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Fast and accurate exhaustive 
higher‑order epistasis search 
with BitEpi
Arash Bayat1,2, Brendan Hosking1, Yatish Jain1,3, Cameron Hosking1, Milindi Kodikara1, 
Daniel Reti1,4, Natalie A. Twine1,4 & Denis C. Bauer1,3,4*

Complex genetic diseases may be modulated by a large number of epistatic interactions affecting 
a polygenic phenotype. Identifying these interactions is difficult due to computational complexity, 
especially in the case of higher‑order interactions where more than two genomic variants are involved. 
In this paper, we present BitEpi, a fast and accurate method to test all possible combinations of up 
to four bi‑allelic variants (i.e. Single Nucleotide Variant or SNV for short). BitEpi introduces a novel 
bitwise algorithm that is 1.7 and 56 times faster for 3‑SNV and 4‑SNV search, than established 
software. The novel entropy statistic used in BitEpi is 44% more accurate to identify interactive SNVs, 
incorporating a p‑value‑based significance testing. We demonstrate BitEpi on real world data of 4900 
samples and 87,000 SNPs. We also present EpiExplorer to visualize the potentially large number of 
individual and interacting SNVs in an interactive Cytoscape graph. EpiExplorer uses various visual 
elements to facilitate the discovery of true biological events in a complex polygenic environment.

Complex diseases often have a multi-genic component where the individual SNVs can both independently and 
interactively contribute to the  disease1. The interactive effects are referred to as  epistasis2, 3. Epistatic interactions 
involving three or more SNVs (higher-order) have been suggested to contribute to the ’missing heritability’ 
problem in complex  diseases1, 2. However, detecting such interactions is computationally challenging due to the 
exponential complexity of the  problem4–8. Given a dataset with n SNVs, the exhaustive epistasis search with the 
order of m (number of interactive SNVs) requires 

(n
m

)

 combinations of SNVs to be tested, resulting in a complex-
ity of O(nm) . For example, in a dataset with only 1000 SNVs there are about 0.5, 166 and 41,417 million 2-SNV, 
3-SNV and 4-SNV combinations to be tested respectively.

Due to the exponential complexity of higher-order exhaustive search algorithms, it is not practical to apply 
them to large datasets. However, it is possible to use a filter to reduce the search space to a smaller number 
of SNVs before a more in-depth  analysis9–12. Random  Forest13 is an efficient method for this filter as it pre-
serves higher-order  interactions14. Particularly, a new cloud-based implementation of Random Forest called 
 VariantSpark15 is able to process whole-genome data with  100,000,000 SNVs. It is capable of fitting tens of 
thousands of trees, which enables the interrogation of the search space more deeply, thereby reducing the chance 
of missing important interactions.

Irrespective of the applied filtering methodology, the key to discover and annotate a complete set of interac-
tions is a fast exhaustive search. Non-exhaustive methods suffer from inaccuracy especially in case of ”Strict and 
Pure” Higher-Order  interactions16 where none of the SNVs or subset of SNVs shows any association power. The 
association can be only detected when all interactive SNVs are considered together. There are several algorithms 
for finding pairwise (2-SNV) interactions between SNVs using exhaustive search approaches.

With execution time a major limitation, algorithmic improvements predominantly focus on speedup. For 
example,  TEAM17 uses a minimum spanning tree algorithm to minimize execution time. More recently,  BOOST18 
delivered a 168-fold speed up over  TEAM5 by using bitwise operations for pairwise interactions.

However, as it is likely that more than two SNVs interact, efforts have been made to extend the exhaustive 
search capability to higher-order interactions. For example,  CINOEDV19 offers exhaustive searching for up to 
5-SNV epistasis. However, with a focus on the visualization of the interactions, CINOEDV was not designed for 
speed and its non-parallel implementation in R is 66.5 times slower than BOOST when processing 100  SNVs19 
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(for the 2-SNV search). Also the visualisation offered by CINOEDV is static and incapable of representing 
large interaction graphs. Capable of processing higher-order interactions more efficiently,  MDR20 (Multi-factor 
Dimensionality Reduction) is an extensive epistasis analysis platform offering parallel exhaustive search func-
tionality. Improving on the algorithmic implementation further,  MPI3SNP21 adapts the bitwise approach used 
by BOOST. However, with MPI3SNP being limited to 3-SNV searches, the need for a fast higher-order search 
remains unaddressed.

In this paper, we introduce BitEpi, a fast and accurate exhaustive higher-order epistasis search program writ-
ten in C++, which is able to test up to 4-SNV combination. BitEpi introduces a novel bitwise approach capable 
of handling higher-order interactions, making it the first bitwise optimization method to be able to search for 
4-SNV interactions. Unlike BOOST and MPI3SNP, which code each bi-allelic SNV to 3 bit-vectors, our algorithm 
uses 1 bit-vector to store each SNV, enabling more efficient use of modern CPUs. Note that similar to all other 
exhaustive search algorithms, BitEpi tests all possible combinations of SNVs. BitEpi does not reduce the number 
of m-SNV combinations but the time spent at each test. Furthermore, BitEpi uses entropy statistics, which has 
been demonstrated to better fit sparse contingency tables in epistasis  analysis19, 22, 23. We also provide a Python 
program that computes p-value for the statistics used in BitEpi.

As polygenic diseases may be driven by large numbers of individual SNVs as well as interactive SNVs, we 
developed EpiExplorer to visualize this interplay. EpiExplorer translates a list of interactions into a dynamic 
 Cytoscape24 graph. It offers a graphical user interface for ease of use and can perform various filtering and 
highlighting on the graph. Visual elements such as node shape, colours and size are used to represent different 
genomic or statistic features, such as SNV annotations or the interaction effect size.

Material and methods
Processing each combination of SNVs includes two steps: the counting step to find the frequency of genotype 
combinations and the power analysis to compute the association power and the interaction effect size. The 
counting step is responsible for most of the execution time. Section “Counting” describes a bitwise process to 
speed up computing the contingency table for up to four SNVs. The accuracy to identify true epistatic interac-
tions depends on the method used for power analysis. The statistics used to evaluate association power and the 
interaction effect size from the contingency table are then described in “Statistics”. Section “p-value calculation” 
describes how p-values are computed for the statistics used in BitEpi and “Visualization” explains the features 
of EpiExplorer. We elaborate on our experimental setup in “Experimental setup”.

Counting. The input to BitEpi is a set of bi-allelic SNVs where there are three possible genotypes (0/0, 
0/1 and 1/1). Multi-allelic SNVs should be broken into multiple bi-allelic SNVs before the analysis (i.e. using 
bcftools norm25). Given m is the order of the analysis (number of interactive SNVs), the size of the contin-
gency table is 3m rows and two columns. Each row represents a different genotype combination for the selected 
SNVs. Columns represent the case and the control cohorts. Each entry of the table is the number of samples with 
a specific genotype for the selected SNVs in the case or control cohort. Table 1 illustrates an example contingency 
table for a pair of SNVs: A and B. The fifth row of the table explains that there are 34 cases and 46 controls with 
a heterozygous genotype for both A and B.

To speed up the process of counting samples in each cohort with the same genotype, we have implemented a 
fast bitwise algorithm. Bitwise representation of genotypes allows the genotypes of multiple samples to be stored 
in a machine word (64-bit) and processed in an operation (bit-level parallelization). In our algorithm, a genotype 
is encoded using two bits (i.e. 00, 01 and 10 for 0/0, 0/1 and 1/1 respectively) and stored in a byte (8-bits). The 
remaining 6 bits are set to 0. Thus, eight samples can be stored in a 64-bit machine word (the parallelization factor 
is eight samples per operation). Each SNV is stored in 1 bit-vector (1-Vector bitwise approach). Our algorithm 
uses bitwise SHIFT and OR operators to combine genotypes of up to 4 SNVs. In the resulting vector, each byte 
represents the genotype of all m SNVs for a sample. Thus, the counting process loops through the resulting vec-
tor and counts the frequency of each byte.

Since 2-bit encoded genotypes are combined in an 8-bit, the algorithm is limited to combining a maximum of 
4 ( 8

2
 ) SNVs. It is possible to modify the implementation such that it combines eight genotypes in a 16-bit machine 

word (2 bytes) but this would double the theoretical algorithm complexity because the resulting vector would 

Table 1.  An example contingency table for 2-SNV interaction of two SNVs: A and B.

A B Case Control

0/0 0/0 23 424

0/0 0/1 263 423

0/0 1/1 534 634

0/1 0/0 87 45

0/1 0/1 34 46

0/1 1/1 56 345

1/1 0/0 345 34

1/1 0/1 56 64

1/1 1/1 456 547
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be double the length and a linear reading of it would take twice as long. The current solution hence represents 
the optimal trade-off between speed and complexity.

Figure 1 is an example that shows the binary representation of genotypes of four different SNVs: A, B, C and 
D across eight samples (four cases and four controls). The second, third and fourth SNVs are then shifted to the 
left by 2, 4 and 6 bits, respectively. Next, all four SNVs are combined using bit-wise OR operations. These two 
steps are also shown in Fig. 1. In the resulting array, each byte represents a genotype combination for a sample 
(a row in the contingency table). For example, 00010010 (for sample S4) represents the row in which D and B 
have the 0/0 genotype, C has the 0/1 genotype and A has the 1/1 genotype. To form the contingency table, BitEpi 
loops through the OR vector and counts the occurrences of each byte.

BitEpi eliminates the shift operations at each test by pre-computing 2, 4 and 6 bit shifted versions of the entire 
dataset (producing three extra copies) and storing them in memory before the analysis. Since the number of SNVs 
for an exhaustive epistasis analysis is limited, the redundancy in memory usage and the time to pre-compute 
shifted datasets are negligible.

Our 1-Vector bitwise approach is different from the 3-Vector bitwise approach used in BOOST and MPI3SNP. 
Algorithms 1 and 2 illustrates the 3-Vector and 1-Vector bitwise approaches to compute one column of the 
contingency table in a m-SNVs interaction (i.e case column or control column). Both cohorts can be processed 
using the same algorithm.

Here, C represent a column of the contingency table where C[i] is the number of samples in the ith row of the 
table (i starts from 0). {P[1] · · ·P[m]} represent m SNVs and R is a temporary variable (a 64-bit machine word).

In Algorithm 1, each SNV is encoded into three bit-vectors, v[1], v[2] and v[3]. Each bit-vector corresponds 
to a genotype (0/0, 0/1 and 1/1 respectively). For P[i], if the jth sample has the 0/1 genotype, then the jth bit in 
P[i].v[2] is set to 1. Each bit-vector is stored in an array of 64-bit machine words where each word contains the 
information for 64 samples (1 bit per sample). Thus the parallelization factor is 64 samples per operation. P[i].v[j]
[k] represents the kth word of the jth vector of the ith SNV. There are ⌈ s

64
⌉ words in each vector where s is the 

number of samples in the cohort (i.e. cases or controls). The core operation of Algorithm 1 includes m bit-wise 
AND operations, a BitCount operation to count number of set bits (1’s) in the result of AND operations (R) as 
well as an ADD operation. In this program there are m nested loops each iterating from 1 to 3. xi is the iterator 
for the ith loop. These loops result in the complexity of 3ms to perform each test.

Figure 1.  The bitwise representation of four example SNVs (A, B, C, and D) and the shifted bit-vectors as well 
as combined bit-vector.
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In contrast, our proposed 1-Vector bitwise method shown in Algorithm 2 does not have the 3m exponential 
complexity The downside of this is a lower parallelization factor (8 compared to 64). In Algorithm 2, Pk[i].v[j] 
represents the jth word in the bit-vector of ith SNV shifted k bits to the left. The core operation of the algorithm is 
m bitwise OR operation and 8 increment operations. R.byte[b] represents bth byte in R (R consist of eight bytes).

While lower bit-level parallelisation slows down BitEpi’s counting algorithm (Algorithm 2) compared to 
BOOST’s and MPI3SNP’s counting algorithm (Algorithm 1), the absence of the exponential component ( 3m ) in 
complexity of Algorithm 2 makes it overall faster than Algorithm 1, for m > 2 (as evident by the experimental 
results Table 2).

Statistics. BitEpi computes two metrics for each combination of SNVs: the combined association power 
( β ) and the interaction effect size ( α ). While α precisely identifies the interaction between SNVs, β is needed to 
compute α.

β is an entropy metric designed based on the concept of set-purity in the Gini-Index. The purity of a set p is 
computed using Eq. (1) where x and y represent the number of case and control samples in the set. Each row of 
the contingency table represents a set of samples. The weighted average purity of these sets represents the com-
bined association power of the given contingency table ( β ). The weight for each set is the ratio of the number of 
samples in the set to the total number of samples. Assuming xi and yi represent the number of case and control 
samples in the ith row of the contingency table, the combined association power is computed using Eq. (2) where 
xi+yi
n  and xi

2+yi
2

(xi+yi)2
 are weight and purity of ith set (row) respectively.

(1)p =
x2 + y2

(x + y)2
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A high combined association power of a set of SNVs does not necessarily indicate a strong interaction between 
those SNVs. Note that the combined association power is always greater or equal when adding an SNV to the set 
(Eq. (3) proven in the end of “Supplementary Data”). For example, in the left-most graph of Fig. 2, βAB , βBC and 
βABC are all high. However, they are all driven by the high value of βB . There is no strong interaction between A 
and B or B and C as combining B with A or C only slightly increases the association power of SNV B. In a similar 
fashion combination of ABC slightly increases the association power of BC (no strong 3-SNV interactions).

(2)β =

3m
∑

i=1

(

xi + yi

n

)(

xi
2 + yi

2

(xi + yi)2

)

(3)β(a1,...,am ,am+1) ≥ β(a1,...,am)

Table 2.  The execution time (in s) of epistasis algorithms for 2000 samples and different numbers of SNVs. 
The process is killed if it takes more than an hour to complete and the execution time is not measured. If the 
execution time is less than a second it is reported as 1 in this table. All programs are executed with 16 parallel 
threads. Highlighted execution times are used to compute the average test time (see Fig. 3).

Order of epistasis Algorithm

Number of SNVs

100 200 500 1000 2000 5000 10,000 20,000 50,000

2-SNV

BitEpi 1 1 1 1 1 4 11 40 227

BOOST 1 1 1 1 1 1 4 15 56

MDR 1 1 2 6 29 148 390 2619 –

3-SNV

BitEpi 1 1 4 28 221 – – – –

MPI3SNP 1 1 6 47 375 – – – –

MDR 3 14 212 2121 – – – – –

4-SNV
BitEpi 1 15 460 – – – – – –

MDR 51 834 – – – – – – –

Figure 2.  Four examples illustrating the effects of SNVs A, B and C. Bar height (blue and orange together) 
represent the maximum association power ( β ), while orange visualizes the interactional component ( α ) of 
the total association. From left to right: (B) SNV B strongly associated with the phenotype and none of the 
2-SNV and 3-SNV combinations add considerably to the association power of SNV B. In this case, there is no 
interaction. (AC) Neither of SNVs shows strong association power but the combination of AC increases the 
association power of SNV A significantly. Adding B to the pair of AC has a minor effect on the association 
power. In this case, A and C strongly interact with each other. (ABC) Neither of SNVs shows strong association 
power. Also, 2-SNV combinations do not increase the association power of SNVs considerably. However, a 
combination of ABC leads to a significant increase in the association power. In this case, there is a strong 3-SNV 
interaction of ABC. (AC and ABC) Neither of SNVs shows strong association power but the combination of 
AC increases the association power of SNV A significantly. Adding B to the pair of AC further increases the 
association power of AC. In this case, there is a strong 2-SNV interaction of AC and a strong 3-SNV interaction 
of ABC.
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In epistasis analysis, we are interested in the set of SNVs where the association power is driven by the interac-
tion between all SNVs in the set, as opposed to an individual SNV or through additive effects of SNV subsets. 
Thus in computing α , we look at the gain in the association power that presents only when considering all SNVs 
together. For example, to compute αABC , we subtract from βABC , the maximum combined association power 
of any subset of (A,B,C). Since we know that max(βAB,βAC ,βBC is greater or equal to max(βA,βB,βC , we only 
need to compute the former. In general, to compute α for a m-SNV interaction, we should find the maximum β 
of all m− 1-SNV combinations.

To formulate α computation, assume Gm is a set of m SNVs (a1, a2, . . . , am) and Gm−1
i  is Gm excluding ai (i.e. 

Gm−1
i  is a subset of Gm ). Then, αGm is computed using Eq. (4). BitEpi computes α and β for individual SNVs too 

(normal GWAS). To compute α for an individual SNV βG0 is computed as the purity of the set that includes all 
samples.

In order to compute αGm , the program needs to compute βGm−1
i

 . Since there could be common SNVs between 
two sets of m SNVs, the same βGm−1

i
 should be recomputed multiple times. For example, to compute α(A,B,C,x) 

where x could be any SNV in the dataset other than A, B and C, β(A,B,C) should be recomputed. This results in a 
huge computational redundancy. To avoid this redundancy, prior to computing αGm , BitEpi computes all lower-
order β s ( βGm−1 ) and stores them in a multi-dimensional array. Using a multi-dimensional array to store β for 
all possible (m− 1)-SNV combinations results in memory redundancy (memory is allocated but not used). 
However, lower order β values are accessed frequently and a multi-dimensional array allows for the fastest 
retrieval.

BitEpi can perform any combination of m-SNV α and β test in the same analysis where m could be 1, 2, 3 or 
4. There is a special mode of operation called best. For each SNV, the best mode lists the 2-SNV, 3-SNV and 
4-SNV interaction with the highest α . The user can choose to list the significant interactions with the highest α 
or β . This can be done by identifying either the number of top interactions to be reported or a threshold on α or 
β (all interactions that exceed the threshold will be reported).

BitEpi is implemented in C++ with multi-threading. Each SNV combination is independent of other SNV 
combinations, thus SNV combinations can be processed on different machines or processors. We currently 
implement an efficient multi-threading that balances the number of SNV combinations to be processed on each 
processor of a High-performance compute node.

It includes a Python wrapper so that it can be installed using pip and used in a Python program. An R script 
is provided to turn BitEpi best output to a static igraph graph and a dynamic Cytoscape graph.

p‑value calculation. The BitEpi code-base includes a Python program that computes p-values for the given 
set of interactions. Since the underlying distribution for the α and β statistics are unknown, we create the Null 
distribution empirically for each SNV or SNV interaction. This is done by permuting the phenotype many times 
and computing α and β value on the permuted data to create a discrete distribution. An empirical p-value can 
be calculated by counting how often the value for the permuted data is equal or larger than the value on the real 
data and divide it by the number of permutations. For example, if we permute the phenotype 1000 times and in 
20 instances the computed α is equal or greater than the α computed for the actual phenotype, then the p-value 
is 20/1000 = 0.02 . However, this approach is not suitable for the small p-values we expect. Instead of calculating 
the simple ratio, we fit a continuous probability distribution to the discrete distribution and compute the p-value 
as 1− CDF(observation) , where CDF is the Cumulative Distribution Function. Note that we use the one-way 
statistics since the only greater value of α and β are considered extreme.

Visualization. EpiExplorer is able to visualize large numbers of SNV interactions as well as individual SNV 
associations. It takes lists of interactions and their statistics along with the genomic annotations of the SNVs 
involved in the interactions. Together, they are transformed into a Cytoscape graph. Cytoscape is a visualiza-
tion platform designed to work with large complex graphs such as the complete set of epistatic interactions of 
complex genomic phenotypes. It provides useful functionalities such as various layout (placement of nodes) 
algorithms as well as styling tools. Visual elements of nodes (shape, colour, size) and edges (colour, thickness) 
can be used to represent different genomics or statistical features of SNVs or the interaction between them. For 
example, the size of the node can represent the interaction effect size and the shape of the node can represent if 
the SNV is in a protein-coding region or not.

EpiExplorer uses Cytoscape Python API to take control of the plot and change the style of it. More impor-
tantly, it provides incremental filtering and highlights a feature that accepts complex queries while keeping the 
layout fixed. For example, all non-coding SNV nodes in the graph can be hidden, while making all micro-RNA 
SNV nodes visible (put them back to graph). Visualizing them relative to all other nodes, which will remain in the 
same place, allows for investigating the interaction of micro-RNA and protein-coding genes. From there, SNVs 
of a specific chromosome can be highlighted by greying out the rest from the graph to produce a publication-
ready figure. Note that, such a complex query is only available through EpiExplorer but not Cytoscape. Though 
this capability is enhanced by Cytoscape offering a range of different layout algorithms, such as SNVs grouped 
by chromosomes, or the functionality of the region they are located at (i.e. Exone, Intron, Gene name, MIR etc), 
sorted based on their genomic location or their relevance to the phenotype.

Besides the obvious way of representing interactions where SNVs are nodes and interactions are edges, 
EpiExplorer offers a second visualization specifically geared towards higher-order interactions. In this second 
mode, both SNVs and interactions are represented as nodes of the graph. Each interaction node is connected to 

(4)αGm = βGm −
m

max
i=1

βGm−1
i
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all the corresponding SNV nodes. This mode is suitable for a more in-depth study focusing on a smaller subset 
of interactions.

Experimental setup. Several synthetic datasets are used to evaluate the performance and accuracy of 
BitEpi and compare it with BOOST, MPI3SNP, and MDR.

To test the accuracy (detection power), we use  GAMETES16 to generate ground truth datasets (where the 
interactive SNVs are known). We create ten simulated 2-SNV epistasis models with different heritability and 
Minor Allele Frequency (MAF = 0.01 and 0.5) of the interactive SNVs (Pairwise Models: PM1–PM10), see Sup-
plemental Table 4. Each model includes one 2-SNV interaction. We also create nine epistasis models (Triplet 
Models: TM1–TM9) each of which includes one 3-SNV interactions (see Supplemental Table 5). For each model, 
100 datasets are generated each with 100 SNVs and 2000 samples (1000 cases and 1000 controls). To compute 
the detection power of an algorithm (A) for a model (M), we process all 100 datasets generated from model 
M using algorithm A and count how many times the known interactive SNVs are ranked first (i.e. reported to 
have the highest association power). Any interactions ranked above the known interaction (i.e. reported with 
an even higher association power) is considered as false positive. Model files are in the github repository and 
model parameters are available in “Supplementary Data”.

To test execution time, we create much larger datasets by randomly assigning genotypes and phenotypes to 
samples. Each dataset consists of a different number of SNVs and samples (see Supplemental Tables 1, 2 and 3 
as well as Table 2).

To benchmark the performance of BitEpi against existing tools and test a wider range of epistatic mod-
els, we also compare on previously published synthetic  datasets26. These datasets include 12 Marginal Effect 
(ME1–ME12) and 40 No Marginal Effect (NME1–NME40) epistasis models where each model includes one 
2-SNV interaction. For each epistasis model, 100 datasets each with 100 SNVs and 1600 samples (800 case and 
800 controls) are simulated.

All tests were performed on a machine with dual 10 core Intel Xeon E5-2660 V3 processors running at 
2.6 GHz with 25 MB cache and 128 GiB of memory with SUSE Linux Enterprise Server 12 SP4. To compile BitEpi 
we used gcc version 4.8.5 and glibc version 2.22, no additional libraries were used.

Wellcome Trust Case Control Consortium. To test BitEpi on real datasets, we compare the performance 
against BOOST on genomic data from the Wellcome Trust Case Control  Consortium27 (WTCCC). For this com-
parison, we perform an exhaustive search for pairwise interaction in seven case/control datasets (type 1 diabe-
tes, type 2 diabetes, rheumatoid arthritis, inflammatory bowel disease, bipolar disorder, hypertension, coronary 
artery disease). Each dataset consists of two control cohorts (National Blood Service and British Born in 1958) 
and one case cohort. In the data preparation, SNPs with Minor Allele Frequencies (MAF less than 5%) and 
in Linkage-Disequilibrium (LD with r2 = 0.2 ) are removed. Outlier samples detected by principal component 
analysis are also removed. The list of samples ( ∼ 4900 per dataset) and SNPs ( ∼ 87,000 per dataset) used are 
provided in “Supplementary Data File”  (Plink28 bim and fam file format).

For comparing BOOST and BitEpi on this dataset, we follow the recommended Plink epistasis pipeline for 
calculating p-values, which starts with generating boost data by processing the complete dataset with –fast-
epistasis (BOOST) and then listing SNPs that are involved in significant interactions (i.e. top 1000 inter-
actions). Then –epistasis analysis is performed to compute Logistic-Regression p-value for all the pairs. 
Note that Logistic-Regression analysis is very slow and cannot be applied to a large number of SNPs, despite the 
multi-threaded implementation of BOOST (Plink v1.9 epistasis  fast28). As illustrated in Supplemental Fig. 3, to 
calculate p-values for BitEpi we replace the BOOST score with BitEpi pairwise α analysis. We then compare the 
resulting p-values from the Logistic-Regression analysis at the end of both pipelines.

Results
BitEpi is faster for higher‑order interactions. We compare the execution time of BitEpi’s α test against 
the other state-of-the-art exhaustive epistasis search algorithms, BOOST, MPI3SNP and MDR. Note that 
BOOST and MPI3SNP perform 2-SNV and 3-SNV analysis respectively, while MDR is the only other method 
besides BitEpi to process different order of interactions.

As shown in Table 2, BitEpi performs the fastest out of all surveyed methods, this is because the 1-Vector 
bitwise method does not have exponential complexity (See “Counting”). Specifically, BitEpi performs up to 1.7 
times faster than MPI3SNP for 3-SNV searches (2000 SNVs dataset) and up to 65, 76 and 56 times faster than 
MDR for 2-SNV, 3-SNV and 4-SNV searches (20,000 SNVs, 1000 SNVs, and 200 SNVs datasets), respectively. 
It is scalable to the largest dataset (50,000 SNVs), with BOOST the only other method to also achieve this. Here, 
BOOST’s specialized 2-SNV algorithm is up to four times faster than BitEpi on this specific use case. Note that 
we report the largest dataset the algorithms were capable of processing within the given compute resources and 
time-cutoff (1 h).

BitEpi’s observed speedup over MPI3SNP is because the 1-Vector algorithm in BitEpi is independent of the 
order of the epistasis interaction. This allows BitEpi to perform the individual interaction tests at the same speed, 
irrespective of whether a 2-SNV, 3-SNV or 4-SNV interaction is tested. To quantify the improvement, we compute 
the test time for each order. As the order of epistasis increases, the number of tests that need to be performed 
also increases. We hence normalize execution time by the number of tests performed to be able to directly com-
pare the individual 2-SNV, 3-SNV and 4-SNV tests between 3-Vector and 1-Vector bitwise algorithms. We 
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compute the average test time as 









Execution Time × Number Of Threads
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 . Where 
(

n
m

)

 is the number of m-SNV tests 

in a dataset with n SNVs for the datasets highlighted in Table 2.
Figure 3 shows that the 1-Vector approach used in BitEpi can keep the execution time constant (2.7–2.9 µ s) 

for all orders tested. Please note, the reported execution time per test comprises the construction of the contin-
gency table (first step) as well as performing the statistical test on the contingency table (second step). While the 
1-Vector algorithm keeps the execution time of the first step constant, the complexity of the statistical test in the 
second step is exponential with the number of SNVs in the interaction (as it increases the number of rows in 
contingency table). However, the statistical test is executed on a small contingency table while the first step has 
to processes a large array of genotypes for thousands of samples. The influence of the exponential component 
on the overall runtime is hence negligible.

BitEpi has a 1.7 (3-SNV) and 4.7 (4-SNV) fold speedup compared to the 3-Vector method used in BOOST 
and MPI3SNP. Specifically, the 2-SNV test in BOOST takes 0.7 µ s on average, while the 3-SNV test in MPI3SNP 
takes 4.5 µ s on average. As there are no 4-SNV bitwise methods published to date, we extrapolate from the 3-SNV 
searches resulting in execution time of 4.5 µs ×3 = 13.5 µ s. The complexity of the 3-Vector bitwise method 
grows exponentially with the number of interactive SNVs ( 3m ). For completeness, we list the experimentally 
determined runtime for the only other 4-SNV method, MRD, which does not use bitwise procedures, which is 
substantially slower in all categories.

BitEpi also scales linearly with the number of samples, as shown in Supplemental Table 2 (total execution time 
with increase samples) and Supplemental Fig. 1b (normalized by samples). However, BitEpi scales exponentially 
with the number of SNVs, v, resulting in O(v2) , O(v3) and O(v4) for 2-SNV, 3-SNV and 4-SNV, respectively, 
shown in Supplemental Table 1 (total execution time) and Supplemental Fig. 1a (normalized execution time per 
SNV). Both execution times can be curbed by parallelization, as shown in Supplemental Table 3 and Supplemental 
Fig. 1c, in which using 2, 4, 8 and 16 CPUs results in a non-saturated, near-linear speed-up.

BitEpi is more accurate in detecting interactions. To compare the accuracy of BitEpi with BOOST 
and MPI3SNP, we compute the detection power for all models simulated by  GAMETES16 including models 
simulated by  others26. Figure 4a shows the 2-SNV detection power of BitEpi and BOOST for the models we 
simulated. Except for the Pairwise-model 1 (PM1) where both methods result in poor detection power, BitEpi 
performs better than BOOST (i.e. between 1.22 and 1.33 times more accurate) and reaches 100% detection 
power for PM7–PM10 Models.

Figure 4b shows the 3-SNV detection power of BitEpi and MPI3SNP. BitEpi performs better than MPI3SNP 
for Triplet-models TM2–TM6 Models (i.e. between 1.56 and 2.09 times more accurate), and equivalent for the 
rest. Numerical comparisons are available in Supplemental Table 4 (2-SNV) and Supplemental Table 5 (3-SNV).

We also compute the 2-SNV detection power of BitEpi and BOOST for 12 ME (Marginal Effect) and 40 NME 
(No Marginal Effect) epistasis models simulated  in26. Supplemental Fig. 2 illustrates the comparison result. 
Numerical comparisons are available in Supplemental Tables 6 and 7. BitEpi’s detection power for ME models 
is 44% higher than BOOST’s on average. For NME models, BitEpi’s average detection power is the same as 
BOOST’s.

Out of the 71 epistasis models we have evaluated, BitEpi performs better than other methods in 24 cases, 
similar to other methods in 39 cases and is less accurate than other methods in eight cases. This indicates that 
due to the accurate isolation of interaction effect sizes, BitEpi eliminates false positives more effectively.

Figure 3.  The average runtime per test for 2, 3, and 4-SNP interactions, comparing the 3-Vector bitwise 
approach (left) with BitEpi’s 1-Vector bitwise approach (right). The expected 4-SNV average test time with 
the 3-Vector bitwise approach is computed as MPI3SNP × 3 . The average test time is computed based on the 
highlighted execution time in Table 2. Error bars represent standard error.
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p‑value and visualization. To demonstrate the capability of our p-value calculation and visualization pro-
gram (EpiExplorer) we created a synthetic dataset using GAMETES where the phenotype is a function of three 
truth variables: an individual SNV (A), a 2-SNV (B–C) and a 3-SNV (D–E–F) interactions (E123 Dataset). We 
have processed the dataset with BitEpi to list all significant 1,2, and 3-SNV associations. Figure 5a shows the α 
statistic for the top ten variables of each order (sorted by α ) as well as the α statistic of ten randomly selected 
variables for each order as a comparison. The highlighted bar represent the truth variable for each order.

We next calculated the p-values, to quantify the significance of the clear separation seen between the α sta-
tistics of the truth variables and the noise. We plot the −log10 transformed p-value in Fig. 5b. The significance 
threshold 0.05 was set and p-values corrected for multiple testing using Bonferroni correction with 100, 4950, 
and 161,700 tests, respectively. This is because there are n−1

2
 times more 2-SNV combinations than 1-SNVs 

Figure 4.  Compare detection power of BitEpi with BOOST and MPI3SNP for 2-SNV and 3-SNV analysis.

Figure 5.  α and p-value for the top ten variables and ten randomly selected variables of E123 dataset.
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combinations, where n is the number of SNVs, and n−2
3

 times more 3-SNV combinations compared to 2-SNV 
combinations.

Among the top ten evaluated interactions, only the truth variable is statistically significant for 1-SNV and 
2-SNV. For the 3-SNV interaction, another variable crossed the significance threshold (ABC), besides the true 
interaction between DEF. Upon closer inspection, we determined this to be an artifact in the simulated data, 
where only the truth variables are modelled explicitly. As a result, other interactions can have an association 
with the phenotype by random chance and the probability of this occurring increases with the number of SNV 
combinations that are included in the dataset, i.e. 161,700 3-SNV combination when there are only 1000 SNV 
in the dataset.

To benchmark BitEpi against other state-of-the-art tools, we also process the E123 dataset with BOOST and 
MPI3SNP. BOOST’s p-values for the top 10 2-SNV interactions are similar to those produced by BitEpi (Fig. 5b). 
However, MPI3SNP’s entropy-based method incorrectly detects the combination of A, B and C as the strong-
est triplet interaction (Fig. 5a). This is the same combination that also crossed the threshold in BitEpi’s p-value 
calculation. As explained, it may have a weak association by accident, but should not have been prioritized over 
the explicitly modeled DEF interaction.

For comparison, we also show the α and p-values for ten randomly selected variables of each category, dem-
onstrating the noise level of the data.

We use EpiExplorer to provide a visual representation of Fig. 5a, highlighting the identified interactions. As 
discussed, the corresponding dataset contains all 1-SNV, 2-SNV and 3-SNV interactions with A, BC, and DEF 
as the respective truth variables in each category. In Fig. 6, we plot the top five interactions in each category as 
determined by α , as well as the other SNV that are part of the interactions, resulting in five blue triangles (3-SNV), 
five red diamonds (2-SNV) and five larger green circles (1-SNV), as well as 14 other involved 1-SNV interactions 
(small green circles). The interaction with the biggest α according to Fig. 5a is between DEF and is also visualized 
as the largest item in Fig. 6. The second and third largest element is A and BC and visualized with a size according 
to their α value. The remaining unlabeled interactions visualize the remaining non-truth interactions in the top 
5, which result in markedly smaller graph elements. The exception is the earlier discussed ABC interaction and 
another 3-SNV interaction, which have a similar α value as A and BC (Fig. 5a). It is hence important to combine 
the visualization with the p-value calculation to identify interactions of importance in a discovery scenario.

Real dataset. Demonstrating BitEpi’s capabilities on a real dataset, we compare BitEpi to BOOST on seven 
case/control datasets from WTCCC. To make the two methods directly comparable, we use BOOST and BitEpi 
results inside the 2-step Plink-based epistasis framework. We compare the resulting Logistics-Regression p-value 
of the top 100 pairs in each dataset.

Figure 7 shows that both pipelines detect interactions with p-value less than 10−9 . For pairs that are exclusively 
detected by either pipeline, BitEpi performs slightly better and detects pairs with lower Logistics-Regression 
p-value, which confirms BitEpi’s applicability to real-world data. It also indicates that the α score is a reliable 
proxy for screening large scale datasets.

Discussion
We demonstrated that the current best practice for exhaustive epistasis search tools (BOOST, MPI3SNP) can 
be improved upon in both speed and accuracy. While heuristics such as Random Forest remain necessary to 
reduce the initial search space, BitEpi is then capable of detecting higher-order interactions of up to 4-SNV 
exhaustively, resulting in an up to 1.7 and 56 fold faster execution time than other surveyed methods for 3-SNV 
and 4-SNV searches, respectively.

BitEpi uses a novel 1-Vector bitwise approach that is designed for higher-order analysis and allows modern 
64-bit machines to be used more effectively than the previous 3-Vector bitwise approaches. It also isolates the 
interaction effect size using an entropy-based metric to eliminate false positives. BitEpi visualizes the results in 
an interactive graph that can be dynamically scaled and rearranged, streamlining interpretation and publication.

Future improvements will cover the use of epistatic genomic relationship matrix (EGRM) to control for the 
effect of  diversity29, as well as more advanced visualization approaches using either d3 or Cytoscape JavaScript 
library for dynamic web-based visualization. We also plan to add an end-to-end integration with cloud-based 
Random Forest implementation  VariantSpark15, to enable epistasis search within the ultra-high dimensional 
data of whole-genome sequencing cohorts.

Figure 6.  The example plot of the top five variables in 1-SNV, 2-SNV and 3-SNV category.
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Data availability
Codes and data are publicly available on GitHub https:// github. com/ aehrc/ BitEpi and https:// github. com/ aehrc/ 
EpiEx plorer. BitEpi is also available on CodeOcean https:// doi. org/ 10. 24433/ CO. 36710 84. v1.
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