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Natural processes dominate 
the pollution levels 
during COVID‑19 lockdown 
over India
Venkat Ratnam Madineni1, Hari Prasad Dasari2, Ramakrishna Karumuri2, 
Yesubabu Viswanadhapalli1, Prasad Perumal1 & Ibrahim Hoteit2*

The lockdown measures that were taken to combat the COVID‑19 pandemic minimized anthropogenic 
activities and created natural laboratory conditions for studying air quality. Both observations and 
WRF‑Chem simulations show a 20–50% reduction (compared to pre‑lockdown and same period of 
previous year) in the concentrations of most aerosols and trace gases over Northwest India, the Indo 
Gangetic Plain (IGP), and the Northeast Indian regions. It is shown that this was mainly due to a 
70–80% increase in the height of the boundary layer and the low emissions during lockdown. However, 
a 60–70% increase in the pollutants levels was observed over Central and South India including the 
Arabian sea and Bay of Bengal during this period, which is attributed to natural processes. Elevated 
(dust) aerosol layers are transported from the Middle East and Africa via long‑range transport, and a 
decrease in the wind speed (20–40%) caused these aerosols to stagnate, enhancing the aerosol levels 
over Central and Southern India. A 40–60% increase in relative humidity further amplified aerosol 
concentrations. The results of this study suggest that besides emissions, natural processes including 
background meteorology and dynamics, play a crucial role in the pollution concentrations over the 
Indian sub‑continent.

The declaration that SARS-CoV-2 (COVID-19) had reached pandemic proportions by the World Health Organi-
zation (WHO) in early 2020 led to a global standstill in which several countries enforced a complete or partial 
lockdown of businesses and  movement1. As of March 2021, approximately 124 million COVID-19 positive cases 
have been reported globally, 11 millions of which were in India, the country with the second highest popula-
tion in the world. Although the virus was discovered before the end of 2019, COVID-19 was labelled as severe 
over the first few months of 2020, across the world. As no medicines have yet been approved for the treatment 
of COVID-19 and the global percentage of vaccinated people are low, governments remains continue to imple-
ment containment measures (social distancing) to minimize the spread of the virus. Different countries have 
followed different approaches in terms of lockdown measures, including complete lockdowns, the closure of 
non-essential services, or shutting specific businesses. As a result, significant improvements in the Air Quality 
Index (AQI) have been reported over several countries around the  globe2, including  Brazil3,  China4–9,  Ecuador10, 
South  Korea11, western  Europe11,  Iran12,13,  India14,15,  Malaysia16,  Spain17, and the  USA11,18. A reduction of 17% in 
global  CO2 compared to 2019 levels was reported by Le Quéré et al.19, although Safarian et al.20 reported only a 7% 
reduction. An increase in  O3 levels because of the reduction in  NOx concentrations has also been observed across 
several  countries5,6,12,16,21,22, but 10% reduction was estimated over rural location. Very few studies [e.g.,23,24] have 
reported an increase in the concentration of pollutants as a result of prevailing atmospheric conditions, although 
several  studies25–30 have stressed the role of meteorological parameters (mostly temperature and humidity) on 
outbreaks of COVID-19.

The first positive case of COVID-19 in India was reported in the state of Kerala on January 30, 2020, which 
was followed by several cases throughout  February31 and a gradual increase in the number of cases during 
March. The peak that occurred around the third week of March forced the government of India to implement 
containment measures. This started with a (Bharat/Janatha) curfew on March 22, 2020 followed by a complete 
lockdown that was carried out over four phases. Public gatherings were banned, shopping malls, cinema halls, 
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and prayer halls were closed, and wedding celebrations were prohibited, with many more restrictions put into 
place. A strict countrywide first-phase lockdown (lockdown-1) was implemented for 21 days from March 25 to 
April 14, 2020, which included suspension of all business activities as well as industries, transport (air, water, 
and road), markets, shops, tourism, construction, and hotels, while retaining essential services. The lockdown 
was extended until May 03, 2020 (lockdown-2), after which some restrictions on industrial and construction 
activities were relaxed. The lockdown was then extended until May 17 (lockdown-3), and again until May 31, 
2020 (lockdown-4), after which the restrictions on most of the activities were relaxed, except for public trans-
portation and mass gatherings.

National Aeronautics and Space Administration (NASA) satellite images (https:// earth sky. org/ earth/ satel 
lite- images- air- pollu tion- india- covid 19) showed significant improvements in the air quality over India and the 
surrounding regions during the first lockdown. The restrictive measures taken by the government of India to 
minimize the spread of COVID-19 improved the air quality standards as a result of the significant reduction in 
anthropogenic activities. Nitrogen oxides, also known as  NOx, are primary sources of pollutants generated by 
vehicles and  industry6. Other gaseous pollutants such as carbon monoxide (CO), sulfur dioxide  (SO2), methane 
 (CH4), tropospheric ozone  (O3),  PM2.5, and  PM10 are all emitted by anthropogenic activities (power plants, oil 
refineries, vehicular traffic, mining, etc.). Sharma et al.32 compared the concentration of pollutants over 22 Indian 
cities during the lockdown periods to those during the same period in previous years (2017 to 2019) and reported 
significant reductions of 43%, 31%, 10%, and 18% in  PM2.5,  PM10, CO, and  NO2  concentrations, respectively. The 
study also reported almost negligible changes in  SO2, but an unexpected increase (of 17%) in  O3 concentrations 
during the lockdown. A similar analysis performed by Jain and  Sharma15, in which the concentration of pollutants 
in five Indian megacities during the period March–April 2020 were compared with those during the same period 
in 2019, reported significant reductions in the concentrations of  PM2.5,  PM10,  NO2, and CO. An AQI assessment 
over New  Delhi33 also indicated a significant reduction in pollution, such as a 50% reduction in coarse and fine 
particulate matter  (PM10 and  PM2.5), a 52% reduction in  NO2, and a 30% increase in CO concentrations. All 
these studies suggested however a clear increase in  O3 during the lockdown, which was attributed to changes in 
the amount of  NOx and volatile organic compounds in the atmosphere. This is because  O3 is formed in the lower 
atmosphere via the reaction of  NOx with volatile organic compounds in the presence of  sunlight34,35. An increase 
in  O3 was also reported in Rome, Turin, and Wuhan during lockdown, by 14%, 27%, and 36%,  respectively35.

All the studies referred to above are limited to point measurements and the spatial distribution of few param-
eters (Aerosol Optical Depth,  NO2, and  SO2) obtained from satellite observations. Singh et al.36 reported about 
30–70% reduction in  NO2, 40–60% in  PM2.5 and  PM10 and 20–40% in CO, subject to large spatial variations, 
after analyzing data from 134 Central Pollution Control Board (CPCB) stations. However, no attempt has yet 
been made to understand the underlying physical mechanisms that contribute to the changes in the AQI during 
lockdown. In this study, a state-of-the-art advanced Weather Research Forecasting (WRF) model coupled with 
a Chemistry module (WRF-Chem) was used along with satellite observations to investigate the possible physical 
mechanisms that contributed to the changes in pollution levels over the Indian sub-continent during lockdown.

Materials and methods
WRF-Chem version 3.9.137 was implemented to simulate the meteorological and atmospheric chemistry condi-
tions over the Indian Sub-continent. Several  studies38–43 have demonstrated the ability of WRF-Chem to capture 
the spatio-temporal distribution of aerosols, air quality at the regional scale, and cloud-chemistry interactions 
by resolving the interactions between aerosols, trace gas reactions, emissions, mixing, transport, deposition, 
chemical transformations, and photolysis.

In this study, we implemented the WRF-Chem37 with 90 vertical levels and a horizontal resolution of 30 km 
covering both Asia and the regions around the Indian Ocean (Fig. S1). The model initial and boundary condi-
tions were extracted from the Final reanalysis (FNL) data, which are available at a 1° × 1° spatial resolution. The 
time-varying low boundary conditions of sea surface temperature are taken from the NCEP real-time global 
high-resolution data. The model was integrated from 00:00 UTC on February 20 until 00:00 UTC on May 01, 
2020. The first 15 day of the simulation were treated as spin-up and thus excluded from the analysis. The remain-
ing period over the different phases of lockdown in India was used for the analysis.

We used the EDGAR-HTAP V2.2 anthropogenic emission data in the WRF-Chem simulations during the 
pre-lockdown period. This emission datasets were generated in 2010 by collecting local information from regional 
inventories to produce a global inventory of emissions. The resulting emissions are mapped on the model grid 
using scaling factors suggested for India by Venkataraman et al.44 to describe the updated emissions scenarios 
during the pre-lockdown period. We have further conducted sensitivity experiments with WRF-Chem to esti-
mate the percentage reduction in emissions from different emission sectors over India. The scaling factor was 
selected after conducting several experiments in which we changed the percentage of reductions in the emissions 
(between 30 and 70%) based on the recent COVID-19 observational  studies15,32,36,44,45. From these simulations, 
we found that an overall emission reduction of 40% in the anthropogenic emission inventory is able to repro-
duce a realistic estimate of the observed concentrations during the COVID-19 lockdown. We thus utilized this 
scaling factor of 40% reduction to represent the changes due to the impact of COVID-19 in the anthropogenic 
emissions inventory. The chemical species included in the anthropogenic emissions consists of CO,  SO2, NOx, 
 NH3, NMVOCs, Black Carbon (BC), organic carbon (OC),  PM2.5 and  PM10. Though the configured scaling fac-
tor used in this study may not represent the real scenarios of emissions during the COVID-19 lockdown, it still 
provides a reasonable approximation of the overall reduction associated with the lockdown.

In WRF-Chem, since the emissions inventory acts as a mainly background, the supply of realistic initial 
and boundary conditions of chemical fields is critical step in determining the accuracy of the modeling system. 
In this study, we have supplied initial and boundary conditions obtained from the assimilated fields of Whole 
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Atmosphere Community Climate Model (WACCM). This reanalysis product as one standard data used for the 
initialization of WRF-Chem model as it assimilates all available observations of different chemical species using 
improved assimilation  algorithms46. The complete details of the experimental design, model physics, datasets, 
and measurements used in this study are provided in the Supplementary Material.

A combination of satellite observations and WRF-Chem simulations were used to investigate the changes 
in the aerosol and trace-gas distribution over India and the adjacent regions during lockdown, from March 
8 to April 20, 2020, which includes the first phase of total lockdown that was implemented from March 25 to 
April 14, 2020. To examine the effect of lockdown on trace gases and aerosols, we separated the total simulation 
period (March 1 to May 1, 2020) into two sub-periods; pre-lockdown (hereafter referred to as PLD) (March 8 
to 21, 2020) and lockdown (hereafter referred to as DLD) (March 25 to April 20, 2020). The percentage change 
in aerosol and trace gas concentrations between PLD and DLD was estimated as:

Similarly, the percentage change in aerosol and trace gas concentrations between 2020 and 2019 was esti-
mated as:

The focus of this study is to investigate the effects of lockdown on aerosol and trace gases over India, includ-
ing the Arabian sea and the Bay of Bengal (BoB). The aerosol and trace gas concentrations do not significantly 
vary within the boundary layer. To remove the topographic/surface effects, we analyzed the mean concentrations 
averaged between 1000 and 800 hPa as simulated by WRF-Chem. The study period falls within the pre-Indian 
summer monsoon season, during which the well-mixed boundary layer often reaches 1.5–2  km47. Thus, the 
integrated mean model values should not affect the observed major features. Furthermore, the prevailing weather 
conditions play a dominant role in the variations observed in the detected emissions, which may exhibit vari-
ability on a seasonal to inter-annual scales. We have therefore provided a detailed analysis of the background 
meteorological conditions over the study region in the Supplementary Material.

Results
Validation of WRF‑Chem outputs. The WRF-Chem outputs were first validated using calibrated 
ground-based and space-borne measurements. The details of the ground-based measurements, their collective 
protocols, and accuracy are included in Supplementary Material. Daily mean aerosol (AOD and Black Carbon) 
and trace gas parameters (NO,  NO2,  NOx,  SO2,  O3, and CO) obtained for Gadanki (13.5°N, 79.2°E) from surface 
measurements and WRF-Chem show (Fig. 1) that the model is able to capture the day-to-day variations similar 
to the ground-based surface observations. The simulated  NO2, NO,  NOx, and  SO2 concentrations and the associ-
ated trends demonstrate very good agreement with the surface observations (Fig. 1c–f). However, although the 
simulated  O3 and CO reproduced the observed patterns, their concentrations were almost double and half those 
of the ground-based observations, respectively (Fig. 1g,h). Small peaks in the surface measurements (except 
 O3 and CO) that occurred during March 14–20, 2020, were due to local emissions and were not reproduced by 
WRF-Chem. A slight time lag is observed in the maximum values simulated by WRF-Chem, which may be due 
to the relatively coarse model grid that does not fully resolve the mesoscale  processes48. The small differences 
between the ground-based observations and WRF-Chem simulations can also be attributed to differences in 
sampling size and local emissions.

The instantaneous measurements of AOD and  NO2  (SO2) from Moderate Resolution Imaging Spectroradi-
ometer (MODIS) and Ozone Monitoring Instrument (OMI) at the closest point (78.5–80.5°E, 12.5–14.5°N) to 
Gadanki (Fig. 1a,c,f) in the model grid indicates that the model is able to reproduce the observed variations, 
albeit to a slight overestimation (underestimation) of the AOD compared to MODIS (Sky-radiometer). The 
AOD reached as high as 0.6 during the PLD period, which was followed by a gradual decrease during the DLD 
before reaching a minimum of 0.2. Interestingly, all the observations show an increase in the AOD during the 
first week of April 2020. Although a one-to-one comparison between the observed and the WRF-Chem simulated 
hydrophilic and hydrophobic Black Carbon (BC) and Organic Carbon (OC) is not possible (as the BC obtained 
using an Aethalometer cannot be separated), it is clear that the hydrophilic BC and OC match (Fig. 1b) well with 
the results obtained for BC using the Aethalometer. WRF-Chem outputs slightly overestimates (underestimates) 
the concentrations of  NO2 (Fig. 1b) and  SO2 (Fig. 1f) compared to the ground-based trace gas analyzer (OMI 
satellite) measurements; however, the day-to-day variations were successfully reproduced. A large increase in 
all concentrations that were observed during March 13–18, 2020 by ground-based instruments was due to a 
highly localized event and is therefore not captured by WRF-Chem nor the satellite measurements limited by 
the sampling issues from polar orbiting platform. Apart from these limitations, the failure of MODIS and OMI 
to capture the peak values can be related to the polar orbits of these platforms (with only two visits per day). 
Despite some slight shifting in the peaks, the day-to-day variations match well, particularly during the DLD 
period. Moreover, a sharp decrease in the concentrations is noticeable and the values almost reach the limits of 
detection during the DLD (Fig. 1c–h).

We further compared different pollutants concentrations  (PM2.5,  PM10,  NO2,  SO2, CO and  O3) simulated by 
WRF-Chem with observations from different geographical locations across India collected by the Continuous 
Ambient Air Quality Monitoring Stations (CAAQMS) (https:// app. cpcbc cr. com/ ccr/#/ caaqm- dashb oard- all/ 
caaqm- landi ng), which are maintained by the Central Pollution Control Board (CPCB). The correlation coef-
ficients between WRF-Chem and CPCB data for the above-mentioned pollutants during 25 March to 1 May 

(1)Percentage change(%) =
DLD concentration− PLD concentration

PLD concentration
.

(2)Percentage change(%) =
2020 concentration− 2019 concentration

2019 concentration
.

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
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2020 at 71 locations, varied between 0.4 and 0.8 (at 95% confidence level) except very few locations (Fig. 2). A 
correlation coefficient of about ~ 0.7 is achieved at most of the locations and for all the pollutant concentrations 
except for  O3 (~ 0.3). The correlation for  NO2 and  PM2.5 are reach their maxima of about ~ 0.8 over northwest, 
central and south India. Note that we have configured the scale factor to reduce the emissions uniformly across 
India by 40% during lockdown in the WRF-Chem simulation even though spatial variations in the reduction of 
these pollutants was reported based on  ground45 and space borne  measurements44. WRF-Chem simulated and the 
observed AODs at three AERosol RObotic NETwork (AERONET) stations, Gandhi College, Kanpur and Lahore, 
also suggest good correlations (at 95% confidence level) of about 0.67, 0,62 and 0.54, respectively (Figure S2).

We further computed the correlation coefficients at each grid point between observed tropospheric mean  NO2 
and  SO2 in the planetary boundary layer from OMI and the corresponding WRF-Chem outputs during 1 March 
2020 to 1 May 2020 (Figure S3), and presented those between MODIS AOD and WRF-Chem AOD in the same 
figure. In general, the WRF-Chem simulated AOD,  NO2 and  SO2 over the Indian region are significantly (at 95% 
confidence level) correlated with the satellite measurements. The WRF-Chem simulated  NO2 and OMI derived 
 NO2 exhibit reasonably good correlation (about ~ 0.6) over the Indian continent except over central India and 
the IGP region. The correlation values for  SO2 are close to ~ 0.6 over the central and northwest parts of India. 
Similarly, WRF-Chem simulated and MODIS derived AOD also show a very good correlation of about ~ 0.8 over 
the entire Indian region. This gives further confidence that WRF-Chem is able to capture the variability of these 
pollutants reasonably well when compared to the ground and satellite-based measurements.

The spatial distribution of the AOD and trace gases  (NO2 and  SO2) predicted by WRF-Chem are compared 
with the satellite measurements in Figure S4. The composite mean of instantaneous values of AOD from swath 
data of MODIS and corresponding values of WRF-Chem obtained during March 8 and April 20, 2020 (Fig. S4a,b) 
indicate almost similar spatial distributions as those MODIS AOD over Central India, the IGP, and Northeast 
India, with lower values over Northwest India. The tropospheric mean  NO2 and  SO2 concentrations in the plan-
etary boundary layer derived from the OMI (Fig. S4c,e) and the model (Fig. S4d,f) between March 8 and April 
20, 2020 suggests that the  NO2 and  SO2 hotspots of slightly different magnitudes over Central and Northeast 

Figure 1.  Time series for (a) AOD, (b) BC, (c)  NO2, (d) NO, (e)  NOx, (f)  SO2, (g)  O3, and (h) CO obtained 
from WRF-Chem model simulations for March 8 to April 20, 2020 over the Gadanki region. Trace gases 
obtained from a gas analyser at Gadanki are superimposed on the respective panels (c–h). Skyradiometer AOD 
and Aethalometer BC are also superimposed in (a) and (b), respectively. Hydrophilic and hydrophobic BC and 
OC as simulated by WRF-Chem are also shown in (a). MODIS AOD is superimposed in (a).  NO2 and  SO2 
from OMI are superimposed in (c) and (f), respectively. Note that model simulated  O3 and CO are doubled and 
halved, respectively. WRF-Chem simulated outputs are represented by red lines, ground-based observations by 
black lines, and satellite observations by blue lines. The vertical line indicates the date on which the lockdown 
began. The figures are plotted using ORIGIN software (https:// www. origi nlab. com).

https://www.originlab.com
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India. In summary, WRF-Chem is clearly able to simulate the gross spatial features over India and adjoining 
regions, albeit with slight differences in the magnitude.

The spatial distributions of MODIS AOD over India and the adjoining regions during PLD and DLD 
(Fig. S5a,b) exhibit higher concentrations of AOD (> 0.5) during PLD over the IGP (covering Punjab, Haryana, 
Uttar Pradesh, Uttarakhand, Bihar, and Central India) and a relatively clean atmosphere is observed over North-
west and South India. In contrast, a large increase in the AOD was observed over the head of the BoB, which 
persisted throughout the DLD. Surprisingly, an increase in the AOD (> 0.5) was observed over Central India 
and the BoB during DLD. The percentage difference in the AOD computed between the PLD and DLD periods 
(Fig. S5c) reveals a decrease (increase) of approximately 50–60% in the AOD over the IGP region (Arabian 
Sea, Central India, and BoB). The spatial distributions in the AOD obtained with WRF-Chem during PLD and 
DLD show similar distributions to those of MODIS (Fig. S5d,e), except for minor differences in the magnitude 
(Fig. S5f). Furthermore, the model shows an increase in the AOD over the entire Southern India including 
Arabian Sea while MODIS show reduced AOD over the southern part of India. Amnuaylojaroen et al.49 and 
Adedeji et al.50 stressed the need for a high resolution and improved emission inventory in order to obtain more 
accurate simulations of AOD over these regions.

Figure 2.  Correlation between CPCB data and WRF-Chem model outputs in (a)  PM2.5, (b)  PM10, (c)  NO2, 
(d)  SO2, (e) CO and (f)  O3 obtained during 1 March 2020 to 30 April 2020. Gray color circles represents the 
locations that are not accounted for validation due to poor quality of the data. The figures are plotted using 
GrADS V2.2.1 software (http:// cola. gmu. edu/ grads/).

http://cola.gmu.edu/grads/
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NO2 is mainly produced by anthropogenic activities such as the combustion of fossil fuels and production of 
power. A drastic reduction in  NO2 levels was therefore expected during the lockdown. The spatial distribution 
of  NO2 from OMI during PLD is shown in Fig. S6a, with several noticeable hotspots of  NO2 concentrations, over 
North and Northeast India. The intensity of most  NO2 hotspots is decreased during the DLD period (Fig. S6b), 
following the reduction in fossil fuel burning and the significant reduction in the  NO2 emissions from thermal 
power plants in Northeast India. A decrease of approximately 50–60% in  NO2 levels is observed over both North-
west India and the IGP region, over the PLD and DLD periods (Fig. S6c). A similar percentage increase is also 
observed in Central India. Apart from a change in the magnitude of  NO2 over the thermal plants, no significant 
changes were noticeable in the  NO2 simulations over India (Fig. S6d,e). Increased  NO2 concentrations were 
further observed in both the satellites observations and the model simulations over the Arabian Sea and the BoB.

The various data comparisons clearly suggests that WRF-Chem is able to reproduce well the observed aerosol 
and trace gas distributions, supporting the use of its outputs for qualitative analysis in the absence of observations. 
Because direct information about other trace gases (NO,  NO3,  N2O5, CO,  O3,  CH4, and  SO4) and aerosol param-
eters  (PM2.5,  PM10, and hydrophilic and hydrophobic BC and OC) are not available from satellite measurements, 
the WRF-Chem simulations were analyzed to investigate the variability of these parameters during the lockdown.

Changes in aerosol parameters during lockdown. The simulated particulate matter  (PM2.5 and  PM10) 
concentrations over India and the adjacent regions during DLD (Fig. 3) indicate a decrease of approximately 
45–55% (15–25%) over Northwest India (IGP and Northeast India) and an increase of approximately 50–80% 
over South India (Fig. 3a,b) as compared to those during PLD. The BC produced in the atmosphere is gener-
ally hydrophobic (non-absorbing), but can be also hydrophilic (coated with water molecules)51 as further dis-
cussed at later stage. A decrease of approximately 45–55% in hydrophobic BC was observed over the Northwest, 
Northeast, and IGP regions, with a slight enhancement over South India, the Arabian Sea and BoB (Fig. 3c) 
during DLD, compared to PLD. The hydrophilic BC concentrations decreased by approximately 60–70% over 
the northwest, northeast, and the IGP regions, while an increase of 35–45% was observed in South India during 
DLD (Fig. 3d). Similar changes in the hydrophobic and hydrophilic OC concentrations (Fig. 3e,f) were observed 
over India. The observed large reduction in hydrophilic BC compared to hydrophobic BC is mainly due to its 
representation in the percentage change. However, the magnitudes of hydrophobic and hydrophilic BC and their 
differences indicate (Fig. S7) that both components were reduced in similar magnitudes during the lockdown 
period. Further, as expected, high magnitudes of hydrophobic BC are also noticeable.

Since seasonal changes during the PLD and DLD periods may contribute to the observed features, we have 
performed an additional simulation for the year 2019 using WRF-Chem, considering the same PLD and DLD 
for the analysis. While the simulated particulate matter  (PM2.5 and  PM10) concentrations over India during DLD 
(2020) show (Fig. S8) no significant change over Northwest India, a significant decrease in  PM2.5 (35–45%) over 
IGP and Northeast India and 15–25% increase over South India (Fig. S8a,b) are noticeable when compared to 
2019, whereas  PM10 slightly increased (25–35%) throughout India in 2020 compared to 2019. A decrease of 
approximately 45–55% in hydrophobic BC was observed throughout India, with a slight enhancement over the 
BoB (Fig. S8c) during 2020, compared to 2019. The hydrophilic BC concentrations decreased by approximately 
60–70% over the northwest, northeast, and the IGP regions, while an increase of 25–35% was observed in South 
India during 2020 (Fig. S8d). Similar changes in the hydrophobic and hydrophilic OC concentrations (Fig. S8e,f) 
were observed during 2020 compared to 2019. This clearly suggests that the seasonal changes are relatively small 
compared to the observed differences in the aerosol concentrations during the DLD period.

Changes in trace gases concentrations during lockdown. The simulated concentrations of trace 
gases over India and the adjacent regions suggest (Fig. 4a) a decrease of approximately 45–55% in the NO con-
centrations over most parts of India, an increase of approximately 25–35% over the IGP region with a few 
hotspots, and an increase of approximately 55–65% over the BoB and Arabian Sea during DLD as compared to 
PLD. The simulated  NO3 concentrations show a decline of approximately 25–35% over Rajasthan, Gujarat, and 
Haryana during DLD (Fig. 4b). A sharp increase of approximately 55–65% (25–35%) in  NO3 concentrations is 
also noticeable over the south west of India and Arabian Sea (IGP). A clear decline of approximately 65–75% in 
the  N2O5 concentration is observed over the IGP, Northeast, and Northwest India, in contrast with an increase 
of similar magnitude over Arabian Sea and BoB during the DLD (Fig. 4c).

A decrease of approximately 15–25% in the concentration of CO was observed over many parts of India, while 
CO increased by approximately 5–15% over western part of Maharashtra during DLD (Fig. 4d). The simulated 
 O3 concentrations increased by 25–35% over Arabian Sea, Central India, and a decrease of a similar magnitude 
is noticeable over Northwest and North India (Fig. 4e). Pronounced increase in  CH4 concentrations (65–75%) 
is observed over IGP and some parts of Central and south India during DLD, despite a sharp decrease (65–75%) 
over Rajasthan and Gujarat including a few hot spots crossing from south to northeast India (Fig. 4f). The  SO2 
levels decreased by 45–55% over several parts of India with a few hotspots in Southwest India, and 75–85% 
increase over the Arabian sea during the DLD (Fig. 4g). Surprisingly, the  SO4 levels increased by 80–90% between 
the Arabian sea and the central parts of India (35–45%) and the BoB, while simultaneously decreasing over 
Northwest and Northeast India during DLD (Fig. 4h).

The analysis of WRF-Chem for the year 2020 suggests a significant decrease (45–75%) in all concentrations 
(except  CH4 and  SO4) during the DLD period when compared to the same days during 2019 (Fig. S9).  O3 also 
shows a reduction throughout India in 2019 unlike during 2020 (Fig. S9e). An increase in  SO4 concentrations 
over central and southern India including BoB with slight decrease over IGP is noticeable (Fig. S9h). This again 
suggests that the seasonal changes are small compared to the observed differences in the trace gases concentra-
tion during the DLD period.
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In general, freshly emitted BC and dust aerosols will be hydrophobic and inert. After the aging process, for 
which time varies from 1.6 to 2 days depending on the pollutant loading and  dynamics52, they may become 
hydrophilic after mixing with the inorganic and organic acidic species. Hydrophobic‐to‐hydrophilic conversion 
is controlled by their interaction with more hydrophilic species such as sulphates, nitrates, and secondary organic 
 aerosols52. Upon emission, all BCs are assumed to be in the insoluble Aitken mode (mean radius 0.03 μm), and 
the subsequent aging and growth explicitly depends on the ambient concentrations of  sulphate53.

Despite the significant reduction in anthropogenic emissions during the lockdown, however, the emissions 
never reduced to zero (practically impossible) because of essential services (power plants, food industries, health 
care system, essential transport, agricultural activities etc.). Additionally, there were also natural emissions from 
the biogenic sources, biomass burning, agriculture activities, and forest fires (Fig. S10 shows the MODIS fire 
counts). Moreover, the observed reductions were not uniform in all the regions (Figs. 3, 4), indicating some active 
anthropogenic emissions in certain regions (for example central and southern India). Atmospheric dynamics due 
to the formation of anticyclonic condition over central India also played a crucial role in the observed pollutants 
(Fig. S12). The results suggest an accumulation of pollutants in this region, suggesting that despite the reduction 

Figure 3.  Percentage difference in the (a)  PM2.5, (b)  PM10, (c) BC hydrophobic, (d) BC hydrophilic, (e) OC 
hydrophobic, and (f) OC hydrophilic observed between the PLD and DLD periods based on WRF-Chem 
simulations for India and adjacent regions. The figures are plotted using GrADS V2.2.1 software (http:// cola. 
gmu. edu/ grads/).

http://cola.gmu.edu/grads/
http://cola.gmu.edu/grads/
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in the anthropogenic emissions during the lockdown, there was a continuous accumulation of pollutants in the 
central India likely associated with the dynamical conditions. Once the pollutant concentration increases, the 
active chemical conversions take place and forms the acidic species such as sulphates, nitrates and organic acids 
(this is clear from Fig. 4b,h, which show a substantial increase in the acidic species such as sulphates and nitrates).

The reduction in  NOx resulted in the increase of  O3 concentration (lack of  O3 scavenging by NO, Fig. 4a). 
There was also an increase in the relative humidity (RH) (Fig. 6d) and solar  irradiance54, which favors OH 
 formation55. This should increase the oxidative processes (initiated by OH) of the trapped air parcel and result 
in the formation of sulphates and nitrates from the precursor species such as  SO2,  NOx, and  NH3

56. Some reports 
suggested that the increase in carbonaceous aerosols resulted from VOC oxidations initiated by  O3 as  O3 con-
centrations increase during the  lockdown57. Therefore, accumulation of pollutants and subsequent oxidative 
processes under favorable conditions increased the acidic species and upon mixing with BC and dust, led to 
their conversion into hydrophilic species. The increased RH may have increased the size of these species, which 
resulted in higher AOD.

Changes in the vertical distribution of aerosols during lockdown. The analysis included a com-
parison of the percentage changes in the near-surface-level aerosol and trace gases concentrations during DLD 

Figure 4.  Percentage difference in the (a) NO, (b)  NO3
−, (c)  N2O5, (d) CO, (e)  O3, (f)  CH4, (g)  SO2, and (h) 

 SO4
2− observed between the PLD and DLD periods based on WRF-Chem simulations for India and adjacent 

regions. The figures are plotted using GrADS V2.2.1 software (http:// cola. gmu. edu/ grads/).

http://cola.gmu.edu/grads/
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with those during PLD. Despite the observed clean atmosphere over  India15,32, the concentration of aerosols 
increased over Central India during DLD, which affected the AOD. An increase in the concentration of other 
aerosols  (PM2.5,  PM10, and hydrophilic BC and OC) was also observed over Central and South India despite the 
absence of local pollution sources at the surface during the DLD. Because the AOD is an integrated parameter 
that reflects aerosol extinction across the column, the increase in the AOD should be related to higher aerosol 
concentrations in the column.

Figure 5 outlines the vertical distribution of the aerosol extinction coefficient over selected regions in the 
IGP (Fig. 5a), Central India (Fig. 5b), and South India (Fig. 5c) during the PLD and DLD periods. The high 
(> 0.15  km−1) vertical aerosol extinction that was observed over the IGP during the PLD period reduced drasti-
cally (< 0.1  km−1) during DLD. This is expected as the complete lockdown reduced the emission of anthropogenic 
aerosols from traffic and industrial activities. Interestingly, a low extinction coefficient was observed (< 0.1  km−1) 
during PLD over Central and South India, whereas the extinction (> 0.15  km−1) was observed to increase from 
the surface and 600 hPa with a slight decrease between the two, particularly over Central India. The elevated 
aerosol layers, particularly over Central India, might have contributed to the observed increase in AOD during 
the DLD period. The possible reasons behind this increase are discussed in the following Section.

Discussion
The lockdown that was enforced in India between March 25 and April 14, 2020 (Phase 1) due to the COVID-
19 pandemic restricted the movement of people and constrained all businesses and industrial activities, which 
helped in the improvement of the air quality. Our analysis indicates that certain parts of India (the northwest, 
the IGP, and the northeast) enjoyed a clean environment in line with the results of studies by Jain and  Sharma15 
and Sharma et al.32. However, despite the absence of anthropogenic activities at the surface during the lockdown, 
higher aerosol and some trace gases concentrations were observed in some parts of India (Central and South 
India), which suggests that other factors might have contributed to the increased concentrations, including 
emissions from natural sources (such as forest fires, biomass burning) and long-range transport.

The fire radiative power (FRP) obtained from the MODIS measurements as a proxy for biomass burning over 
India and the adjacent regions during PLD and DLD is shown in Fig. S10. Note that the first phase of DLD is 
again divided into two periods (March 25 to April 7, 2020 and April 8–20, 2020), as both the model simulations 
and the observations show an increase in the concentration of aerosols and trace gases during the first week 
of April 2020 (Fig. 1). An FRP of approximately 5–10 MW was observed over South India and the IGP region 
during the PLD period, with a relatively weaker FRP observed over Central India. A few hotspots in which the 
FRP was particularly high were observed over Northeast India. An increase in FRP was observed over Central 
India and the IGP regions, with small changes in other parts of India during DLD. A relatively high FRP was 
observed over Central India during the second half of the DLD (April 8–20, 2020) as compared to the first half 
(March 25 to April 7, 2020). However, the IGP region remained clear. These intermittent fire activities might 
have contributed to the observed increase in some trace gases (Fig. 4) and aerosol (Fig. 3) concentrations over 
Central and South India during DLD.

The implemented lockdown (first phase) over India falls during the transition period between winter and 
summer, during which the increase in the boundary layer height (BLH) leads to strong vertical mixing, affect-
ing the aerosol and trace gas concentrations at the surface. An increase of approximately 70–80% in the BLH 
occurred (Fig. 6a) over the IGP and Northeast India between the PLD and DLD periods, compared to a 5–25% 
increase over the rest of India. This may have also been a factor behind the significant reductions in the aerosol 
and trace gas concentrations near the surface alongside the low emissions. The southern parts of India experi-
enced negligible changes in the BLH between the PLD and DLD. Very similar changes in BLH are also observed 
in ERA-5 reanalysis (Fig. S11).

Figure 5.  Vertical distribution of the aerosol extinction coefficient observed over (a) the IGP region, (b) 
Central India, and (c) South India during PLD and DLD periods. The figures are plotted using GrADS V2.2.1 
software (http:// cola. gmu. edu/ grads/).

http://cola.gmu.edu/grads/


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15110  | https://doi.org/10.1038/s41598-021-94373-4

www.nature.com/scientificreports/

A significant decrease (increase) in BLH is noticeable over south and central India (IGP and northeast) dur-
ing 2020 compared to 2019 (Fig. S11c). Besides low emissions, the increase in BLH over IGP and north India 
may have resulted in the reduction of the pollutants due to well mixing. Similarly, an increase in these pollutants 
(particularly aerosols) over central and south India due to the decrease (or significant reduction when compared 
to 2019) in the BLH. We have also retrieved the boundary layer altitude using the network of ground-based 
radiosonde measurements over the Indian region to validate the WRF-Chem simulated boundary layer heights 
(Fig. S11d). WRF-Chem seems to overestimate the variations in BLH compared to radiosonde data. Despite the 
changes in the magnitudes between the WRF-Chem and radiosonde observations, the increase in the BLH by 
20–40% (10–20%) in the IGP and northeast region (south and central India) is noticeable in 2020, compared 
to 2019. The increase in BLH in 2020 may be one of the reasons for the decrease in pollutant concentrations in 
2020 in addition to the reduced emissions. However, the percentage reduction in concentrations does not go 
hand-in hand with the BLH changes as the pollutant concentrations cannot interact linearly with the BLH but 
several other factors such as mixing efficiency, wind speed (both vertical and horizontal), topography etc., also 
influence the pollutant concentrations.

In contrast to the decrease in aerosol concentrations, a significant increase in the AOD was observed both 
by the satellite and in the model simulations over Central and South India during the lockdown. The dynamics 
and background meteorology might have influenced the high AOD observed over these regions. The dry season, 
together with high winds, favors the production and transport of dust which contributes to the AOD, especially 
over Central India. The mean wind patterns averaged over the DLD period (at 850, 700, and 500 hPa in Fig. S12), 
indicate that the direction of the wind reversed in middle-eastern Africa, where the largest source of desert dust 
is located. Dust transported from these regions got trapped in the anti-cyclonic circulation, as indicated by the 
wind vectors between 500 and 300 hPa (figure not shown) over Central India and the head of the BoB.

To further investigate the potential transport of aerosols over large geographical scales, Concentration 
Weighted Trajectory (CWT) maps of the AOD in Central India were investigated. The CWT includes atmos-
pheric concentrations combined with back-trajectories and information about residence times and can identify 
the air parcels that may be responsible for the high concentrations observed over a given  region23,58. To identify 
the transport pathways of aerosols, 72-h back trajectories were calculated for 850, 700, and 500 hPa. The calcu-
lations were carried out at 06.00 h (UTC) during the DLD period (March 25 to April 14) using a 0.25° × 0.25° 
grid. The CWT analysis of the AOD suggests (Figs. S13 and 6b) that the sources of the observed aerosol levels 
are located in Africa. Except for the lower pressure level (850 hPa), air pathways from the southeast contribute 
to the observed AOD (Fig. S13c), and all the trajectories are long-range (Fig. S13a,b). Thus, the elevated aerosol 

Figure 6.  Percentage difference in the (a) BLH, (c) wind speed at 500 hPa, and (d) RH at 500 hPa observed 
between the PLD and DLD periods based on WRF-Chem simulations for India and the adjacent regions. (b) 
Concentration weighted trajectory (CWT) map of the AOD for Central India during the DLD period (March 
25–April 20, 2020). The blue dot denotes the center of central India. The figures are plotted using GrADS V2.2.1 
software (http:// cola. gmu. edu/ grads/).

http://cola.gmu.edu/grads/
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layers seen in Fig. 5 are the result of long-range transport over Central India that might have get trapped in the 
anti-cyclone (Fig. S12a), despite the decrease in particulate matter near the surface during lockdown.

To further assess the contributions from local and long-range transport, we show a wider spatial distribution 
of aerosol pollutants in Fig. 7.  PM2.5 (Fig. 7a) and  PM10 (Fig. 7b) reveals high concentrations over the dust source 
regions of Africa and the middle-east. The ratio of  PM2.5 and  PM10 (Fig. 7c) is low (0.2–0.3) over these regions, 
suggesting that these are source regions where both fine and coarse particles are generated. Since coarse particles 
cannot be transported far from the source regions compared to fine particles due to their shorter lifetime (related 
to dry deposition processes), higher ratio values (0.5–0.7) are observed over the south and central regions of 
India and farther from the main dust sources. The sum of combined surface concentrations of organic matter 
and black carbon show much smaller values (Fig. 7d). Sulfate concentrations are found to be high (Fig. 7e) over 
the south and northeast parts of India where thermal power plants are located. Contributions of dust to  PM2.5 
and  PM10 calculated as their ratio’s further show (Fig. 7f,g) high contribution (> 80%) near the dust sources, and 
relatively low contribution (30–40%) over Indian region, particularly over the south and northeast parts of India. 
The ratio between the concentration of sulfate aerosol with respect to the total concentration of  PM2.5, suggest 
that non-dust aerosols are relatively low (< 0.45) over India during lockdown (Fig. 7h). Similar features are also 

Figure 7.  Spatial distribution of (a)  PM2.5, (b)  PM10, (c) ratio between  PM2.5 and  PM10, (d) organic matter 
and black carbon ((OC hyrdrophobic + OC hydrophilic) × OC mass fraction (1.8) + BC hyrdrophobic + BC 
hydrophilic), (e) sulfate, (f) ratio between dust  PM2.5 and total  PM2.5, (g) ratio between dust  PM10 and total 
 PM10, and (h) ratio between sulfate and  PM2.5 total non-dust obtained during DLD period based on WRF-Chem 
simulations for India and adjacent regions. All units are in μg  m−3 except ratios. The figures are plotted using 
GrADS V2.2.1 software (http:// cola. gmu. edu/ grads/).

http://cola.gmu.edu/grads/
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noticed during the same period of the year 2019, suggesting that long-range transport of aerosols dominates 
over India during this season.

To further investigate the role of meteorology and dynamics in the observed increase in aerosol concentrations 
over Central India, differences in the wind speeds at 850, 700, and 500 hPa averaged during the PLD and DLD 
periods are shown in Fig. S14. The difference in the wind speeds is very small at 850 hPa but increases at higher 
levels. An increase of approximately 80–90% in wind speed can be seen over IGP region, South India, which 
decreases to 50–60% over central India during DLD. A decrease of approximately 50–60% is also observed in 
the wind speed at 500 hPa, particularly over central India during DLD (Figs. 6c and S14c). These reduced wind 
speeds mean that pollutants remain longer in central India than they do in the north.

The percentage changes in the relative humidity between the PLD and DLD periods suggest (Fig. S14d–f) an 
increase of approximately 70–80% during lockdown over India, particularly at 500 hPa (Figs. 6d and S14f). This 
increase in the relative humidity increases the size of aerosol particles, leading to a higher  AOD59, as reflected in 
the increase in hydrophilic BC and OC (Fig. 3). Meteorology and dynamics have therefore played an important 
role in the observed increase in AOD over Central India during the lockdown.

Conclusions
Observations based analyses have shown that lockdown measures implemented to combat COVID-19 has led 
to significant improvement in air quality over India, particularly during the first phase of the lockdown (i.e., 
March 25 to April 14, 2020). WRF-Chem model simulations also revealed similar findings. WRF-Chem outputs 
were then analyzed to understand the processes driving the aerosols and trace gas concentrations variability 
across India and adjoining regions. Our results revealed that an increase in boundary layer altitude (well mix-
ing) together with an enhancement of the wind speeds (dispersion) played major roles in the observed clean 
atmosphere in the north (and northeast) India besides the low emissions during the lockdown. At the same time, 
we demonstrated that an elevated aerosol layer (above 600 hPa), through long-range transport, a decrease in 
background wind speed (stagnant condition), an increase in relative humidity (hygroscopic), and no significant 
change in the boundary layer altitude are the main reasons behind the observed increase in the aerosol optical 
depth during lock down over Central  India44.

Several recent  reports60 investigated the percentage changes in pollutants due to the reduced mobility of the 
traffic during COVID-19 lockdown. A Mobility index was determined from the mobile phone usage at the coun-
try level, which indirectly suggests the human movement. The strong correlation between the decrease in  NO2 
concentrations and decrease in the mobility index was clear. However, such relation is not found in the particulate 
matter  (PM2.5), suggesting that  PM2.5 changes are not directly related to human  mobility60. To illustrate the gross 
traffic volume changes over India, we have considered  Google61 Community Mobility Report (CMR) data based 
on the previous traffic associated pollution studies during the COVID-19 lockdown. This CMR parameter is 
computed from the baseline value (median) available for the corresponding day of the week (during COVID-19 
lockdown period) from the values prevailed during the 5-week period of study (data period between 3 January 
and 6 February 2020). The CMR data indicates a clear reduction in the mobility (at supermarkets and pharmacy 
(− 16%), retail and recreation (− 56%), public transport (− 41%), workplaces (− 33%) and park (− 34%) catego-
ries) during the lockdown across India with some spatial variations. However, there was an increase of 20% in 
the mobility in the residential areas. Though one-to-one relation cannot be obtained (as these mobility statistics 
from mobiles do not fully represent the actual scenario), similar reduction (50–60%) in the pollutants is clearly 
observed in  NO2 and  PM2.5 (and  PM10) in the north-west and IGP including the north-eastern parts. However, 
such relation is not found over the central India, suggesting the complex nature of these pollutants influenced 
by the background meteorology and dynamics.

It is therefore prudent to conclude that large-scale meteorology and dynamics play an important role in the 
changes in pollution levels over India and the adjacent regions with respect to the lockdown. The measures 
implemented by the Indian government to reduce pollution levels should also consider these facts in their deci-
sion making. COVID-19 provided an opportunity to test this hypothesis by ceasing all major anthropogenic 
activities, providing the background for a large-scale natural laboratory experiment.
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