are available in the COVID-19 Data Repository 
by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (https://​github.​com/​
CSSEG​ISand​Data/​COVID-​19)24.
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