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Integrative analysis reveals 
the prognostic value and functions 
of splicing factors implicated 
in hepatocellular carcinoma
Yue Wang, Fan Yang, Jiaqi Shang, Haitao He & Qing Yang*

Splicing factors (SFs) play critical roles in the pathogenesis of various cancers through regulating 
tumor-associated alternative splicing (AS) events. However, the clinical value and biological functions 
of SFs in hepatocellular carcinoma (HCC) remain obscure. In this study, we identified 40 dysregulated 
SFs in HCC and established a prognostic model composed of four SFs (DNAJC6, ZC3H13, IGF2BP3, 
DDX19B). The predictive efficiency and independence of the prognostic model were confirmed to 
be satisfactory. Gene Set Enrichment Analysis (GSEA) illustrated the risk score calculated by our 
prognostic model was significantly associated with multiple cancer-related pathways and metabolic 
processes. Furthermore, we constructed the SFs-AS events regulatory network and extracted 108 
protein-coding genes from the network for following functional explorations. Protein–protein 
interaction (PPI) network delineated the potential interactions among these 108 protein-coding 
genes. GO and KEGG pathway analyses investigated ontology gene sets and canonical pathways 
enriched by these 108 protein-coding genes. Overlapping the results of GSEA and KEGG, seven 
pathways were identified to be potential pathways regulated by our prognostic model through 
triggering aberrant AS events in HCC. In conclusion, the present study established an effective 
prognostic model based on SFs for HCC patients. Functional explorations of SFs and SFs-associated 
AS events provided directions to explore biological functions and mechanisms of SFs in HCC 
tumorigenesis.

Hepatocellular carcinoma (HCC) is a kind of malignancy originating from liver parenchymal cells, accounting 
for 75–90% of primary liver cancer. Currently, HCC remains the major cause of morbidity and mortality among 
malignant cancers worldwide1,2. Hepatitis B/C virus infection, smoking, drinking, exposure to aflatoxin and 
thorium dioxide are known risk factors of HCC3,4. Due to the asymptomatic nature of HCC, most individuals 
were diagnosed at advanced stages, with high rates of metastasis, recurrence, and mortality, even more with 
limited treatment options5. In addition, conventional clinicopathological characteristics cannot precisely predict 
the prognoses of HCC patients due to the heterogeneity and pathogenic complexity of HCC6. It is valuable to 
clarify molecular mechanisms underlying the pathogenesis of HCC and develop novel molecules to be diagnostic, 
therapeutic, and prognostic targets for HCC patients.

Alternative splicing (AS) is a vital post-transcriptional regulation mechanism in eukaryotes. The process of 
splicing is mediated by core spliceosome and hundreds of splicing-associated proteins, which were classified as 
splicing factors (SFs)7. Generally, SFs orchestrate various RNA splicing via recognizing cis-regulatory elements 
within the alternative exons or flanking introns8. The expression alternations or mutations of SFs can result in 
aberrant landscape of AS events and further affect downstream protein production9. As important regulators of 
AS events, SFs play essential roles in the occurrence and progression of HCC. Generally, mutations of SF genes 
occur mutually exclusive of each other10. However, the global expression patterns of SFs in HCC remain unclear. 
Previous studies mainly focused on the biological functions and clinical value of specific SFs. For example, 
MBNL3, an oncofetal splicing factor, is upregulated in HCC tissues and induces exon 4 inclusion of lncRNA-
PXN-AS1. The transcript of lncRNA-PXN-AS1 containing exon 4 can increase PXN mRNA expression through 
binding to the 3’ UTR of PXN mRNA and protecting it from miR-24 induced degradation, thereby promoting 
tumorigenesis of HCC and indicating poor prognosis of HCC patients11. SF3B1, the central spliceosome com-
ponent, is overexpressed in HCC. The overexpression of SF3B1 alters the splicing pattern of KLF6 and is closely 
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correlated with poor prognosis of HCC patients12. It is of great significance to explore the overall expression 
abnormalities, prognostic value and corresponding biological functions of SFs in HCC.

In this study, we systemically analyzed the expression alterations of SFs and their prognostic values in HCC 
using gene expression profile downloaded from liver hepatocellular carcinoma (LIHC) of the Cancer Genome 
Atlas (TCGA). A prognostic model based on SFs for HCC patients was constructed, and its prognostic capac-
ity was validated to be good. Gene set enrichment analysis (GSEA) was conducted to investigate underlying 
mechanisms associated with the prognostic model. In addition, we identified aberrant spliced AS events and 
prognostic AS events in HCC. The correlations between the 4 SFs in the model and prognostic AS events were 
analyzed to construct SFs-AS events regulatory network. Then functional analysis of protein-coding genes of AS 
events involved in the SFs-AS regulatory network further indicated the potential biological functions of AS events 
regulated by SFs in the prognostic model. Taken together, our present study provided a novel prognostic indicator 
for HCC patients and explored the potential functions of SFs implicated in HCC through regulating AS events.

Materials and methods
Data collection and processing.  Gene expression counts data and clinical information of LIHC were 
downloaded from TCGA data portal (http://​tcgad​ata.​nci.​nih.​gov/​tcga/)13. The gene counts data were con-
verted and subsequently standardized using R package “DESeq2”14, from which mRNA expression profile were 
obtained and annotated according to gene annotation file (GTF) of human downloaded from “http://​ftp.​ensem​
bl.​org/​pub/​relea​se-​103/​gtf/​homo_​sapie​ns/”. A total of 404 SF genes were identified through aggregating with the 
following gene sets: (1) SF-related gene sets (KEGG_SPLICEOSOME, REACTOME_MRNA_SPLICING, and 
REACTOME_MRNA_SPLICING_MINOR_ PATHWAY) downloaded from version 7.0 of Molecular Signa-
ture Database (MSigDB, org/gsea/msigdb/index.jsp); (2) SF-related genes downloaded from SpliceAid 2 (http://​
193.​206.​120.​249/​splic​ing_​tissue.​html)15. The list of 404 SFs were provided in Supplementary Table S1. Then the 
expression profile of SFs was extracted from mRNA expression profile of HCC.

We downloaded the percent spliced in (PSI) value of splicing events of HCC from TCGA SpliceSeq (https://​
bioin​forma​tics.​mdand​erson.​org/​TCGAS​plice​Seq), a data portal providing systematic profiles of AS events for 
all TCGA disease types16. PSI value represents the ratio of inclusion/exclusion normalized read counts to the 
total (both inclusion and exclusion) normalized read counts for a particular splicing pattern. Each AS event was 
assigned a unique annotation consisting of gene symbol, ID number, and splicing type. To ensure the credibility 
and universality of the present study, the AS events were filtered according to the following criteria: (1) the AS 
events with more than 75% effective PSI value; (2) the average of PSI value ≥ 0.05.

Identification of differentially expressed SFs and aberrant spliced AS events in HCC.  The 
expression of SFs between 50 paired tumor tissues and normal adjacent tissues of HCC were compared using R 
package of “limma”17. SFs with absolute value of log2-fold change (|log2FC|) ≥ 0.5 and adjusted P-values < 0.05 
were considered significantly differentially expressed, in which P-values were adjusted using the Benjamini–
Hochberg (BH) correction. The PSI value distributions of AS events between 50 normal adjacent tissues and 
371 tumor tissues of HCC were compared by Wilcoxon rank-sum test to evaluate the splicing pattern alterations 
in HCC tissues. AS events with P value < 0.05 were considered differentially spliced. UpSet plot and Venn plot, 
generated by R package of “UpSetR” and “yyplot” respectively, were used to qualitatively visualize the intersect-
ing gene sets among the types of differentially spliced AS events.

Screening for prognostic SFs and AS events in HCC.  A total of 342 HCC patients with follow-up 
time ≥ 30 days were included to perform univariate Cox regression analysis for dysregulated SFs and differen-
tially spliced AS events. SFs with P < 0.05 were confirmed as prognosis-associated SFs. The hazard ratios (HRs) 
and 95% confidence interval (95% CI) of prognosis-associated SFs in HCC were visualized using R package of 
“forestplot”. AS events with P < 0.05 were considered significantly correlated with the overall survival (OS) of 
HCC. Then UpSet plot and Venn plot, generated using R package of “UpSetR” and “yyplot” respectively, were 
applied to qualitatively display the intersecting gene sets among the types of prognostic AS events.

Construction of the prognostic risk score model based on SFs for HCC patients.  Among the 
prognosis-associated SFs, the least absolute shrinkage and selection operator (LASSO) regression was conducted 
by R package “glmnet” to remove highly correlated SFs and prevent overfitting. Then 171 HCC patients were 
randomly selected to be training set, remaining 171 patients as validating set. The demographic information and 
clinical characteristics between training set and validating set were compared through χ2 test or Fisher’s exact 
test to ensure the random distribution between training set and validating set, with P < 0.05 considered statisti-
cally significant. Multivariate Cox analysis was applied using R package of “survival” to construct an optimal 
prognostic risk score model based on expression of SFs in training set, in which the risk scores of HCC patients 
were computed by the following formula: risk score = (βSF1 × expression level of SF1) + (βSF2 × expression level of 
SF2) + ⋯ + (βSFn × expression level of SFn). The median of risk scores in training set was set as cut-off value to 
stratified patients as low-risk and high-risk subgroup.

Identification the efficiency and independence of the prognostic model.  We performed the log-
rank test and Kaplan–Meier survival analysis using “survival” and “survminer” packages in R to explore the 
statistical difference of OS between HCC patients in low-risk and high-risk subgroups. The sensitivity and speci-
ficity of the prognostic model was evaluated by receiver-operating characteristic (ROC) analysis. Then univariate 
and multivariate Cox regression analyses were performed to investigate the independent predictive value of the 
prognostic model compared with demographic information and clinical characteristics including age, gender, 

http://tcgadata.nci.nih.gov/tcga/
http://ftp.ensembl.org/pub/release-103/gtf/homo_sapiens/
http://ftp.ensembl.org/pub/release-103/gtf/homo_sapiens/
http://193.206.120.249/splicing_tissue.html
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American Joint Committee on Cancer (AJCC) stage, tumor size, lymph node, metastasis status, and vital status. 
R package of “forestplot” was used to visualize the results of univariate and multivariate Cox regression analyses.

GSEA.  To explore the potential pathways and gene sets associated with the constructed prognostic model, 
GSEA was performed using R package “GSEABase” to find enriched terms in the canonical pathways (C2) col-
lected from the Kyoto Encyclopedia of Genes and Genomes (KEGG); in the ontology gene sets (C5) derived 
from the gene ontology resource (GO) consisting of biological process (BP), cellular component (CC), and 
molecular function (MF); and the oncogenic signatures gene sets (C6) which were often dysregulated in cancer. 
All gene sets above (C2, C5, and C6) were retrieved from Molecular Signature Database (MsigDB v6.2). It was 
considered significantly enriched when P < 0.01 and false discovery rate (FDR) q < 0.05. The results of GSEA 
were visualized by R package of “clusterProfiler”.

Construction of prognostic SFs‑AS events regulatory network.  Spearman correlation analysis was 
performed to analyze the correlation of expression of SFs in the prognostic model and PSI value of prognostic 
AS events. It was considered that SFs and AS events were significantly correlated when correlation coefficient 
r > 0.4 (or <  − 0.4) and P < 0.01. Then the potential regulatory network of SFs and AS events was visualized by 
Cytoscape (version 3.7.2).

Protein–protein interaction (PPI) network analysis and functional enrichment analy-
sis.  According to the human gene annotation file downloaded from http://​asia.​ensem​bl.​org/​index.​html, 
protein-coding genes were screened out from genes of the AS events involved in the prognostic SFs-AS events 
regulatory network. To explore potential interactions among these protein-coding genes, we uploaded these 
protein-coding genes to the STRING database (https://​string-​db.​org/), a biological database presenting func-
tional protein association networks. Then the PPI network was set up with the identified genes by integrating 

Figure 1.   The approach and workflow for the exploration of clinical value and molecular functions of splicing 
factors (SFs) in HCC. The flowchart was drawing using visio2013 (https://​produ​cts.​office.​com/​en/​visio/​flowc​
hart-​softw​are).

http://asia.ensembl.org/index.html
https://string-db.org/
https://products.office.com/en/visio/flowchart-software
https://products.office.com/en/visio/flowchart-software
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the data retrieved from the STRING database. Results of PPI network analysis were visualized and analyzed via 
Cytoscape (version 3.7.2). Top 10 hub genes were identified through calculating the nodes’ scores by cytoHubba. 
R package of “ClusterProfiler” was used to perform the GO enrichment analysis and KEGG pathway analysis for 
these protein-coding genes18–20.

Results
Identification the differentially expressed SFs in HCC.  The approach and workflow of this study 
was illustrated in Fig. 1. To investigate the expression alterations of SFs in HCC, we compared the expression of 
404 SF genes between 50 paired normal tissues and HCC tissues and identified 40 differentially expressed SFs 
in HCC tissues, among which 21 were upregulated and 19 were downregulated (Table 1). Hierarchical cluster-
ing analysis confirmed the significant differences in expression patterns of differentially expressed SFs between 
normal and tumor tissues of HCC (Fig. 2a). In addition, volcano plot displayed the distribution of differentially 
expressed SFs (Fig. 2b).

Table 1.   The dysregulated SFs in HCC tumor tissues compared with adjacent normal tissues. SFs splicing 
factors, HCC hepatocellular carcinoma.

Gene symbol t P value Adjusted P value log2FoldChange

MBNL2  − 7.7405 2.80E−10 3.61E−09  − 1.216390192

SRSF8  − 11.0985 1.79E−15 1.38E−13  − 0.818440611

SRSF5  − 11.8659 1.39E−16 2.68E−14  − 0.784565905

DDX19B  − 9.79444 1.62E−13 6.97E−12  − 0.764105134

C9orf78  − 10.4671 1.55E−14 9.96E−13  − 0.739616046

QKI  − 11.1391 1.56E−15 1.38E−13  − 0.732476871

MBNL3  − 3.25834 0.001953 0.0044613  − 0.726697915

DDX3X  − 9.93991 9.73E−14 4.69E−12  − 0.725762803

RBMXL1  − 7.67623 3.56E−10 4.16E−09  − 0.695428933

RBMS1  − 5.18429 3.42E−06 1.43E−05  − 0.680954214

ZC3H13  − 6.47666 3.06E−08 2.19E−07  − 0.677839203

INTS6  − 7.25235 1.72E−09 1.66E−08  − 0.666948085

RBM7  − 12.3505 2.88E−17 1.11E−14  − 0.652489521

CLK1  − 6.41436 3.85E−08 2.44E−07  − 0.571390031

CELF2  − 3.84517 0.000323 0.0008978  − 0.551245241

SRSF6  − 9.22304 1.24E−12 4.07E−11  − 0.543142739

PPIL4  − 8.92578 3.64E−12 8.26E−11  − 0.532270648

RBM47  − 5.02466 6.02E−06 2.40E−05  − 0.528956611

PRPF3 7.39948 9.93E−10 1.01E−08 0.538658868

DDX41 7.240208 1.79E−09 1.69E−08 0.547251578

PUF60 6.785813 9.71E−09 7.65E−08 0.560149209

THOC5 9.196583 1.37E−12 4.07E−11 0.565605055

RBM3 5.927696 2.32E−07 1.22E−06 0.5764643

PRCC​ 8.560312 1.37E−11 2.79E−10 0.584721824

SNRPB 7.621772 4.35E−10 4.94E−09 0.600985254

LSM4 6.249725 7.08E−08 3.90E−07 0.609645727

MSI1 4.092934 0.000145 0.00044808 0.639140638

ILF2 9.196966 1.37E−12 4.07E−11 0.654889388

RNF213 5.662538 6.10E−07 2.94E−06 0.664719245

SNRPE 8.105903 7.28E−11 1.17E−09 0.682291603

DHX34 11.32695 8.30E−16 1.07E−13 0.697395517

SF3B4 9.516833 4.35E−13 1.68E−11 0.722488238

FAM50A 6.956319 5.15E−09 4.23E−08 0.730040853

PCBP4 7.510873 6.57E−10 7.24E−09 0.739950592

IGF2BP3 5.931286 2.29E−07 1.22E−06 0.763620084

NELFE 9.167253 1.52E−12 4.20E−11 0.864302671

DDX39A 10.049 6.63E−14 3.66E−12 0.909431813

HSPB1 6.443956 3.45E−08 2.36E−07 0.978176356

DNAJC6 7.931304 1.39E−10 1.98E−09 1.02334043

CDC40  − 7.46249 7.86E−10 8.43E−09 9.134968345
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Construction of a prognostic model based on SFs for HCC patients.  The relationship between 
the 40 dysregulated SFs and the prognosis of 342 HCC patients with follow-up time ≥ 30 days were analyzed by 
univariate Cox analysis, identifying 13 significantly prognosis-associated SFs (Fig. 2c). Among the 13 progno-
sis-associated SFs, 5 SFs with hazard ratio (HR) < 1 (CLK1, SRSF5, ZC3H13, C9orf78, DDX19B) were consid-
ered protective factors; while the remaining 8 SFs with HR > 1 (FAM50A, THOC5, DNAJC6, PRPF3, DHX34, 
IGF2BP3. SF3B4, IL2) were considered risk factors. As expected, SFs as protective factors of HCC were signifi-
cantly downregulated in HCC tissues (Fig. 2d, upper); while SFs as risk factors of HCC were upregulated in HCC 
tissues (Fig. 2d, lower), indicating their clinical potential as diagnostic, therapeutic, and prognostic biomarkers 
for HCC patients. Therefore, we applied LASSO regression analysis to the 13 prognostic SFs and identified 8 
more valuable prognostic SFs (THOC5, SRSF5, DNAJC6, ZC3H13, IGF2BP3, C9orf78, SF3B4, and DDX19B) 
(Fig. 3a,b).

Following, to easily and reliably stratify outcomes of HCC patients with SFs, we randomly categorized 342 
HCC patients into training set and validating set. Except the gender, no clinical parameter was significantly 
different between training set and validating set, identifying their random distribution (Table 2). In training 
test, the stepwise multivariate Cox regression was applied and a total of 4 SFs (DNAJC6, ZC3H13, IGF2BP3, 
and DDX19B) were selected to construct the final prognostic risk score model The normalized expression 
of these 4 SFs and their corresponding coefficients, displayed in Table 3, were used to calculate risk scores 
for HCC patients with the following risk score calculation formula: risk score = (0.28336 × DNAJC6 expres-
sion) + (− 0.4438 × ZC3H13 expression) + (0.226331 × IGF2BP3 expression) + (− 0.63347 × DDX19B expression). 
Then HCC patients were divided into high-risk and low-risk subgroup based on the median value (0.9856) of 
the risk scores of HCC patients in training set. The distribution of survival status, risk scores, and expression 
patterns of SFs (DNAJC6, ZC3H13, IGF2BP3, and DDX19B) in training set and validating set were respectively 

Figure 2.   Identification of dysregulated SFs and survival-associated SFs in HCC. (a) Heatmap of differentially 
expressed SFs between 50 pairs of normal tissues and tumor tissues of HCC (|log2FC|≥ 0.5, adjusted P < 0.05). 
(b) Volcano plot of differentially expressed SFs in HCC. The red and blue dots represent upregulated and 
downregulated SFs respectively; the green dots represent the dysregulated SFs with |log2FC|≥ 1; the black dots 
represent the SFs with no significant difference. (c) Forest plot of hazard ratios for survival-associated SFs in 
HCC. The red and blue boxes represent risk factors or protective factors of HCC, respectively. (d) Violin plots 
showing the expression of survival-associated SFs in 50 normal tissues (blue) and 371 HCC tissues (red). SFs 
presented in upper were protective factors for HCC patients; SFs presented in lower were risk factors for HCC 
patients.
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visualized in Fig. 3c,d. Taken together, we constructed a 4-gene prognostic signature through univariate Cox 
analysis, LASSO regression analysis, and multivariate Cox analysis for differentially expressed SFs in HCC tissues.

Identification the efficiency and independence of the prognostic model for HCC patients.  To 
probe the relationship between the risk score computed by our prognostic model and OS of HCC patients, 
Kaplan–Meier analysis was performed and confirmed the OS of HCC patients in high-risk group was much 
shorter than those in low-risk group in both training set and validating set (Fig. 4a,b). In the training set, the area 
under the curve (AUC) value of ROC curve for 1, 3, 5-year-survival were 0.837, 0.726, and 0.574, respectively. In 
the validating set, the AUC value for 1, 3, 5-year-survival of ROC curve were 0.735, 0.652, and 0.579, respectively 
(Fig. 4c,d). These results confirmed the high efficiency of the prognostic model in predicting 1, 3-year survival 
for HCC patients. To further validate the independent predictive power of the model for HCC patients, the 
univariate Cox regression analysis was applied and identified that risk score calculated our prognostic model, 
AJCC stage, tumor size, and metastasis status were risk factors of HCC patients (Fig. 4e). Then, these risk factors 
were incorporated into multivariate Cox hazard regression analysis, validating risk score and metastasis status 
as independent prognostic factors for HCC (Fig. 4f). Collectively, these results demonstrated the prognostic 
signature owned good prognostic performance for HCC.

Figure 3.   Construction of the prognostic risk score model based on SFs for HCC patients. (a) Selection of 
tuning parameter (λ) in the LASSO regression analysis via tenfold cross-validation. The dotted vertical lines 
were plotted at the optimal λ values based on the minimum criteria and 1 standard error of the minimum 
criteria. (b) LASSO coefficient profiles of the 13 survival-associated SFs. The dotted vertical line was plotted at 
the same position as the dotted vertical line in (a), producing 8 nonzero coefficients (THOC5, SRSF5, DNAJC6, 
ZC3H13, IGF2BP3, C9orf78, SF3B4, and DDX19B). (c) Risk plot of HCC patients in the training set; (d) risk 
plot of HCC patients in the validating set. For (d,e), Upper part assembly indicated the distribution of HCC 
patients’ survival status and survival times ranked by risk score; the middle part represented the increasing risk 
score curve, in which HCC patients were divided into low-risk (blue) and high-risk (red) subgroup according 
to the median value of risk scores of patients in the training set; and the bottom heatmap displayed expression 
pattern of SFs involved in the prognostic model.
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Functional exploration for the prognostic model based on SFs.  To investigate the underlying bio-
logical functions of the prognostic model based on SFs, we utilized the mRNA expression profile and con-
ducted GSEA between low-risk and high-risk group of HCC patients. The full results of GSEA were presented 
in Supplementary Table S2. In enriched KEGG pathway (C2), a great majority of cancer-related pathways were 
activated in high-risk group, including DNA replication, cell cycle, bladder cancer, and p53 signaling pathway, 
etc.; while numerous metabolism-associated pathways were suppressed in high-risk group, including β-alanine 
metabolism, tryptophan metabolism, retinol metabolism, and pyruvate metabolism, etc. (Fig. 5a). In enriched 
BP, CC, and MF of GO term (C5), top 12 gene sets activated and suppressed by high-risk group were respec-
tively displayed in Fig. 5b–d. In enriched oncogenic signatures (C6), upregulation of multiple oncogenic genes 
(E2F3, E2F1, VEGFA, etc.) were activated in high-risk group; whereas downregulation of several oncogenic 
genes (BMI1, MEL18, and CyclinD1) were suppressed in high-risk group (Fig. 5e). Collectively, these results 
confirmed that high-risk score calculated by our prognostic model might confer the intense oncogenic pheno-
type under activation of various oncogenic genes and pathways.

Construction of prognostic SFs‑AS events regulatory network in HCC.  SFs exert pro-oncogenic 
or antitumor effects through inducing aberrant splicing process mainly. It is meaningful to investigate regulatory 
relationships between SFs and AS events implicated in HCC. According to distinct splicing modes, AS events 

Table 2.   Clinical characteristics of HCC patients in TCGA. HCC hepatocellular carcinoma, TCGA​ The Cancer 
genome atlas, AJCC American Joint Committee on Cancer.

Characteristics Training set (n = 171) Validating set (n = 171) P-value

Age 59.9 ± 12.4 58.8 ± 14.0 0.431

Gender 0.008

Female 43 66

Male 128 105

AJCC stage 0.998

Stage I 79 82

Stage II 39 38

Stage III 40 39

Stage IV 2 2

NA 11 11

Tumor size 0.989

T1 83 85

T2 42 42

T3 38 36

T4 7 6

TX 1 2

Lymph node 0.102

N0 115 123

N1 0 3

NX 56 45

Metastasis status 0.499

M0 126 118

M1 2 1

MX 43 52

Vital status 0.498

Live 113 107

Dead 58 64

Table 3.   The final prognostic risk score model for HCC patients. HCC hepatocellular carcinoma, SF splicing 
factor, HR hazard ratio, CI confidence interval.

SF_ID HR 95% CI P value Coefficient

DNAJC6 1.327583 0.928473–1.898253 0.120381 0.28336

ZC3H13 0.641591 0.459594–0.895658 0.009124  − 0.4438

IGF2BP3 1.253991 0.9535–1.649179 0.105384 0.226331

DDX19B 0.530746 0.287634–0.979341 0.042687  − 0.63347



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15175  | https://doi.org/10.1038/s41598-021-94701-8

www.nature.com/scientificreports/

could be classified into the following seven types: alternative acceptor (AA), alternative donor (AD), alternative 
promoter (AP), alternative terminator (AT), exon skip (ES), retained intron (RI), and mutually exclusive exons 
(ME), as presented in Fig. 6. The PSI values of AS events were compared between 50 normal tissues and 371 
tumor tissues of HCC. In total, 10,926 AS events from 5243 genes were identified to be altered in HCC tissues 
(Supplementary Table S3). The interactive gene sets among these seven types of dysregulated AS in HCC were 
quantitatively showed in Fig. 7a.

Then 1757 AS events from 1144 genes were confirmed to be closely associated with the prognosis of HCC 
patients (Supplementary Table S4). The interactive gene sets among these seven types of prognostic AS in HCC 
were visualized in Fig. 7b. Following we explored the correlations of expression of SFs in our prognostic model 
(DNAJC6, ZC3H13, IGF2BP3, DDX19B) and PSI values of prognostic AS events through Spearman correlation 
analysis, and identified 39 ZC3H13-associated AS events, 53 IGF2BP3-associated AS events, and 106 ZC3H13-
associated AS events (Supplementary Table S5). However, no DNAJC6-associated AS events was screened out. 
According to the results of correlation analysis, we established the potential regulatory network of SFs and AS 
events in HCC (Fig. 7c). From the regulatory network, we concluded the specific transformations of AS events 
induced by dysregulation of ZC3H13, IGF2BP3, and DDX19B in HCC (Supplementary Table S6).

Functional exploration for the protein‑coding genes of AS events in the SFs‑AS events regu-
latory network.  In total, there were 180 AS events from 117 genes involved in the SFs-AS events regula-

Figure 4.   Identification the efficiency and independence of the prognostic risk score model based on SFs. (a,b) 
Kaplan–Meier analysis of the prognostic risk score model for HCC patients in training set and validating set, 
respectively. (c,d) ROC curve for HCC patients in training set and validating set respectively. (e,f) Univariate 
and multivariate analyses of the risk level calculated by the prognostic model, clinical factors and pathological 
characteristics with OS of HCC patients.
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tory network. Among these 117 genes, 108 genes were annotated to be protein-coding genes according to the 
human gene annotation file, which were listed in Supplementary Table S7. To better understand interactions 
among these 108 protein-coding genes, we established the PPI network by integrating the data retrieved from 
the STRING database (Fig. 8a). Hub genes ranking top 10 in the PPI network were selected by sorting node 
degree using cytoHubba in Cytoscape (Fig. 8b). These hub genes, including MELK, KIF4A, CHEK1, NEK2, 
NEIL3, CDCA3, TROAP, CLSPN, ESR1, and KIF20B, highly interconnected with other proteins in PPI network. 
Then we explored the potential biological functions of these 108 protein-coding genes by GO enrichment analy-
sis and KEGG pathway analysis. The results of GO terms enriched by these protein-coding genes were presented 
in Fig. 8c and Supplementary Table S8. In BP, top three enriched terms were organelle fission, nuclear division, 
and mitotic nuclear division, which were essential for sustaining proliferation of cancer cells. In CC, only kine-
sin complex and transcriptionally active chromatin were significantly enriched. In MF, top three terms were 
steroid binding, hydrolase activity, hydrolyzing N-glycosyl compounds, and cholesterol binding. Besides, the 
results of KEGG pathways enriched by these 108 protein-coding genes were listed in Supplementary Table S8. 
Especially, top 10 enriched KEGG pathways were displayed in Fig. 8d, among which autophagy, PPAR signaling 
pathway, AMPK signaling pathway were closely related to tumor progression. Overlapping the C5 of GSEA in 
Supplementary Table S1 and KEGG pathways in Supplementary Table S5, seven mutual pathways were identified 

Figure 5.   GSEA results between low-risk and high-risk group of HCC patients of the prognostic model. (a) 
Top 12 KEGG pathways activated (left) and suppressed (right) by high-risk group. (b–d) Top 12 gene sets of GO 
term activated (left) and suppressed (right) by high-risk group. Among them, results of biological process (BP) 
were presented in (b); results of cellular compartment (CC) were presented in (c); results of molecular function 
(MF) were presented in (d). (e) Top 12 gene sets of oncogenic signatures activated (left) and suppressed (right) 
by high-risk group. For (a–e), the size and color of nodes represent the number of enriched genes and adjusted 
P values.
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including glyoxylate and dicarboxylate metabolism, primary bile acid biosynthesis, complement and coagula-
tion cascades, PPAR signaling pathway, tryptophan metabolism, propanoate metabolism, and prion disease. 
Therefore, we speculated ZC3H13, IGF2BP3, and DDX19B could trigger aberrant AS events and thus induce 
dysregulation of these 7 pathways, which might contribute to HCC progression.

Discussion
HCC is a heterogeneous tumor originating from liver parenchymal cells. Over the last few decades, increasing 
database-based bioinformatics analyses have made great efforts to investigate various molecular alterations, 
including mRNA, lncRNAs, circular RNAs, and miRNAs, to explore their biological functions and potential 
key molecular mechanisms involving in the pathogenesis of HCC and screen out targets as index of diagnosis, 
prognosis, and therapy for HCC patients21–24. Recently, the significance of splicing attracted increasing attention 
due to its capacity of expanding genomic coding capacity and increasing protein diversity at post-transcriptional 
level25. It is worth mentioning that the choices of AS events are mainly orchestrated by SFs26. Increasing evidence 
have showed expression alterations of SFs can induce the alterations of AS events, thus triggering various onco-
genic process27,28. It has been confirmed several dysregulated SFs were closely correlated with the prognosis of 
HCC patients29–31. However, existing studies were limited to explore the role or molecular mechanism of a single 
SF gene in tumor progression. It is valuable to systematically analyze the prognostic ability of SFs and establish 
a novel prognostic model based on SFs for HCC patients.

In present study, we established a prognostic model consisting of four SFs (DNAJC6, ZC3H13, IGF2BP3, and 
DDX19B), which could classify HCC patients as high-risk and low-risk subgroups. Encouragingly, Kaplan–Meier 
analysis of training set and validating set revealed HCC patients in low-risk group exhibited better prognoses 
compared with those in high-risk group. ROC curve analysis in training set and validating set showed that the 
sensitivity and specificity of the prognostic model were relatively favorable. Univariate and multivariate cox 
regression analyses confirmed the risk score computed by our prognostic model was an independent prognostic 
factor for HCC patients. Furthermore, GSEA between high-risk and low-risk group of HCC patients significantly 
enriched multiple oncological pathways, various biosynthesis and metabolic process, which might explain the 
biological functions and molecular mechanisms of the prognostic model based on SFs.

In the prognostic model constructed in our study, DNAJC6 and IGF2BP3 were risk factors, while ZC3H13 
and DDX19B were protective factors. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes the 
brain‐specific isoform of auxilin. Auxilins is essential for the clathrin‐mediated endocytosis (CME), which is 
crucial for material uptake of cells through clathrin‐coated vesicles. Previous study has reported that two uncom-
mon noncoding DNAJC6 variants may regulate RNA splicing, and DNAJC6 mutations is involved in autosomal 
recessive and early‐onset Parkinson’s disease32. Another study observed DNAJC6 was significantly upregulated 
in HCC and significantly correlated with tumor progression and poor outcome of HCC patients. Mechanically, 
DNAJC6 facilitates transforming growth factor β (TGF-β) pathway activation to promote epithelial-mesenchy-
mal transition (EMT), thereby promotes HCC cell proliferation and invasion33. IGF2BP3 is a member of the 
insulin-like growth factor 2 mRNA binding protein family. It has been confirmed that upregulation of IGF2BP3 

Figure 6.   Illustration of seven types of AS events: alternative acceptor (AA), alternative donor site (AD), 
alternative promoter (AP), alternative terminator (AT), exon skip (ES), retained intron (RI), and mutually 
exclusive exons (ME).
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promotes initiation and progression of multiple cancers, such as bladder cancer and colon cancer. In bladder 
cancer, IGF2BP3 was reported to enhance cell proliferation and inhibit cell apoptosis through activation of JAK/
STAT pathway34. In colon cancer, IGF2BP3 binds to the mRNA of CCND1 and VEGFA via recognizing m6A 
modification of CCND1 and VEGFA, and enhances their mRNA stability, which facilitates cell proliferation 
and angiogenesis respectively35. A recent study has confirmed IGF2BP3 directly regulates alternative splicing of 
PKM and BTF3 and thus contributes to lung tumorigenesis36. ZC3H13 (zinc finger CCCH domain‐containing 
protein 13), a classical CCCH zinc finger protein, inhibits proliferation and invasion of colorectal cancer cells 
via blocking the Ras-ERK signaling pathway37. DDX19B (DEAD-box Helicase 19 B) participates in regulating 
mRNA export and mRNA translation38. To date, the role of DDX19B in cancers remains unclear. Collectively, 
the roles of DNAJC6, IGF2BP3, and ZC3H13 in regulating cancer progression as mentioned in above studies 
are consistent with our present study, indicating the results based on our study are reliable.

However, there is limited research on the roles of DNAJC6, IGF2BP3, ZC3H13, and DDX19B in the regula-
tion of AS events. Therefore, we explored the correlations between these SFs (DNAJC6, IGF2BP3, ZC3H13, and 
DDX19B) and prognostic AS events. Then we extracted protein-coding genes from AS events regulated by SFs 
mentioned above for further functional exploration. seven pathways (glyoxylate and dicarboxylate metabolism, 

Figure 7.   Construction of prognostic SFs-AS events regulatory network. (a) Upset plot and Venn diagram 
of parent gene interactions between the seven types of aberrant AS events in HCC. (b) Upset plot and Venn 
diagram of parent gene interactions between the seven types of prognostic AS events in HCC. (c) Regulatory 
network of SFs (ZC3H13, IGF2BP3, DDX19B) and prognostic AS events in HCC. Green triangles represent SFs 
that were protective factors for HCC; red triangle represents SF that was risk factor for HCC; turquoise squares 
represent AS events that were protective factors for HCC; orange squares represent AS events that were risk 
factor for HCC. The red lines represent positive correlations while the blue lines represent negative correlations.
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primary bile acid biosynthesis, complement and coagulation cascades, PPAR signaling pathway, tryptophan 
metabolism, propanoate metabolism, and prion disease) were enriched by both GSEA of our prognostic model 
and KEGG pathway analysis of protein-coding genes of AS events associated SFs in the prognostic model. It 
has been reported dysregulation of glyoxylate and dicarboxylate metabolism is involved in gastric cancer and 
colorectal cancer39,40. Complement and coagulation cascades has been confirmed to be associated with chemo-
sensitivity and overall survival of patients with soft tissue sarcoma41. PPAR (peroxisome proliferator-activated 
receptor) is a canonical pathway involved in lipid metabolism. PPAR family, composed of three transcription 
factors (PPARα, PPARβ/δ, and PPARγ), controls energy and metabolism balance42. The anticancer effect of PPAR 
has been elucidated in multiple cancer, such as gastric cancer and lung cancer43,44. Tryptophan (TRP) is implicated 
in neuronal function, immunity, and gut homeostasis, etc. The imbalance in the synthesis of TRP metabolites 
has been demonstrated to be associated with neurologic and psychiatric disorders, chronic immune activation 
and immune escape of cancers45. Thus, we speculated ZC3H13, IGF2BP3, and DDX19B might participate in the 
occurrence and development of HCC through regulating their correlated AS events and inducing dysregulation 
of above cancer-related pathways.

There were several limitations in this study. Firstly, the prognostic model based on SFs was only verified in 
the internal data of TCGA but not verified in external independent cohorts. Secondly, the prognostic model 
based on SFs is not yet clinically validated. Thirdly, the regulatory relationship among SFs and AS events were 
established through statistical correlations, and further biological experiments are needed to verify the exact AS 
events regulated by ZC3H13, IGF2BP3, and DDX19B. Forth, the biological functions and molecular mechanisms 
of the prognostic model implicated in HCC progression are preliminary explored by bioinformatic analysis, 
which also need large amounts of biological experiments to validate in the future.

Figure 8.   Functional exploration of AS events regulated by SFs in the prognostic model. (a) PPI network of 108 
protein-coding genes of AS events involved in the SFs-AS events regulatory network. (b) The PPI network of the 
top 10 hub genes. (c) GO categories (BP, CC, and MF) enriched by above 108 protein-coding genes. (d) Top 10 
KEGG pathways enriched by above 108 protein-coding genes. For (c,d), the size and color of nodes represent 
the number of enriched genes and adjusted P values.
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Taken together, we established an independent and robust prognostic model based on prognosis-associated 
SFs, providing novel targets for diagnosis, prognosis, and therapy of HCC. In addition, we constructed the 
prognostic SFs-AS events regulatory network, and explored the potential roles of SFs via modulating AS event 
in HCC, which paved the way for seeking novel biological functions and molecular mechanisms of SFs in HCC 
tumorigenesis and progression.

Data availability
Gene expression data and clinical information of HCC can be accessed in TCGA. The alternative splicing events 
data of HCC can be accessed in TCGA SpliceSeq.

Code availability
All code used during the study are available from the corresponding author by request.
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