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Locality and entanglement 
of indistinguishable particles
Till Jonas Frederick Johann1,2 & Ugo Marzolino2*

Entanglement is one of the strongest quantum correlation, and is a key ingredient in fundamental 
aspects of quantum mechanics and a resource for quantum technologies. While entanglement 
theory is well settled for distinguishable particles, there are five inequivalent approaches to 
entanglement of indistinguishable particles. We analyse the different definitions of indistinguishable 
particle entanglement in the light of the locality notion. This notion is specified by two steps: (i) the 
identification of subsystems by means of their local operators; (ii) the requirement that entanglement 
represent correlations between the above subsets of operators. We prove that three of the 
aforementioned five entanglement definitions are incompatible with any locality notion defined as 
above.

Entanglement is one of the strongest form of quantum correlations and is crucial for the undestanding of Bell’s 
 inequalities1, quantum  communications2, quantum  metrology3,4, and quantum  computation5,6. Fundamental 
aspects of quantum theory and the quantum information framework suggest that entanglement is a notion 
derived from the definition of subsystems that can be correlated or, in other words, from the notion of locality. 
For instance, any entangled pure state of two distinguishable particles violates a Bell’s inequality, and thus prove 
quantum non-locality7,8, and the resourcefulness of Bell non-locality is a special instance of entanglement  theory9. 
On the other hand, several quantum technologies consist of parties independently manipulating subsystems, 
and entanglement among subsystems is a fundamental resource that allows to overcome the limitations of local 
operations on subsystems and classical communications between  them10.

Entanglement theory is very well understood for distinguishable particles: two-particle separable, namely 
non-entangled, pure states are of the form |ψ1� ⊗ |ψ2� , and each subsystem is implicitly assumed to be a parti-
cle. This definition can be reformulated by describing each subsystem with operators, termed local and acting 
non-trivially only on it, i.e. A = O1 ⊗ 12 for the first particle and B = 11 ⊗ O2 for the second one. Therefore, a 
pure state is separable if and only if its expectations do not show correlations between single-particle operators: 
�AB� = �A��B� for any A, B as  above11.

The choice of the operators A and B naturally arises from the experimental ability to individually address 
particles. Nevertheless, correlations between operators of different form have been proven to correspond to 
entanglement between more general  subsystems12–16, already in the framework of distinguishable particles.

Although distinguishable particles are a very useful paradigm in many physical systems, e.g. spin models 
where particles are localised at different positions, Nature is made of several kinds of indistinguishable particles, 
like electrons, atoms and photons. Particle indistinguishability requires that pure states and operators be invariant 
under particle permutations. In particular, the aforementioned single-particle operators are no longer allowed. 
These considerations challenge the notion of particle as a natural subsystem, whenever indistinguishability 
cannot be neglected, e.g. if particles are not spatially separated (see Fig. 1 for an illustration of particles that are 
progressively less separated and lose their distinguishability).

In this context, five alternative definitions of entanglement in systems of indistinguishable particles have been 
proposed:  see17 for a review. Nevertheless, the identification of subsystems and of local operators, whose correla-
tions correspond to entanglement, is not always addressed. This identification indeed allows us to systematically 
describe the advantage that indistinguishable particle entanglement provides over local operations and classi-
cal communications in quantum technologies. Other resource theories can characterize resourceful states that 
overcome the limitations of operations defined by lifting the locality requirement. The characterisation of local 
operators also enables us to understand the overlap of a resource theory with entanglement theory, and the cost 
of resource conversion in terms of resourceful operations of both theories.

We say that a definition of entanglement is compatible with a notion of locality if entanglement corresponds 
to correlations between commuting subsets of operators A and B : �AB� = �A��B� for all A ∈ A and B ∈ B 
for pure separable states  (see11,17 for the generalization to mixed states). These operator subsets formally and 
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operationally define subsystems as they consist of observables individually measurable and transformations 
induvidually implementable without mutual disturbance due to their commutativity [A ,B ] = 0 . A prelimi-
nary comparative analysis among the existing entanglement approaches shows that only one of them is fully 
 consistent17. In particular, three of these approaches cannot be interpreted as entanglement of particles, because 
they are not consistent with the correlations between subsets made of permutationally invariant single-particle 
operators. The physical intuition is that truly indistinguishable particles cannot be individually addressed (see 
the sketch in Fig. 1). This issue does not apply to the other approaches, since one, the so-called superselection 
rule (SSR) entanglement, is resticted to physical situations of particles that can be effectively distinguished by 
means of certain degrees of  freedom18–20, and the other accounts for more general correlations between modes in 
a second quantised description that also recovers particle correlations for effectively distinguishable  particles21–30. 
The latter notion, i.e. mode-entanglement, is also routinely applied for entanglement detection, manipulations 
and  measures17,31–33.

In this paper, we focus on the aforementioned entanglement definitions that do not correspond to particle 
correlations, and investigate if they rather represent correlations between subsystems identified by general subsets 
A and B . For each definition, we define the set of separable pure states, namely SEP , and look for candidates 
for the subsets A and B.

Before sketching the general scheme of our analysis, it is crucial to notice that the linearity of quantum 
mechanics implies that the set of operators of a system, as well as subsystems, is an  algebra34,35. An algebra is a 
linear space closed under a multiplication between its elements and under a conjugation operation (hermitian 
conjugation in our case). Therefore, the subsets A and B that comprise all operators acting on each subsystem 
are algebras, as happens in the standard case of distinguishable particles. Nevertheless, we have used neither the 
algebra structure nor commutativity in our main results which therefore hold also for more general subsets of 
operators, as those considered  in36.

A necessary condition for operators A ∈ A and B ∈ B is that they do not generate entanglement, because 
subsystems cannot be correlated by local operators, like A, B, and AB. This requirement is formulated in full 
generality as A · SEP = SEP and B · SEP = SEP , or

relaxing the normalisation conditions, such that 
∣∣∣∣|��

∣∣∣∣ > 0 , 
∣∣∣∣A|��

∣∣∣∣ > 0 , 
∣∣∣∣B|��

∣∣∣∣ > 0.
Operators in each subset, A and B , are chosen from the above ones, and those belonging to different subsets 

must commute with each other. Thus, we check the factorisation condition

for any subset, A and B , of operators that do not generate entanglement.

Results
We are now ready to go through the different entanglement definitions and to look for possible subsets, A and 
B , of local operators. We shall prove that it is impossible to find subsets whose correlations correspond to the 
following notions of entanglement. Specifically, we find that for any possible subset bipartition there are separable 
states that do not fulfil the factorisation of local expectations (2).

The first quantisation formalism is most familiar to the entanglement definitions analysed here. For complete-
ness, we provide some definitions both in first and second quantisation, using the tilde to distinguish the second 
quantization formalism. However, our computations rely on matrix representations of the Hilbert space that are 
equivalent to matrix representations of Fock space sectors, after rewriting the basis states from first to second 
quantisation. Therefore, our conclusions remain valid in both formalisms, and we often consider the symbols 
without the tilde for simplifying the notation.

Moreover, we shall present our results in the form of lemmas and theorems in order to emphasise the key 
results in the statements.

(1)A |��, B |�� ∈ SEP, ∀ |�� ∈ SEP

(2)
��|AB|��
��|��

=
��|A|��
��|��

��|B|��
��|��

, ∀ A ∈ A , B ∈ B , |�� ∈ SEP

Figure 1.  Pictorial representation of two identical particles with an internal degree of freedom and a spatial 
degree of freedom, when the spatial wave function do not overlap �L|R� = 0 (effectively distinguishable 
particles), partially overlap 0 < �L|R� < 1 , and overlap almost completely �L|R� ≈ 1.
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Entanglement‑I. For the sake of concreteness, let us focus on two bosonic two-level particles. Define a basis 
of the single particle Hilbert space C2 , namely |0� and |1� , and that of the symmetrised two-particle Hilbert space 
S
(
C2 ⊗C2

)
 where S is the symmetrisation projector,

In second quantisation the above states read

 where a†0,1 are creation operators of a single particle in the state |0� or |1� respectively, with [ai , a†j ] = δi,j , and 
|vac� is the vacuum.

In this case, the first entanglement definition is

Definition 1 (Entanglement-I37–40) The set of pure separable-I states is, in first and second quantization 
respectively,

All other pure states are entangled-I.

Practical realisations of the above single particle states |0� and |1� are, e.g. in cold atoms, spatial localisation 
in separated wells of a lattice, or hyperfine energy levels. Therefore, separable-I states are those with particles in 
the same superposition of localised or energy states.

In the following theorem, we characterise operators that do not generate entanglement-I.

Theorem 1 Operators that leave SEPI invariant are represented in first quantisation as O⊗ O on the enlarged 
Hilbert space C2 ⊗C2 with O = O† , and in second quantisation as

Proof Any operator A that does not generate entanglement-I fulfils Eq. (1) which implies, from Definition 1,

where |�� ∈ SEPI . Note that only the projection SAS onto the symmetric space S
(
C2 ⊗C2

)
 contribute to Eq. 

(9) since we considered bosonic states. Equalities (8) for |�� = |�0,1� imply

in the basis (3), or (4), with a00,01,10,11, x, y, z ∈ C.
Conditions for x and y are found by requiring Eq. (1) for arbitrary |�� ∈ SEPI . This requirement implies, after 

plugging into (8) the explicit form of |�� in Eq. (5), that the coefficients of each monomial cn0 c
m
1  vanish. We obtain

The solutions of the above equations are

with either all plus signs or all minus signs.

(3)|�0� = |0�|0�, |�1� = |1�|1�, |�2� =
|0�|1� + |1�|0�√

2
.

(4)|�̃0� =
(
a
†
0

)2
√
2

|vac�, |�̃1� =
(
a
†
1

)2
√
2

|vac�, |�̃2� = a
†
0a

†
1|vac�,

(5)SEPI = {(c0|0� + c1|1�)⊗2}c0,c1∈C = {c20 |�0� + c21 |�1� +
√
2c0c1|�2�}c0,c1∈ C,

(6)SEPI = {
1√
2
(c0a

†
0 + c1a

†
1)

2|vac�}c0,c1∈C = {c20 |�̃0� + c21 |�̃1� +
√
2c0c1|�̃2�}c0,c1∈C.

(7)
1

2

∑

i,j,k,l=0,1

�i|O|j��k|O|l� a†i a
†
kajal .

(8)��2|A|��2 = 2 ��0|A|����1|A|��.

(9)SAS =




a200 a210 x
a201 a211 y√

2 a00 a01
√
2 a10 a11 z


 ,

(10)z2 + 2 a00 a01 a10 a11 = a200 a
2
11 + a201 a

2
10 + 2xy,

(11)
√
2a00a01z = a200y + a201x,

(12)
√
2a10a11z = a210y + a211x.

(13)x = ±
√
2a00a10,

(14)y = ±
√
2a01a11,

(15)z = ±a00a11 ± a01a10,
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The two cases, e.g. plus and minus signs, are equivalent as they result in the same operator by redefining 
a′00 = −a00 and a′01 = −a01 . Therefore, we found

In first quantisation, the above matrix is exactly the projection onto the symmetric subspace of the operator 
O⊗ O on the larger Hilbert space C2 ⊗C2 , with

in the basis 
{
|0�, |1�

}
 . In second quantization, Eq. (16) is the matrix representation of Eq. (7). This concludes the 

proof.   �

The factorisation condition can be checked for arbitrary operators, A = O⊗ O and B = Q⊗ Q , that could 
form subsets of local operators. Note that the subsets are not necessarily commuting in the next theorem. We 
have therefore proven a more general result than what we need in entanglement analysis.

Theorem 2 Given two subsets A and B of operators that leave SI
sep invariant, the factorisation condition (2) and 

Definition 1 imply that either A or B consists only of operators proportional to the identity.

Proof Consider a separable-I state |�� ∈ SEPI as in Definition 1, and two operators, A ∈ A and B ∈ B as in 
Theorem 1. The factorisation condition (2) reads

Both the left and the right hand sides of Eq. (18) are eight order polynomials in c0 and c1 . Nevertheless, there 
are monomials in the right-hand-side that do not appear in the left-hand-side. Since the factorisation condition 
must hold for any separable-I state, thus for any c0 and c1 , the monomials that appear only in the right-hand-side, 
i.e. with i  = j and l  = k , must by multiplied by vanishing coefficients, i.e. �i|O|j��l|Q|k� = 0 . This consideration 
implies that either O or Q are diagonal in the basis {|0�, |1�} . The latter basis is arbitrary and the diagonality 
requirement must hold for any basis rotation. In conclusion, either O or Q must be proportional to the iden-
tity.   �

Therefore, entanglement-I is incompatible with any locality notions where each subsystem is characterised 
by subsets of local operators. We have not used the commutativity of subsets A and B in Theorem 2. In the Sup-
plementary Information, we provide a characterisation of commuting subsets of operators that do not generate 
entanglement-I, a second proof of Theorem 2 using [A ,B ] = 0 , and some examples of the proven properties.

Entanglement‑II. Considering again two bosonic two-level particles, the second entanglement definition is

Definition 2 [Entanglement-II37–39,41–46] The set of pure separable-II states is, in first and second quantization 
respectively,

All other pure states are entangled-II.

Keeping in mind the same physical realisations mentioned after Definition 1, two particles are separable-II if 
they are either in the same or in orthogonal superpositions of spatial localisations or of hyperfine levels.

Theorem 3 Any operator that leaves SEPII invariant also leaves SEPI invariant.

Proof Consider an operator A that does not generate entanglement-II, and therefore leaves SEPII invariant, and 
a state |�� ∈ SEPI ⊂ SEPII . Either A|�� ∈ SEPI or A|�� ∈ SEPII \ SEPI . A necessary and sufficient condition 
for A|�� ∈ SEPI is Eq. (8), namely

(16)SAS =




a200 a210
√
2 a00 a10

a201 a211
√
2 a01 a11√

2 a00 a01
√
2 a10 a11 a00 a11 + a01 a10


 .

(17)O =
(
a00 a10
a01 a11

)
,

(18)




�

j=0,1

|cj|2



2


�

l,k=0,1

�l|OQ|k� cl ck




2

=




�

i,j,l,k=0,1

�i|O|j��l|Q|k� ci cj cl ck




2

.

(19)

SEPII = SEPI ∪
{
S
(
|c0|0� + c1|1�

)
⊗

(
|c1|0� − c0|1�

)}
c0,1∈C

= SEPI ∪
{
c0c1|�0� − c1c0|�1� +

|c1|2 − |c0|2√
2

|�2�
}

c0,,1∈C

(20)

S̃EPII = S̃EPI ∪
{(

c0 a
†
0 + c1 a

†
1

)(
c̄1 a

†
0 − c̄0 a

†
1

)
|vac�

}
c0,1∈C

= S̃EPI ∪
{
c0c1|�̃0� − c1c0|�̃1� +

|c1|2 − |c0|2√
2

|�̃2�
}

c0,1∈C
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Instead, a necessary and sufficient condition for A|�� ∈ SEPII \ SEPI , in the case of two bosonic two-level 
particles,  is47

where Trj is the standard partial trace over the j-th particle Hilbert space. This partial trace does not have a 
straightforward connection with entanglement when indistinguishability cannot be neglected due to the sym-
metrisation postulate, as discussed here and  in17. Nevertheless, it is a mathematical operation that still provides 
information on the structure of states.

PA(c0, c1) is a forth order homogeneous polynomial in c0 and c1 but does not depend on their complex conju-
gates. The fundamental theorem of algebra states that, for any fixed c0 , Eq. (21) either has at least one up to four 
distinct solutions, c1 = c1(c0) , or is a tautology.

QA(c0, c0, c1, c1) is an eighth order polynomial that depends also on the complex conjugates c0,1 , so that the 
fundamental theorem of algebra does not apply. Equation (22) can be a tautology, have at most eight solutions, 
say Re c1(c0, Im c1) for fixed c0 and Im c1 , but can also have no solutions. If Eq. (22) were a tautology, all states in 
SEPI are transformed into states in SEPII \ SEPI . Nevertheless, Eq. (21) has at least a solution, and so at least 
one state in SEPI is transformed into a state in SEPI but also in SEPII \ SEPI . This result is impossible because 
of the linearity of A, unless A|�� = 0 for all |�� that solve Eq. (21). The latter case implies A = 0 , because the 
solutions of Eq. (21) span the full Hilbert space S

(
C2 ⊗C2

)
 , as proven in the Lemma 1 in Methods. Thus, Eq. 

(22) has at most eight solutions Re c1(c0, Im c1) for fixed c0 and Im c1.
The above argument shows that, fixing c0 and Im c1 , there are at most a finite number of states |�� ∈ SEPI 

(corresponding to coefficients (c0, c1) ) that are sent to SEPII \ SEPI . If Eq. (21) has at most four solutions c1(c0) 
for fixed c0 , there is also at most a finite number of states |�� ∈ SEPI that are sent to SEPI . Remind, however, 
that we have relaxed the normalisation condition ��|�� = 1 , and so Re c1 can assume a continuity of values. 
Therefore, there are states |�� ∈ SEPI that are sent out of SEPII , and this contradicts the hypothesis of Theorem 3.

In conclusion, the only possibility is that Eq. (21) is a tautology and Eq. (22) has no solutions. This is equivalent 
to the statement of Theorem 3.   �

The impossibility to define subsets of local operators, whose correlations correspond to entanglement-II, 
follows from Theorem 3 and from the analogous result for entanglement-I.

Theorem 4 Given two subsets A and B of operators that leave SEPII invariant, the factorisation condition (2) and 
Definition 2 imply that either A or B consists only of operators proportional to the identity.

Proof Theorem 3 implies that operators that generate subsets A and B are special cases of those considered in 
Theorem 1 and in Theorem 2. The statements in Theorem 1 and in Theorem 2 therefore holds also for the opera-
tors considered here. Moreover, separable-I states are also separable-II, so that Theorem 2 proves the inconsist-
ency also between separability-II and locality.   �

Note that also the proof of Theorem 4 does not require the commutativity of the operator subsets. In the Sup-
plementary Information, we prove a complete characterisation of operators that do not generate entanglement-II, 
and prove that their subsets do not form an algebra. This provides an alternative proof of Theorem 4 if the opera-
tor subsets A and B are algebras. We also show some examples in the Supplementary Information.

Entanglement‑III. The last definition of entanglement is more elaborated than the previous ones. The sim-
plest physical system, where entanglement-III exists, is made of two bosons with a spatial degree of freedom, 
span{|L�, |R�} , and an internal one, span{|0�, |1�} . This definition is relative to the projection onto a subspace of 
the single particle Hilbert space. We assume that such subspace is K = span

{
|L, σ �

}
σ=0,1

 , as often assumed 
within this  approach48. The general definition, shown in the Supplementary Information, leads in our case to 
the following.

Definition 3 (Entanglement-III48) The set of pure separable-III states is, in first and second quantization 
respectively,

All other pure states are entangled-III.

(21)PA(c0, c1) := ��2|A|��2 − 2 ��0|A|����1|A|�� = 0.

(22)QA(c0, c0, c1, c1) = Tr1

(
Tr2

A|����|A†

��|A†A|��

)2

−
1

2
= 0,

(23)

SEPIII =
{
aσ |L, σ �⊗2 + bσ ,σ ′ S |L, σ � ⊗ |R, σ ′� +

∑

σ1,σ2=0,1

cσ1,σ2 S |R, σ1� ⊗ |R, σ2�
}

|σ �, |σ ′� ∈ C2

aσ , bσ ,σ ′ , cσ1,σ2 ∈ C

(24)S̃EPIII =
{(

aσ

(
a
†
L,σ

)2
√
2

+ bσ ,σ ′ a
†
L,σ a

†
R,σ ′ +

∑

σ1,σ2=0,1

cσ1,σ2 a
†
R,σ1

a
†
R,σ2

)
|vac�

}

|σ �, |σ ′� ∈ C2

aσ , bσ ,σ ′ , cσ1,σ2 ∈ C
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Let us introduce the following projectors in first quantisation

or in second quantisation

with X = X1X2 , and X1,2 ∈ {L,R} , and define AX,Y = PX APY for any operator A. The support of PLL is isomor-
phic to S

(
C2 ⊗C2

)
 , and separable-III states in PLL · SEPIII , namely |L, σ �⊗2 , are in one-to-one correspondence 

with separable-I states SEPI in Eq. (5). In particular, all the results for entanglement-I hold for entanglement-III 
constrained to the support of PLL . The support of PLR is isomorphic to C2 ⊗C217,41,49–52; therefore, separable-III 
states in PLR · SEPIII , i.e. S |L, σ � ⊗ |R, σ ′� , are in one-to-one correspondence with two distinguishable two-level 
particles, |σ � ⊗ |σ ′� =

(
c0|0� + c1|1�

)
⊗

(
d0|0� + d1|1�

)
 . Finally, PRR · SEPIII is the whole support of PRR and 

isomorphic to S
(
C2 ⊗C2

)
.

The search for subsets of local operators requires a detailed analysis of contributions to the factorisation 
condition from each sector identified by the projectors (25). Nevertheless, the identification of operators that 
leave SEPIII is not needed to prove the following Theorem.

Theorem 5 Given two subsets of operators, A and B , the factorisation condition (2) and Definition 3 imply that 
either A or B consists only of operators proportional to the identity.

Proof Consider separable-III states |�� = cX |�X� + cY |�Y � , with |�X� ∈ PX · SEPIII , |�Y � ∈ PY · SEPIII , and 
X,Y ∈ {LL, LR,RR} . The factorisation condition (2) reads

Since cX and cY in Eq. (27) are arbitrary, the coefficient of each monomial cT cT ′ cW cW ′ must vanish whenever 
T  = T ′ and W  = W ′ , or T  = W ′ and W  = T ′ . Thus,

Apply now Lemma 2 in Methods where the functions therein are ��X |AX,Y |�Y � and ��X |BX,Y |�Y � , and 
the variables are the coefficients used to parametrise states |�X� and |�Y � (see the discussion after Definition 
3). Lemma 2 in Methods entails that at least one factor in Eq. (28) vanish for all separable-III states, i.e. either 
��X |AX,Y |�Y � = 0 or ��X |BX,Y |�Y � = 0 for all |�X� ∈ PX · SEPIII and |�Y � ∈ PY · SEPIII . Because |�X� and 
|�Y � span the support of PX and PY respectively, then either AX,Y = 0 or BX,Y = 0.

Assume that AX,Y = 0 , as the other case is analogous. Comparing the coefficients of the monomial |cT |2 cX cY 
in the right and the left hand sides of Eq. (27), we obtain

for both T = X and T = Y  . The difference between the two cases ( T = X and T = Y  ) of the above equation is

Lemma 2 in Methods implies that at least one of the factors in Eq. (29) must be identically zero. If the term 
in brackets vanishes then AX,X = α PX and AY ,Y = α PY due to the arbitrariness of the separable-III states |�X� 
and |�Y � (see Lemma 3 in Methods). Therefore, A = α1 from the arbitrariness of X,Y ∈ {LL, LR,RR} , and we 
have proven Theorem 5. The case ��X |BX,Y |�Y � = 0 implies BX,Y = 0 , because separable-III states |�X� and |�Y � 
span the support of PX and PY respectively. At this point, we have proven that AX,Y = BX,Y = 0 for any X  = Y .

Choose separable-III states {|� j
Y �}j that form an orthonormal basis of the support of PY . Equation (28) implies

Using Eq. (30) in the comparison between the coefficients of the monomial |cX |4 in the left and right hand 
side of Eq. (27), we obtain for any X ∈ {LL, LR,RR}

After plugging the above equation in the factorisation (27), and matching the coefficients of |cX |2 |cY |2 , we get

(25)PX =
∑

σ1,σ2=0,1

(
2− δX1,X2δσ1,σ2

)
S
(
|X1, σ1��X1, σ1| ⊗ |X2, σ2��X2, σ2|

)
S,

(26)P̃X =
1

2

∑

σ1,σ2=0,1

a
†
X1,σ1

a
†
X2,σ2

aX2,σ2aX1,σ1

(27)

∑

T ,W ,W
′ ∈ {X,Y}

Z ∈ {LL, LR,RR}

|cT |2 cW cW ′ ��T |�T ���W |AW ,ZBZ,W ′ |�W ′ �

=
∑

T ,T ′ ,W ,W ′∈{X,Y}
cT cT ′ cW cW ′ ��T |AT ,T ′ |�T ′ ���W |BW ,W ′ |�W ′ �.

(28)��X |AX,Y |�Y ���X |BX,Y |�Y � = 0.

��T |�T ���X |AX,XBX,Y |�Y � = ��T |AT ,T |�T ���X |BX,Y |�Y �,

(29)��X |BX,Y |�Y �
(
��X |AX,X |�X�

��X |�X�
−

��Y |AY ,Y |�Y �
��Y |�Y �

)
= 0.

(30)0 =
∑

j

��X |AX,Y |�
j
Y ���X |BX,Y |�

j
Y � = ��X |AX,YBY ,X |�X�, ∀Y �= X .

(31)��X |�X���X |AX,XBX,X |�X� = ��X |AX,X |�X���X |BX,X |�X�,
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As above, Lemma 2 in Methods proves that at least one of the factors must identically vanish. According to Lemma 
3 in Methods, the arbitrariness of separable-III states |�X� and |�Y � further implies that either AX,X = α PX or 
BX,X = β PX for any X ∈ {LL, LR,RR} . This conclusion, together with the property AX,Y = BX,Y = 0 for X  = Y  
proved above, entails Theorem 5.   �

Therefore, also entanglement-III is incompatible with any locality notion as sketched in the Introduction: 
expectations of products of local operators pertaining to different subsystems must factorise for all non-entangled 
state. We stress that commutativity between the operator subsets A and B have not been used in Theorem 5. 
This makes Theorem 5 a stronger result than analogous theorems for entanglement-I and entanglement-II. We 
show some examples in the Supplementary Information.

Discussion
For completeness, we report the other entanglement definitions that correspond to correlations between suitably 
defined subsystem  operators17, generalising thus the Werner’s formulation to indistinguishable particles. These 
definitions are called mode-entanglement and SSR-entanglement. Mode-entanglement for N bosonic two-level 
particles is defined by the following.

Definition 4 (Mode-entanglement21–24) The set of pure mode-separable states is, in first and second quantiza-
tion respectively,

All other pure states are mode-entangled.

This definition can be generalised to fermions substituting the symmetrization projector S with the antisym-
metrization projector A or considering anticommuting creation operators:  see17,28,53,54 for a complete discussion 
of the fermionic case. If N = 2 , Definition 4 reduces to SEPmode =

{
|�0�, |�1�, |�2�

}
 . Mode-entanglement 

depends on the choice of the mode basis {a0, a1} as it accounts for quantum correlations between modes in the 
second quantization formalism, and is ubiquitous in quantum optics and quantum field theories, and also applied 
in several atomic and condensed matter systems (see references in the  review17). The factorisation condition (2) 
is fulfilled if and only if the state |�� therein is mode-separable17 when A consists of all functions of a0 and a†0 
and B of all functions of a1 and a†1 . Indeed, operators A ∈ A , B ∈ B and AB do not generate mode-entanglement 
and are the local operators of this theory.

Non-vanishing SSR-entanglement requires that the single particle Hilbert space has at least four dimentions, 
and so we focus on the same system described for entanglement-III.

Definition 5 (SSR-entanglement18–20) The set of pure SSR-separable states is, in first and second quantization 
respectively,

All other pure states are SSR-entangled.

SSR-entanglement depends on the choice of the spatial basis {|L�, |R�} , as entanglement-III does, and, recalling 
Eqs. (25) and (26), PLRSEPSSR = PLRSEPIII . Moreover, SSR-separable states in PLRSEPIII are isomorphic to 
|σ � ⊗ |σ ′� and indeed represent states of particles effectively distinguished by their spatial localisations. The name 
superselection rule entanglement is due to the fact that Definition 5 is derived within the supports of the projec-
tors PLL , PLR , PRR (and their many-particle generalisations) and ignoring their  superpositions17–20. The physical 
meaning of this superselection rule is that SSR-entanglement recovers standard entanglement when groups of 
particles can be effectively distinguished. SSR-entanglement is a constrained version of mode-entanglement since 
|�� ∈ SEPSSR if and only if PX |�� ∈ SEPmode , with X ∈ {LL, LR,RR} . Specializing the general argument in 
Ref.17 to the two-particle system described here, the compatibility with locality can be verified when A is made 
of all functions of aL,σ and a†L,σ and B of all functions of aR,σ and a†R,σ , as for mode-entanglement but with the 
further constraints PXAPY = PXB PY = 0 for all X  = Y  , X,Y ∈ {LL, LR,RR} . Operators A ∈ A , B ∈ B and 
AB do not generate SSR-entanglement and are the local operators of this theory.

(32)
(
��X |AX,X |�X�

��X |�X�
−

��Y |AY ,Y |�Y �
��Y |�Y �

)(
��X |BX,X |�X�

��X |�X�
−

��Y |BY ,Y |�Y �
��Y |�Y �

)
= 0.

(33)SEPmode =
{
S|0�⊗k ⊗ |1�⊗(N−k)

}
k=0,1,...,N

(34)S̃EPmode =
{ (a

†
0)

k

√
k!

(a
†
1)

N−k

√
(N − k)!

|vac�
}
k=0,1,...,N

(35)

SEPSSR =
{ 1∑

σ ,σ ′=0

aσ ,σ ′S|L, σ � ⊗ |L, σ ′� + S

1∑

σ=0

bσ |L, σ � ⊗
1∑

σ=0

cσ |R, σ � +
1∑

σ ,σ ′=0

dσ ,σ ′S|R, σ � ⊗ |R, σ ′�
}
aσ ,σ ′ ,bσ ,cσ ,dσ ,σ ′ ∈C

(36)

S̃EPSSR =
{ 1∑

σ ,σ ′=0

aσ ,σ ′ a
†
L,σ a

†
L,σ ′ |vac� +

1∑

σ=0

bσ a
†
L,σ

1∑

σ=0

cσ a
†
R,σ |vac� +

1∑

σ ,σ ′=0

dσ ,σ ′ a
†
R,σ a

†
R,σ ′ |vac�

}
aσ ,σ ′ ,bσ ,cσ ,dσ ,σ ′ ∈C
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We analysed different definitions of entanglement for indistinguishable particles in the light of locality. In 
particular, entanglement is a form of quantum correlations between subsystems, and therefore entanglement 
is fully specified only after identifying subsystems. In many of the existing approaches, subsystems are vaguely 
considered to be particles. We have looked for operators whose correlations correspond to each notion of entan-
glement. These operators, that define the subsystems by identifying their measurable quantities, form commuting 
subalgebras, where commutativity entails independence of the subsystems. Nevertheless, we stress that we used 
neither the commutativity nor the algebra structure in our main proofs. Therefore, our results are more general 
than what we need for the analysis of entanglement.

The results of our investigation is that three of the five existing entanglement definitions are incompatible 
with any locality notion formalised as above, because they do not correspond to correlations either between 
particles or between more general and abstract subsystems. Indeed, for any couple of non-trivial operators there 
are non-entangled pure states that show correlations. Therefore, these definitions do not generalise the Werner’s 
formulation of  entanglement11, i.e. the requirement (2) for pure separable states, to the domain of indistinguish-
able particles for any partitioning of the system. Their practical usefulness may be shown in the framework of 
different resource  theories40 that do not share some of their properties with entanglement theory. Thus, our 
results open the way to a deeper investigation of connections between indistinguishable particles entanglement 
and other resource theories.

Our results are relevant when particle indistinguishability cannot be neglected (see Fig. 1). When, on the 
other hand, particles can be distinguished by means of unambiguos properties, i.e. orthogonal states of certain 
degrees of freedom like different position  eigenstates41,49–52, then the standard theory of entanglement applies. 
Since entanglement of distisguishable particles is a resource for quantum technologies, our analysis shed light into 
the possibility to identify individually addressable subsystems when particle distinguishability cannot be imple-
mented, as in miniaturised quantum devices with all degrees of freedom employed in the device functioning.

Methods

Lemma 1 The states |�� that solve Eq. (21) span the whole symmetrised Hilbert space S
(
C2 ⊗C2

)
.

Proof If Eq. (21) is a tautology, its solutions correspond to all states |�� ∈ SEPI which form an overcomplete 
basis of the symmetrised Hilbert space S

(
C2 ⊗C2

)
 . Therefore the statement is proved.

If Eq. (21) is not a tautology, it has at least one and at most four solutions c1 = f (c0) for each fixed c0 and fixed 
A, from the fundamental theorem of algebra. Denote by |�(c0)� ∈ SEPI the state corresponding to one of these 
solutions with c0  = 0 . Consider the rescaling c′0 = �c0 , and assume that the new state |�(c′0)� is proportional 
to |�(c0)� . Therefore |�(c′0)� = �

2|�(c0)� and c′1 = �c1 . We implicitly assumed that c1 = f (c0) and c′1 = f (c′0) 
are the same function, which is always possible because the polynomial PA depends only on the matrix A that 
is not changed.

Equations f (�c0) = f (c′0) = c′1 = �c1 = �f (c0) say that the function c1 = f (c0) is homogeneous of degree 
one and therefore linear. This linear behaviour implies that PA(c0, c1) ∝ c40 , because PA is homogeneous in c0 
and c1 . Therefore PA = 0 implies c0 = 0 , but c0  = 0 by construction. Therefore, |�(c0)� and |�(c′0)� are linearly 
independent. We can iterate this argument with a second rescaling c′′0 = ηc′0 = η�c0 to find a third state linearly 
independent from the previous two. This proves the Theorem, since the symmetrised Hilbert space S

(
C2 ⊗C2

)
 

is three-dimensional.   �

Note that the linear span of solutions |�� of Eq. (21) is not the space of solutions, because PA is not linear in |��.

Lemma 2 Given two rational functions f(x) and g(x) of several variables x = (x1, x2, . . . , xn) such that f (x)g(x) = 0 
for all x in the domain of the two functions, then either f (x) = 0 or g(x) = 0 for all x.

Proof Fix xj�2 so that the two functions f (x) =: f̃x2,...,xn(x1) and g(x) =: g̃x2,...,xn(x1) either are identically zero or 
have a finite number of zeros x1 = x1(x2, . . . , xn) . If both f̃  and g̃ have a finite number of zeros, after fixing xj�2 , then 
there are infinitely many n-tuples x such that f (x)g(x)  = 0 , contradicting the hypothesis of the Lemma.   �

Lemma 3 Given an operator A, if for any separable-III states |�X� ∈ PX · SEPIII and |�Y � ∈ PY · SEPIII

then AX = α PX and AY = α PY.

Proof Equation (37) implies that

with some α independent of the supports of both PX and PY . Without loss of generality, we now focus on the 
first of equations (38), and consider the three cases X = LL, LR,RR with states |�X� represented as discussed 
before Theorem 5.

(37)
��X |AX,X |�X�

��X |�X�
−

��Y |AY ,Y |�Y �
��Y |�Y �

= 0,

(38)
��X |AX,X |�X� = α ��X |�X�,
��Y |AY ,Y |�Y � = α ��Y |�Y �.
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If X = LL , separable-III states |�X� can be represented as in Eq. (5). Since the state norm is 
��X |�X� = |c0|4 + |c1|4 + |c0|2 |c1|2 , and from the arbitrariness of the coefficients c0,1 , all monomials that appear 
only on the left-hand-side of Eq. (38), e.g. c02 c21 , must be multiplied by a vanishing coefficient. Moreover, the 
coefficients of the remaining monomials must match between the left and the right hand sides of Eq. (38). These 
requirements imply ALL,LL = α PLL.

The case X = LR is similar, with the difference that separable-III states |�LR� can be represented as (
c0|0� + c1|1�

)
⊗

(
d0|0� + d1|1�

)
 and ��LR|�LR� =

(
|c0|2 + |c1|2

)(
|d0|2 + |d1|2

)
 . Now, we must compare coef-

ficients of monomials in c0,1 , d0,1 , and their complex conjugates. The result is ALR,LR = α PLR.
The case X = RR is straightforward because all states |�RR� = PRR |�RR� are separable-III. Therefore, Eq. (38) 

must be fulfilled for all bases of the support of PRR that is possible only if ARR,RR = α PRR .   �
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