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A novel method for peanut variety 
identification and classification 
by Improved VGG16
Haoyan Yang1, Jiangong Ni2, Jiyue Gao2, Zhongzhi Han2* & Tao Luan1*

Crop variety identification is an essential link in seed detection, phenotype collection and scientific 
breeding. This paper takes peanut as an example to explore a new method for crop variety 
identification. Peanut is a crucial oil crop and cash crop. The yield and quality of different peanut 
varieties are different, so it is necessary to identify and classify different peanut varieties. The 
traditional image processing method of peanut variety identification needs to extract many features, 
which has defects such as intense subjectivity and insufficient generalization ability. Based on the 
deep learning technology, this paper improved the deep convolutional neural network VGG16 and 
applied the improved VGG16 to the identification and classification task of 12 varieties of peanuts. 
Firstly, the peanut pod images of 12 varieties obtained by the scanner were preprocessed with gray-
scale, binarization, and ROI extraction to form a peanut pod data set with a total of 3365 images of 12 
varieties. A series of improvements have been made to VGG16. Remove the F6 and F7 fully connected 
layers of VGG16. Add Conv6 and Global Average Pooling Layer. The three convolutional layers of 
conv5 have changed into Depth Concatenation and add the Batch Normalization(BN) layers to the 
model. Besides, fine-tuning is carried out based on the improved VGG16. We adjusted the location of 
the BN layers. Adjust the number of filters for Conv6. Finally, the improved VGG16 model’s training 
test results were compared with the other classic models, AlexNet, VGG16, GoogLeNet, ResNet18, 
ResNet50, SqueezeNet, DenseNet201 and MobileNetv2 verify its superiority. The average accuracy 
of the improved VGG16 model on the peanut pods test set was 96.7%, which was 8.9% higher than 
that of VGG16, and 1.6–12.3% higher than that of other classical models. Besides, supplementary 
experiments were carried out to prove the robustness and generality of the improved VGG16. The 
improved VGG16 was applied to the identification and classification of seven corn grain varieties with 
the same method and an average accuracy of 90.1% was achieved. The experimental results show that 
the improved VGG16 proposed in this paper can identify and classify peanut pods of different varieties, 
proving the feasibility of a convolutional neural network in variety identification and classification. 
The model proposed in this experiment has a positive significance for exploring other Crop variety 
identification and classification.

Peanut is one of the essential oil and economic crops globally, rich in nutrition and widely planted. The USDA 
forecasts World peanut production for 2020/21 at 47.79 million tons, of which China peanut production at 17.50 
million  tons1. The yield and quality of different peanut varieties are different. The identification of peanut varie-
ties is an essential step in detecting seeds, phenotype collection and peanuts’ scientific breeding. Peanut pod is 
the fruit of peanut and the morphological characteristics are an essential organ for testing DUS traits of peanut 
 varieties2. The previous peanut variety identification work mainly includes two aspects: manual measurement and 
biochemical detection. However, the manual measurement of peanut pod variety identification has disadvantages 
such as slow identification speed, low accuracy and intense subjectivity, and the biochemical detection of peanut 
pod variety identification has disadvantages such as high cost and poor  timeliness3. Therefore, there is an urgent 
need for a more accurate, economical and intelligent peanut variety identification method.

In recent years, research on crops based on image processing technology has made some progress and has 
been widely applied to many crops such as  rice4,  wheat5,  soybean6. The application of image processing technol-
ogy to peanut identification can effectively improve work efficiency and precision. Deng and  Han7 used Fisher 
feature selection, SVM classification and K-means clustering analysis to extract five categories of 37 features 
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from peanut pods and achieved 92.5% identification accuracy on the SVM model, and this work proved the 
feasibility of image processing techniques applied to peanut pod variety identification. Han et al.8 by extracting 
peanut kernels image morphology, texture, color appearance three classes, a total of 54 characteristics, using 
principal component analysis (PCA) for feature optimization and the neural network (ANN) and support vector 
machine (SVM) is used to identify the quality of peanut kernels, eventually be able to identify more than 95% of 
the imperfect, mildew, impurity, different varieties of different qualities, such as grain, the work will be success-
ful image processing technology to broaden in the field of peanut quality. Yuan et al.9 use compose a specular 
like technology to obtain the health peanuts and mildew peanuts two kinds of image and USES support vector 
machine (SVM), partial least squares discriminant analysis (PLS-DA) soft pattern classification has nothing to do 
with clustering classifier (SIMCA) integrated classifier to classify, with 97.66% accuracy works to achieve the set 
highlights like technology application in peanut mildew prediction work. Traditional image processing methods 
have achieved some peanut identification achievements, but they need to extract many features in their work, 
which have defects such as intense subjectivity and insufficient generalization ability. Therefore, new technology 
is needed for intelligent feature extraction and classification of images.

Deep learning is a machine learning technology that has developed rapidly in recent years. It has become 
the essential tool for data processing in computer vision work and has been widely applied in many fields such 
as agricultural product  classification10, synthetic speech  recognition11, animal behavior  analysis12, sensor signal 
 recognition13 and COVID-19  detection14,15. The convolutional neural network (CNN) is a feedforward neural 
network that includes convolutional computation and has a deep structure, it is one of the main architectures 
of deep  learning16,17. The convolutional neural network can automatically extract image features by simulat-
ing the biological vision mechanism. In the process of image identification, it can complete complex feature 
 extraction18,19. Based on the deep learning method, the convolutional neural network is used to extract features 
and classify them in the peanut identification and classification task, which can often achieve good identifica-
tion results. Zhang et al.20 used the neural network models AlexNet, GoogLeNet and the improved AlexNet to 
classify and recognize the five peanut pods’ five levels, finally achieving an identification accuracy of 95.43%. 
Based on deep learning technology, Liu et al.21 used a convolutional neural network to recognize and classify 
hyperspectral images of healthy peanuts, damaged peanuts, and moldy peanuts and achieved an accuracy of 
92.07%. In these works, the researchers have successfully used deep learning techniques to classify peanuts’ qual-
ity and grade, But their study neglected to apply these new techniques to identify and classify peanut varieties. 
This paper will fill the gap.

This paper, based on deep learning technology, Brings some novel improvements to VGG16. Remove the 
F6 and F7 fully connected layers of VGG16. Add Conv6 and Global Average Pooling Layer. The three convolu-
tional layers of conv5 are changed into Depth Concatenation. Then, add The BN layers to the model. Besides, 
fine-tuning is carried out based on the improved VGG16. We adjusted the location of the BN layers. Adjust the 
number of filters for Conv6. The advantages and characteristics of the improved VGG16 model are analyzed, 
and the influence of different network improvement methods on the training effect is compared. Finally, the 
improved VGG16 model’s test effect on the peanut pod data set was compared with other classical models to 
verify its superiority. The improved VGG16 model was applied to the identification and classification of seven 
maize varieties, in the same way, the supplementary experiments were carried out to prove the robustness and 
versatility of the improved VGG16 model.

The remainder of the paper is structured as follows: “Materials and methods” section introduces the experi-
mental materials and methods. “Results and analysis” section makes a detailed analysis of the experimental 
results. “Discussion” section discusses some problems encountered in the research process. Finally, “Conclusions” 
section summarizes the research.

Materials and methods
Materials. Peanut sample preparation. A total of 12 peanut varieties were used in the experiment, all of 
which were retained by farmers. The experimental peanut collection areas mainly include Hebei, Qingdao, 
Rizhao and Laiyang of Shandong. Peanut varieties are mainly large peanut varieties in north China. The peanut 
samples were all healthy and undamaged peanuts. The names and origins of the 12 varieties of peanuts are shown 
in Table 1.

Image acquisition system. A scanner was used to collect peanut pod images. When using the scanner, the scan-
ner’s cover plate is fully open to scanning background black. During image collection, the peanut is uniformly 

Table 1.  Experimental materials for peanut variety identification.

Code Variety Source Code Variety Source

1 101 Huasheng Laiyang 7 Qinghua 6 Laiyang

2 Huayu 22 Laiyang 8 Tianfu 3 Hebei

3 Huayu 25 Laiyang 9 Yihua 2 Hebei

4 Lainong 13 Laiyang 10 Yihua 4 Hebei

5 Luhua 9 Rizhao 11 Yihua 5 Hebei

6 Luhua 11 Qingdao 12 Zhongnong 108 Hebei
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placed on the scanner in a fixed order for image scanning. The peanut pod image obtained by the scanner is 
transferred to the computer for further image processing. The schematic diagram of the peanut pod image 
collection is shown in Fig. 1. The scanner used in the experiment is Canon Canoscan 8800F, flat CCD scanner, 
optical resolution of 4800 dPix9 600 dpi; The maximum resolution is 19,200 dpi and the scanning range is 216 
MMX 297 mm. The computer used to store the images was a Lenovo IdeaCentre Kx 8160.

Methods. Data preprocessing. To generate individual images of 12 varieties of peanut pods, it is necessary 
to preprocess the images of peanut pods obtained by the scanner. The image segmentation process is shown in 
Fig. 2. Figure 2a is the original image of the peanut output from the scanner. Figure 2b is obtained after gray 
processing of the original image. The binarization image is obtained by image binary processing, expansion and 
threshold segmentation, as shown in Fig. 2c. ROI extraction was carried out. By retrieving the contour of the 
connected region, the area of the connected region was obtained. The contour box of a single peanut pod was 
selected to get Fig. 2d. Finally, the single peanut pod selected in the box is mapped to the original image and the 
single peanut pod image is extracted and stored.

By the above image segmentation method, all the images of peanut pods of 12 varieties obtained by the scan-
ner were segmented into single images and stored in 12 categories according to the species. The single images of 
peanut pods of 12 varieties obtained are shown in Fig. 3.

Through image segmentation processing, 12 varieties of 3365 images of peanut pods data set were received. 
To meet the requirements of deep learning training, the peanut pods data set according to the proportion of 
8:1:1 were randomly divided into the training set, validation set and test set. Twelve varieties of peanut pods are 
divided into 12 categories, and each type of uniform distribution gets peanut pod identification data set. Finally 
completed the identification of peanut pod data sets is shown in Table 2.

Network improvement. Convolutional Neural Network (CNN) improves BP Neural Network, which is often 
used in computer vision tasks due to its ability to represent local operations’ abstract hierarchical  representation22. 
The network model comprises the convolutional layer, the Pooling layer and the fully connected layer. The con-
volutional layer comprises several convolution units, and the backpropagation algorithm optimizes each convo-
lution unit’s parameters. The function of the convolutional layer is to extract various features of the input image. 
The Pooling layer is an integral part of the convolutional neural network. It is to de-sample the data. Its function 
is to reduce the amount of data to be processed at the next layer, reduce the number of parameters and prevent 
network overfitting. Each neuron in the fully connected layer is fully connected with all neurons in the previous 

Figure 1.  The workflow of peanut image collection.

Figure 2.  The workflow of peanut image segmentation.
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layer and the fully connected layer can integrate local information with category discrimination in the convolu-
tional layer or pooling layer.

VGG16 is a convolutional neural network model developed by the Visual Geometry Group (VGG) of the 
University of Oxford and the winner of the 2014 ILSVRC object identification  algorithm23. The critical work of 
VGG16 is to demonstrate that extending the depth of the network can improve the performance of the network 
in certain situations. Compared with the classic AlexNet, VGG16’s improvement lies in the use of multiple 3 × 3 
convolution cores to replace the larger convolution cores (11 × 11, 7 × 7, 5 × 5), which can broaden the depth of 
the network to improve the network performance effectively, and the use of smaller convolution cores can also 
reduce the number of network parameters. The VGG16 network model comprises 13 convolutional layers, three 
fully connected layers and five pooling layers.

VGG16 continues the characteristics of the classical network’s simple structure, expands the network’s depth 
through the flexible use of 3 × 3 convolution and successfully improves network performance. However, the 
VGG16 model also has some drawbacks in the application. First, the fully connected layer has many parameters, 
which occupy much memory and consume many computing resources, making the VGG16 model encounter 
obstacles in the front-end deployment. Secondly, the network model structure is single, and its performance is 
weak compared with some sophisticated advanced networks. Moreover, VGG16 lacks an effective method to 
prevent gradients’ disappearance and problems such as slow convergence speed and gradient explosion are likely 
to occur in the model’s training. Aiming at the defects of the VGG16, this paper improved the VGG16 model by 
drawing on advanced network models such as ResNet, SqueezeNet and DenseNet. The improved VGG16 model 

Figure 3.  Images of 12 peanut varieties.

Table 2.  Peanut pod identification data set.

Code Label Train set Validation set Test set Total

1 101 Huasheng 234 29 29 292

2 Huayu 22 234 29 29 292

3 Huayu 25 228 29 29 286

4 Lainong 13 228 29 29 286

5 Luhua 9 224 28 28 280

6 Luhua 11 115 14 14 143

7 Qinghua 6 238 30 30 298

8 Tianfu 3 240 30 30 300

9 Yihua 2 239 30 30 299

10 Yihua 4 238 30 30 298

11 Yihua 5 233 29 29 291

12 Zhongnong 108 240 30 30 300

0 All 2691 337 337 3365
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consists of 14 convolutional layers, five BN layers, six pooling layers and one fully connected layer. The network 
structures of VGG16 and Improved VGG16 are shown in Fig. 4.

The main improvement methods of the improved VGG16 model are as follows.
Remove the F6 and F7 fully connected layers of VGG16. Add Conv6 and Global Average Pooling Layer(GAP). 

The two fully connected layers FC6 and FC7, in the VGG16, willfully connect each neuron with all the neurons 
in the previous layer, thus generating a considerable number of parameters and occupying many computing 
resources. Therefore, these two fully connected layers need to be discarded. GAP is a new idea proposed by M. 
Lin et al. (2014), which can replace the fully connected layer, and it has been proved by experiments that GAP 
can reduce the number of parameters, the amount of calculation and the amount of overfitting in the  model24. 
GAP can calculate the mean value of the pixel points in each feature map, output a feature point, and fuse these 
feature points into feature vectors and input them to the Softmax layer, thus reducing the number of parameters, 
the amount of calculation and the over-fitting. Besides, GAP can output a feature graph for each category, which 
directly endows features with real meaning and connects each category and feature graph more intuitively. As 
more and more researchers have confirmed GAP’s function, many advanced network models, such as Goog-
LeNet, ResNet, SqueezeNet and DenseNet, have introduced a GAP.  SqueezeNet25 added a convolutional layer 
with a convolution kernel size of 1 × 1 before the GAP to balance input and output channel size. This operation 
again reduced the number of parameters and computation in the model and significantly accelerated the speed. 
Therefore, in this paper, a convolutional layer Conv6 with a convolution kernel size of 1 × 1 was placed in front 
of the added GAP to optimize the model further. The number of filters on the model performance was analyzed 
by setting various filters (128/256/512) during model construction.

Conv5 of the VGG16 network model was changed to a deeply tandem group. VGG16 model continues the 
simple network structure of classical models such as Lenet5 and AlexNet. Although the network depth has been 
further expanded to improve the performance, compared with some sophisticated advanced networks, the 
network model structure is single and the model complexity is too low, making it challenging to deal with some 
complex tasks. In this paper, using the Inception structure of  GoogLeNet26 for reference, the three convolutional 
layers of the VGG16 network model Conv5 are transformed into a deeply tandem group. In this structure, the 
upper of the input characteristics will all pass to each convolutional layer. It will not produce the wastage of the 
decreasing step by step, and This can increase the complexity of the model to a certain extent and improve the 
width of the network, make conv5 learn more characteristics, improve the identification accuracy of the network 
and have the effect of model optimization. The improved Conv5 is shown in Fig. 5.

Add the BN layers. Batch Normalization process refers to pulling the input values in neural network neurons 
back to the standard normal distribution, where the mean is 0 and the variance is 1. This operation will place the 
input values in the input-sensitive areas of non-linear function pairs. In this way, small changes in the input value 
can substantially impact the loss function, and the gradient can be increased to prevent the problem of gradient 
disappearance. Besides, the convergence speed and training speed of the model can be significantly accelerated. 
The Batch Normalization  algorithm27 is as follows:

Figure 4.  Network structure diagram of VGG16 and Improved VGG16.
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Batch input m samples: x1 ∼ xm , then the mean value of batch data µ as:

Calculate the variance of batch data σ 2 as:

Normalize the data:

Dimension transformation and offset:

It has been proven that adding The BN layers to network models has a significant benefit, but there is no 
definitive answer to where it will be in the network. When the BN was first described in 2015, it was added to 
the authors’ front of the ReLU layer. Nevertheless, as the process of BN has been used in more and more studies, 
some researchers have suggested that it does better to have The BN layer after the ReLU layer. Kohlhepp B et al. 
stated in their studies that placing the BN layer in front of the ReLU layer will sometimes hurt the model while 
putting the BN layer after the ReLU layer will have positive effects such as improving accuracy and reducing  loss28. 
Therefore, there are two different methods of adding The BN layer to the VGG16 model in this paper. The first 
method is to place the BN layer between the Conv layer and the ReLU layer of the model, resulting in Model 1. 
The second method is to place the BN layer between the ReLU layer and the Pooling layer of the model and obtain 
Model 2. After training tests, compare the different placement of the BN layers on the model’s performance. The 
specific network parameters of Model 1 and Model 2 are shown in Table 3.

Results and analysis
Model training results. The experiment was carried out with Matlab2020a software under the Windows10 
system. The peanut pod data sets were imported into VGG16, Model1 and Model2, respectively. The parameters 
were set as: Image Input Size: 224 × 224 × 3;Mini BatchSize: 32; Initial Learn Rate: 1e-4; Validation Frequency: 64. 
Then start training. All models finished training after 50 Epochs, and the absolute accuracy of the models was the 
average accuracy of the three times of model training. Table 4 shows the final accuracy tables of VGG16, Model1 
and Model2. It can be seen from Table 4 that VGG16 achieves an average accuracy of 88.39% on the validation 
set, while Model1 achieves an average accuracy of 94.94%, 6.55% higher than VGG16. Model2 achieves the high-
est average accuracy of 97.62%, 2.68% higher than Model1. We see similar results in the test set. VGG16 achieves 
an average accuracy of 87.80%, while Model1 achieves an average accuracy of 93.90%, which is 6.10% higher 
than VGG16. Model2 achieves the highest average accuracy of 96.7%, which is 2.80% higher than Model1. The 
results show that Our improved network model is effective, and the identification and classification ability of the 
improved VGG16 is better than VGG16. The average Accuracy of Model 2 is higher than that of Model 1, which 
indicates that placing the BN layer between the ReLU layer and the Pooling layer of the model is reasonable and 
successful. Based on the above experimental results and analysis, we determine that Model2 is the final model 
constructed for this experiment, which we will call "Our Model" in the following content.

In the construction of Our Model, the number of filters of Conv6 was set to 512. To investigate the influence 
of the number of filters of Conv6 on the model performance, the number of filters of Conv6 was set to 128/256 
respectively for fine-tuning the model. The peanut pods data set was imported into the fine-tuning model twice, 
with the parameters set as Image Input Size: 224 × 224 × 3; Mini BatchSize: 32; Initial Learn Rate: 1e-4; Validation 
Frequency: 64. Then start training. All models finished training after 50 Epochs and the absolute accuracy of the 
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Figure 5.  Conv5 structure diagram.
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Table 3.  Three kinds of network model comparison.

VGG16 Model1 Model2

Input (224*224*3) Input (224*224*3) Input (224*224*3)

Conv1_1_64 Conv1_1_64 Conv1_1_64

Conv1_2_64 Batch Normalization1 Conv1_2_64

MaxPooling1 Conv1_2_64 Batch Normalization1

MaxPooling1 MaxPooling1

Conv2_1_128 Conv2_1_128 Conv2_1_128

Conv2_2_128 Batch Normalization2 Conv2_2_128

MaxPooling2 Conv2_2_128 Batch Normalization2

MaxPooling2 MaxPooling2

Conv3_1_256 Conv3_1_256 Conv3_1_256

Conv3_2_256 Batch Normalization3 Conv3_2_256

Conv3_3_256 Conv3_2_256 Conv3_3_256

MaxPooling3 Conv3_3_256 Batch Normalization3

MaxPooling3 MaxPooling3

Conv4_1_512 Conv4_1_512 Conv4_1_512

Conv4_2_512 Batch Normalization4 Conv4_2_512

Conv4_3_512 Conv4_2_512 Conv4_3_512

MaxPooling4 Conv4_3_512 Batch Normalization4

MaxPooling4 MaxPooling4

Conv5_1_512 Conv5_1_512 Conv5_1_512

Conv5_2_512 Batch Normalization5_1 Conv5_2_512

Conv5_3_512 Conv5_2_512 Conv5_3_512

MaxPooling5 Batch Normalization5_2 Depth Concatenation

Conv5_3_512 Batch Normalization5

FC6 Batch Normalization5_3 MaxPooling5

Depth Concatenation

FC7 MaxPooling5 Conv6_512

Conv6_512 GAPooling6

FC-1000 GaPooling6

FC-12 FC-12

SoftMax SoftMax SoftMax

Table 4.  Accuracy of the three kinds of network.

Models

Validation accuracy(%) Test accuracy(%)

First Second Third Average First Second Third Average

VGG16 89.58 88.39 87.20 88.39 87.20 87.80 88.40 87.80

Model1 94.05 95.83 94.94 94.94 93.50 93.50 94.70 93.90

Model2 97.32 97.62 97.92 97.62 96.40 96.70 97.00 96.70

Table 5.  Accuracy of the fine-tuning network.

Models

Validation accuracy(%) Test accuracy(%)

First Second Third Average First Second Third Average

Model (128) 96.73 96.13 97.32 95.73 96.10 96.10 95.80 96.00

Model (256) 97.62 97.32 97.62 97.52 96.10 96.40 96.10 96.20

Model (512) 97.32 97.62 97.92 97.62 96.40 96.70 97.00 96.70
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models was the average accuracy of the three times of model training. Table 5 shows the final accuracy table of 
the fine-tuning model. Model(128) and Model(256) are fine-tuning models with 128 and 256 filters in conv6, 
respectively and model (512) is Our Model with 512 filters in conv6. It can be seen from Table 5 that the average 
Accuracy of Our Model on the validation set and the test set is 97.62% and 96.70%, respectively, both of which 
are the highest average accuracy among the three models. The experimental results show that Our Model with 
512 filters in conv6 is the optimal model for this experiment. Also, the accuracy of Model(256) is higher than that 
of the model (128) on both the validation set and the test set, which indicates that in this experiment, with the 
orderly increase of the number of filters in Conv6, the identification accuracy of the model is improved regularly.

Comparison of model performance. Figure 6 shows the training result comparison between VGG16 
and Our Model, Fig. 6a shows VGG16 and Fig. 6b shows Our Model. The accuracy training chart’s blue curve is 
the training accuracy curve and the black dotted line is the validation accuracy curve. In the loss error training 
diagram, the red curve is the training loss rate curve, while the black dotted line is the validation loss rate curve. 
Figure 6 shows that VGG16 model after 50 Epochs of training, the training accuracy increased from 90 to 100%. 
However, it cannot effectively improve the validation set. Model validation accuracy has been hovering between 
70 and 90% and verifying the accuracy of 87.20%. Its validation loss rate and loss rate of training also have a 
large gap, suggesting that VGG16 produced over the fitting phenomenon. VGG16 model can not finish the 
peanut pod identification task successfully. Our Model’s training process shows that after 50 Epochs training of 
Our Model, both the training accuracy and validation accuracy reached more than 90%, the validation accuracy 
finally reached 97.92% and the loss rate gradually decreased to 0. These phenomena indicate that Our Model has 
an excellent performance in the identification and classification of peanut pods. Also, the validation accuracy of 
Our Model increases gradually with the improvement of training accuracy, and there is no over-fitting or under-
fitting phenomenon, indicating that Our Model has an excellent ability to resist over-fitting and under-fitting. 
Besides, the training accuracy rate of Our Model rapidly increases to 90% after 15 Epochs, which indicates that 
Our Model has a high convergence speed.

Figure 7 shows the confusion matrix comparison between VGG16 and Our Model. The confusion matrix 
is an important index to measure the performance of the model. The sum of each row of the confusion matrix 
represents the actual sample number of the predicted category. For example, the sum of the first row of VGG16 
and Our Model confusion matrix in Fig. 7 is 29, which means that the actual sample number of 101 Huasheng 
tested in the two models is 29. Confuse the sum of each column of the matrix representation is predicted for a 
sample size of the class. For example, in Fig. 7, VGG16 confuse the sum of the second column of the matrix to 37; 
this means that in the process of the VGG16 model test, there are 37 samples were predicted to became Huayu 
22; Our Model confuse the sum of the second column of the matrix is 28, this means that in Our Model of the 
test process, there are 28 samples were predicted to become the Huayu 22, by comparing the Huayu 22 actual 
sample size (29), It was found that VGG16 generated 11 misidentification and three omissions in the identifica-
tion of Huayu 22 samples. In contrast, Our Model generated only one omission in identifying Huayu 22 samples 
and no misidentification was generated. Finally, by comparing the average test accuracy between VGG16 and 
Our Model of 87.80% and 96.70%, combined with the analysis of the number of correct identification, wrong 
identification and missing identification of each category of the two models, we determined that Our Model 
played a better role than the VGG16 in the peanut pod identification work.

Kappa is a consistency check coefficient based on the model confusion matrix, displaying identification accu-
racy and measuring model performance. Kappa’s calculation is between -1 and 1, but usually, Kappa falls between 

Figure 6.  Model training result comparison.
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0 and 1. The corresponding relationship between Kappa and consistency is 0.21–0.40 "acceptable" consistency, 
0.41–0.60 "medium" consistency, 0.61–0.80 "large" consistency and above 0.81 "almost perfect"  consistency29.

Kappa’s calculation formula is as follows:

According to the above formula, the Kappa of the VGG16 test result is 0.87 and the Kappa of Our Model test 
result is 0.97. It can be seen that Our Model achieves better consistency than VGG16, and the predicted results 
are almost entirely consistent with the actual identification results.

Figure 8 is the ROC curve comparison of VGG16 and Our Model test results. ROC  curve30 is also called the 
susceptibility curve, is to reflect the sensitivity and specificity of the continuous variable comprehensive index, 
ROC curve by using a continuous variable, set out several different thresholds, it is concluded that sensitivity and 
specificity, sensitivity to ordinate and abscissa (1—specificity) to draw into a curve, the greater the area under the 
curve (AUC), the higher the accuracy. The point closest to the upper left of the coordinate graph is the critical 
point with high sensitivity and specificity. According to the ROC curves of the two models, it can be seen that 
the ROC curve of Our Model is closer to the upper left corner and the area under the curve is more extensive, 
indicating that Our Model has excellent performance.

Comparison with classical models. To further explain Our Model’s superiority, this section added an 
analysis of the training results of classic network models AlexNet, VGG16, GoogLeNet, ResNet18, ResNet50, 
SqueezeNet, DenseNet201 and MobileNetv2. The peanut pod data sets were imported into the above models for 
training and the model sizes and training parameters were shown in Table 6.

(5)Kappa = Observed Accuracy − Expected Accuracy

1− Expected Accuracy

Figure 7.  Model confusion matrix comparison.

Figure 8.  Model ROC curve comparison.
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All models finished training after 50 Epochs. Figure 9 shows the average validation accuracy and average test 
accuracy of all models. As shown in Fig. 9, the average Accuracy of AlexNet, VGG16, GoogLeNet, SqueezeNet 
and MobileNetv2 models on the validation set were all between 80 and 90% average accuracy of SqueezeNet 
was the lowest, which was 85.3%. The advanced ResNet18, Resnet50 and DenseNet201 exceeded the average 
accuracy of 90%. DenseNet201 achieving a good score of 97.1%, but still behind Our Model’s average accuracy of 
97.6%, which was 0.5% lower than Our Model’s average accuracy. In the test set, the average accuracy of AlexNet, 
VGG16, GoogLeNet, SqueezeNet and MobileNetv2 models remained between 80 and 90%, with GoogLeNet 
having the lowest average accuracy of 84.4%. ResNet18, Resnet50 and DenseNet201 again performed well, with 
an average accuracy of over 90%. DenseNet201 achieving an average accuracy of 95.1%, which was still 1.6% 
lower than Our Model’s average accuracy of 96.7%. The experimental results show that all the models play an 
excellent role in identifying and classifying peanut pods. Usually, Which can easily lead to overfitting if the 
training model is too deep. Therefore, Resnet18, Resnet50 and Densenet201 are inferior to Our Model in this 
fine identification task. Our Model has the highest accuracy and the most robust identification ability in both 
the validation set and the test set.

Accuracy, Precision, Recall and F1-score were introduced in this paper to evaluate each model’s performance 
comprehensively. Accuracy is one of the most common evaluation criteria. Accuracy represents the proportion 
of all correctly identified samples to the total. Accuracy is a very intuitive evaluation index, but sometimes it 
can be deceptive. When the number of samples is unbalanced, the value of accuracy tends to favor more sam-
ples. Therefore, based on accuracy’s evaluation, more indicators need to be evaluated to measure the model’s 

Table 6.  Model size and training parameters.

Model Layer Size/MB Mini batch size Initial learn rate Validation frequency Image input size

AlexNet 25 227 32 1e−4 64 227 × 227 × 3

VGG16 41 515 32 1e−4 64 224 × 224 × 3

GoogLeNet 144 27 32 1e−4 64 224 × 224 × 3

ResNet18 71 44 32 1e−4 64 224 × 224 × 3

ResNet50 177 96 32 1e−4 64 224 × 224 × 3

SqueezeNet 68 4.6 32 1e−4 64 227 × 227 × 3

DenseNet201 708 77 32 1e−4 64 224 × 224 × 3

MobileNetv2 154 13 32 1e−4 64 224 × 224 × 3

Our Model 45 52.3 32 1e−4 64 224 × 224 × 3

Figure 9.  Average accuracy of all models.
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performance. Precision is one of the indicators that can represent the correct prediction ability of the model. Its 
significance is the proportion of correctly predicted samples in the model’s total predicted results. The recall is 
also known as detection rate, which refers to the proportion of correctly predicted samples in the total of actual 
samples. F1-score is a comprehensive evaluation index, which is the synthesis of Precision and Recall indexes 
and its value range is 0–1.1 represents the optimal output of the model and 0 represents the worst output of the 
model. Accuracy, Precision, Recall, F1-score are calculated as follows:

Start by defining four basic metrics. The actual value is positive and the sample predicted by the model to 
be positive is TP . The actual value is positive and the sample predicted as unfavorable by the model is FN . The 
actual value is negative and the model’s sample to be positive is denoted as FP . The actual value is negative and 
the number of negative predicted by the model is TN . Then the calculation formulas of Accuracy, Precision(P), 
Recall(R) and F1-Score are:

Table  7 shows the model evaluation indexes of AlexNet, VGG16, GoogLeNet, ResNet18, Resnet50, 
SqueezeNet, DenseNet201, MobileNetv2 and Our Model in the peanut pods identification and classification 
task. Table 7 shows that the average accuracy of Our Model is 99.5%, 0.1–1.8% higher than other models. The 
average Precision of Our Model is 97.2%, 0.7–10.5% higher than other models. The average Recall of Our 
Model is 97.2%, 0.9–10.5% higher than other models. The average F1-Score of Our Model is 97.2%, 0.8–11.1% 
higher than other models. Model evaluation results showed that Our Model was superior to other models in 
the comprehensive evaluation of performance indexes such as Accuracy, Precision, Recall and F1-Score in the 
identification process of 12 varieties of peanut pods.

Feature visualization. This section shows the feature visualization of a convolutional neural network 
based on Our Model. When the image is input into the convolutional neural network, there will be different 
activation regions at various network layers. By establishing the comparison between the activation regions at 
different layers and the original image, network learning characteristics in this layer can be visualized. Figure 10 
takes the 101 Huasheng sample as an example to show the activation regions at different layers of Our Model. 
It can be seen from Fig. 10 that the shallow network will learn simple features such as texture and edge of the 
image, while the more profound the network is, the more complex and abstract the features it learns.

Gradient-weighted class-activation mapping Grad-CAM31 is a method for feature visualization in the class-
activation heat map. Grad-CAM can calculate the identification gradient of the final convolution feature map. 
The larger the gradient is, the more dependent the classification is, and it is represented as the strongly activated 
region on the feature map. Figure 11 shows the Grad-CAM visualization of all peanuts varieties in the six con-
volutional layers of Our Model. As shown in Fig. 11, the feature map’s red region represents the vital activation 
region for the network model to identify peanut pod species. In contrast, the blue region represents the weak 
activation region for the network model to identify peanut pod species. The larger the gradient is, the redder the 
color of this region will be, and the more potent its influence on the classification result will be. In the identifica-
tion and classification of peanut pods, the model initially focused on peanut varieties’ different textures. With the 
deepening of network layers, the advanced features of the image were activated, and finally, the vital activation 
region was located at the mouth and waist of the peanut pod.

Different layers of the convolutional neural network have different activation regions, so the image features 
extracted by different layers are also various. As the number of layers deepens, detailed features will decrease 
and more abstract advanced features will  increase32. Figure 12 for our six convolutional layers of the model to 
extract the characteristics of the figure, each layer took 16 characteristics to show, from Fig. 12 intuitive see conv1 
learned some image color and contour feature, conv2–conv4 to extract features for image texture, more in conv5 
conv6, has the characteristics of a given in the more complex and abstract, difficult to use the human mind to 
judge, eventually become the advanced features of the model.

Model applicability testing. Our Model was applied to the identification and classification of seven vari-
eties of corn grains to test the model’s applicability and prove the robustness and versatility of the improved 
VGG16 model. The acquisition environment of corn kernel images was the same as that of peanut pods. A total 
of 1260 corn kernel images of 7 varieties were collected. The data augmentations method was used to expand 
the image to 2520 images to form the corn kernel dataset. Figure 13 is the sample diagram of the applicability 
test of this model.

The corn kernel data set was imported into Our Model for the training test and the training process was con-
sistent with the peanut pod identification. The training parameters were set Image Input Size: 224 × 224 × 3;Mini 

(6)Accuracy = TP + TN

TP + TN + FP + FN

(7)P = TP

TP + FP

(8)R = TP

TP + FN

(9)F1− Score = 2PR

P + R
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BatchSize: 16; Initial Learn Rate: 1e−4; Validation Frequency: 64. All models finish training after 50 Epochs. The 
experimental results are shown in Table 8. The model achieved the highest accuracy of 95.63% and the average 
accuracy of 94.71% on the validation set. The model achieved the highest accuracy of 92.5% and the average 
accuracy of 90.1% on the test set. The results showed that, although the grain features of corn kernels were more 
difficult to identify than those of peanut pods, the model still achieved high accuracy, and Our Model was com-
petent for identifying seven types of corn kernels.

To further prove Our Model’s ability applied to the identification task of seven types of corn kernels, the test 
model’s performance evaluation was added. Table 9 confusion matrix table for identification of maize grain, by 
the Table 9, the average Accuracy model reached 98.2%, the average precision reached 92.9%, the average Recal 
reached 92.4%, the comprehensive evaluation index of F1-Score the highest Score of 96%, the average of 92.2%. 

Table 7.  Model performance evaluation(Class names are indicated by their initials).

Measures 101HS HY22 HY25 LN13 LH11 LH9 QH6 TF3 YH2 YH4 YH5 ZN108 Average

MODEL: AlexNet

Accuracy(%) 98.5 96.1 98.8 96.4 99.4 98.8 99.4 99.4 96.4 97.0 95.3 97.0 97.7

Precision(%) 100 80.8 90.3 75.8 92.9 92.9 93.8 96.7 82.1 79.4 68.6 95.5 87.4

Recall(%) 82.8 72.4 96.6 86.2 92.9 92.9 100 96.7 76.7 90.0 82.8 70.0 86.7

F1-Score(%) 90.6 76.4 93.3 80.7 92.9 92.9 96.8 96.7 79.3 84.4 75.0 80.8 86.7

MODEL: VGG16

Accuracy(%) 98.5 95.8 99.1 97.0 100 98.5 97.9 99.1 98.5 96.1 97.3 98.8 98.1

Precision(%) 100 70.3 93.3 88.0 100 100 82.9 100 100 69.8 88.5 96.4 90.8

Recall(%) 82.8 89.7 96.6 75.9 100 82.1 96.7 90.0 83.3 100 79.3 90.0 88.9

F1-Score(%) 90.6 78.8 94.9 81.5 100 90.2 89.3 94.7 90.9 82.2 83.6 93.1 89.2

MODEL: GoogLeNet

Accuracy(%) 99.4 97.6 98.5 97.3 99.7 98.5 98.5 97.6 95.0 97.9 95.5 97.0 97.7

Precision(%) 100 83.9 96.2 88.5 93.3 96.0 85.7 92.3 66.7 89.7 69.4 95.5 88.1

Recall(%) 93.1 89.7 86.2 79.3 100 85.7 100 80.0 86.7 86.7 86.2 70.0 87.0

F1-Score(%) 96.4 86.7 90.9 83.6 96.5 90.6 92.3 85.7 75.4 88.2 76.9 80.8 87.0

MODEL: ResNet18

Accuracy(%) 99.7 98.5 99.7 98.8 100 100 99.7 99.1 99.1 99.4 96.7 96.7 99.0

Precision(%) 100 87.5 100 96.3 100 100 96.8 93.5 93.5 96.7 78.1 88.0 94.2

Recall(%) 96.6 96.6 96.6 89.7 100 100 100 96.7 96.7 96.7 86.2 73.3 94.1

F1-Score(%) 98.3 91.8 98.3 92.9 100 100 98.4 95.1 95.1 96.7 82.0 80.0 94.1

MODEL: ResNet50

Accuracy(%) 99.1 97.6 99.1 98.8 99.7 99.7 99.7 100 100 99.4 97.9 98.2 99.1

Precision(%) 96.4 81.8 96.4 100 93.3 100 96.8 100 100 96.7 86.7 90.0 94.8

Recall(%) 93.1 93.1 93.1 86.2 100 96.4 100 100 100 96.7 89.7 90.0 94.9

F1-Score(%) 94.7 87.1 94.7 92.6 96.5 98.2 98.4 100 100 96.7 88.2 90.0 94.8

MODEL: SqueezeNet

Accuracy(%) 99.4 96.1 98.8 96.7 99.1 98.8 98.8 98.8 96.1 97.0 95.5 96.7 97.7

Precision(%) 100 78.6 90.3 87.5 82.4 87.5 88.2 96.4 77.4 81.3 70.6 100 86.7

Recall(%) 93.1 75.9 96.6 72.4 100 100 100 90.0 80.0 86.7 82.8 63.3 86.7

F1-Score(%) 96.4 77.2 93.3 79.2 90.4 93.3 93.7 93.1 78.7 83.9 76.2 77.5 86.1

MODEL: DenseNet201

Accuracy(%) 99.7 99.4 99.4 100 100 99.1 99.7 99.4 100 99.7 97.6 98.2 99.4

Precision(%) 100 96.6 96.6 100 100 96.3 96.8 100 100 96.8 81.8 92.9 96.5

Recall(%) 96.6 96.6 96.6 100 100 92.9 100 93.3 100 100 93.1 86.7 96.3

F1-Score(%) 98.3 96.6 96.6 100 100 94.6 98.4 96.5 100 98.4 87.1 89.7 96.4

MODEL: MobileNetv2

Accuracy(%) 98.5 97.0 98.8 96.7 99.7 99.7 99.1 99.1 98.2 98.8 96.1 97.9 98.3

Precision(%) 100 88.0 90.3 75.0 93.3 100 96.6 96.6 96.2 96.4 70.0 92.6 91.3

Recall(%) 82.8 75.9 96.6 93.1 100 96.4 93.3 93.3 83.3 90.0 96.6 83.3 90.4

F1-Score(%) 90.6 81.5 93.3 83.1 96.5 98.2 94.9 94.9 89.3 93.1 81.2 87.7 90.4

MODEL: our model

Accuracy(%) 100 99.7 99.1 99.7 100 99.7 99.7 100 100 99.4 98.2 98.5 99.5

Precision(%) 100 100 96.4 96.7 100 100 96.8 100 100 93.8 89.7 93.1 97.2

Recall(%) 100 96.6 93.1 100 100 96.4 100 100 100 100 89.7 90.0 97.2

F1-Score(%) 100 98.3 94.7 98.3 100 98.2 98.4 100 100 96.8 89.7 91.5 97.2
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That result means that the model has a stable and excellent performance, excellent finish seven varieties of corn 
kernels of work. The results show that Our Model has a good performance in the model applicability test, which 
proves the robustness and generality of the improved VGG16 model and expands the possibility of the improved 
VGG16 model applied in the field of Crop variety identification and classification.

Figure 10.  Visualize the image activation region.

Figure 11.  Visualization of Grad-CAM features of our model (From top to bottom are peanut samples of 12 
varieties and from left to right are peanut samples and characteristic map of conv1-6).
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Figure 12.  Features captured by our model.

Figure 13.  Model applicability test sample.

Table 8.  Model applicability test results.

Times Validation accuracy(%) Test accuracy(%)

First 93.25 88.5

Second 95.63 92.5

Third 95.24 89.3

Average 94.71 90.1
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Discussion
In this paper, the improved VGG16 model was applied to realize the identification and classification of 12 types 
of peanut pods, consistent with the research direction of  literature3,7. New technologies are used to solve classical 
problems, and deep learning technology is introduced into peanut identification and classification to obtain more 
intelligent and accurate results. Such problem-solving methods are similar to those in  literature20,21. This paper 
using the advantages of an advanced convolutional neural network for reference; the improved VGG16 model 
is improved based on the VGG16 model to achieve a better identification effect. This idea of improving model 
performance through network improvement is as advanced as  literature33,34. In this paper, VGG16 was improved 
by an innovative network improvement method, and the model was introduced into the field of peanut variety 
identification and classification. The experimental results show that the network improvement method in this 
paper is effective, and it is feasible to apply the improved network to the field of peanut variety identification.

In the process of network model improvement, the influence of different network improvement methods 
on the network model’s identification effect is compared and discussed. Table 4 shows that Model1 and Model2 
have different identification effects due to the BN layer’s different placement. The BN layer of Model1 is placed 
between the convolutional layer and the ReLU layer of the model, while the BN layer of Model2 is placed between 
the ReLU layer and the Pooling layer of the model. The experimental results show that Model2 achieves an aver-
age test accuracy of 96.7%, 2.8% higher than Model1, indicating that Model2 has a better identification effect 
than Model1. In this experiment, it is better to place the BN layer between the ReLU layer and the Pooling layer, 
consistent with the  reference28.

The number of filters in conv6 will affect the performance of the model. The results are shown in Table 5. 
Model (128) achieved an average accuracy of 95.73% on the validation set and 96% on the test set. Model (256) 
had an average accuracy of 1.79% higher on the validation set than Model (128). The average accuracy on the 
test set was 0.2% higher than the model (128). Model (512) had an average accuracy of 0.1% higher on the vali-
dation set than Model (256). The average accuracy rate on the test set was 0.5% higher than the model (256). 
The results show that the model’s identification accuracy increases with the orderly increase of the number of 
filters set in conv6.

The experimental object of peanut variety identification work is the peanut pod. However, the researchers’ 
experimental object in  literature8 and  literature18 was peanut seeds. Compared with them, this paper has unique 
advantages. First of all, in peanut products, peanut pods need to be shelled to obtain peanut seeds. To avoid 
waste caused by peanut shelled, enterprises will prioritize the sorting of peanut pods. Secondly, compared with 
the peanut pod, the peanut seeds’ sorting process can easily bring pollution and damage to the peanut seeds and 
reduce the peanut’s quality. Besides, the improved VGG16 model in this paper has robustness and applicability 
for crop identification and classification and it will also achieve good results if applied to peanut seed sorting.

In this paper, the improved VGG16 model was used to identify and classify peanuts, and the algorithm part 
of the peanut variety identification engineering task was completed. The following research direction should be 
the practical engineering application of peanut variety identification. For example, the improved model can be 
configured in a peanut seed  sorter35. Besides, the model can be deployed on the cloud to realize real-time online 
identification of peanut varieties on mobile  devices36. In the peanut phenotype field, the improved model can 
be applied to high-throughput peanut phenotype  detection37 to increase peanut phenotype detection accuracy. 
In terms of breeding, the improved model was applied to the scientific breeding of  peanuts38 to enhance similar 
varieties of peanuts’ judgment ability. The model is applied to engineering practice to convert the latest technol-
ogy into consideration economic and social benefits.

Conclusions
This paper improved the deep convolutional neural network VGG16 and applied the improved VGG16 to the 
identification and classification task of 12 varieties of peanuts based on deep learning technology. Finally, the 
average test accuracy was 96.7%, 8.9% higher than that of VGG16. Compared with the classical model, the average 

Table 9.  Model applicability test Confusion matrix.

 Chuangyu107 Dika517 Fengken139 Lidan618 Lishouyihao Xindan68 Zhengdan958 

Chuangyu107 30 0 0 0 0 6 0 

Dika517 0 30 0 1 2 0 3 

Fengken139 0 2 31 1 2 0 0 

Lidan618 0 1 0 35 0 0 0 

Lishouyihao 0 0 0 0 36 0 0 

Xindan68 0 0 1 0 0 35 0 

Zhengdan958 0 0 0 0 0 0 36 

Accuracy (%) 97.6 96.4 97.6 98.8 98.4 99.6 98.8 

Precision (%) 100 90.9 96.9 94.6 90.0 85.4 92.3 

Recall (%) 83.3 83.3 86.1 97.2 100 97.2 100 

F1-Score (%) 90.9 86.9 91.2 95.9 94.7 90.0 96.0 
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test accuracy is 1.6–12.3% higher than other models. In the model applicability test, the average test accuracy 
is 90.1%. The influence of various model construction methods on the overall performance of the model was 
compared. It was found that the identification ability of the model would be stronger if the BN layer were placed 
between the ReLU layer and the Pooling layer. The orderly increase of the number of filters set in the Conv6 layer 
would improve the model’s identification ability. In this paper, deep learning technology was introduced into 
the field of peanut variety identification. The VGG16 model was successfully improved to obtain the optimal 
identification effect, which proved the feasibility of a convolutional neural network in the field of crop variety 
identification and classification. The model improved in this paper has positive significance for exploring other 
Crop variety identification and classification.
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