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Assessment of vegetation growth 
and drought conditions using 
satellite‑based vegetation health 
indices in Jing‑Jin‑Ji region of China
Rengui Jiang1,2,3*, Jichao Liang1, Yong Zhao2, Hao Wang2, Jiancang Xie1, Xixi Lu3 & Fawen Li4

Terrestrial vegetation growth activity plays pivotal roles on regional development, which has 
attracted wide attention especially in water resources shortage areas. The paper investigated the 
spatiotemporal change characteristics of vegetation growth activity using satellite-based Vegetation 
Health Indices (VHIs) including smoothed Normalized Difference Vegetation Index (SMN), smoothed 
Brightness Temperature (SMT), Vegetation Condition Index (VCI), Temperature Condition Index (TCI) 
and VHI, based on 7-day composite temporal resolution and 16 km spatial resolution gridded data, 
and also estimated the drought conditions for the period of 1982–2016 in Jing-Jin-Ji region of China. 
The Niño 3.4 was used as a substitution of El Niño Southern Oscillation (ENSO) to reveal vegetation 
sensitivity to ENSO using correlation and wavelet analysis. Results indicated that monthly SMN 
has increased throughout the year especially during growing season, starts at approximate April 
and ends at about October. The correlation analysis between SMN and SMT, SMN and precipitation 
indicated that the vegetation growth was affected by joint effects of temperature and precipitation. 
The VCI during growing season was positive trends dominated and vice versa for TCI. The relationships 
between VHIs and drought make it possible to identify and quantify drought intensity, duration and 
affected area using different ranges of VHIs. Generally, the intensity and affected area of drought had 
mainly decreased, but the trends varied for different drought intensities, regions and time periods. 
Large-scale global climate anomalies such as Niño 3.4 exerted obvious impacts on the VHIs. The 
Niño 3.4 was mainly negatively correlated to VCI and positively correlated to TCI, and the spatial 
distributions of areas with positive (negative) correlation coefficients were mainly opposite. The linear 
relationships between Niño 3.4 and VHIs were in accordance with results of nonlinear relationships 
revealed using wavelet analysis. The results are of great importance to assess the vegetation growth 
activity, to monitor and quantify drought using satellite-based VHIs in Jing-Jin-Ji region.

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) showed that the 
global average surface air temperature had increased by 0.85 ± 0.21 °C from 1880 to 2012. The special report of 
global warming of 1.5 °C revealed that human activities were expected to have caused approximately 1.0 °C of 
global warming with respect to pre-industrial levels. Global warming is likely to reach 1.5 °C between 2030 and 
2052 if the warming trend continues. Temperature has risen faster at higher northern latitudes, where average 
temperature has raised nearly twice the rate of global average over past 100 years. More extreme weather and 
climate events have been observed since 1950s, some of which have been linked to human influences, including 
increasing trends of extreme high temperature and heavy precipitation events in a number of regions1,2, espe-
cially, in the twenty-first century, extreme climate events have been occurring more widespread, frequently and 
in great severity globally3,4. A warmer world is expected to have higher temperature variability, which will result 
in more drought events5. For example, China has experienced several severe drought events for past several 
decades, which profoundly affected the water resources and vegetation growth, and consequently brought greater 
challenges to agricultural development and water-energy-food security6,7. Drought has destructive impacts on 
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crop yields in China, especially in plain regions with thriving agricultural development, which has caused great 
economic losses8,9.

Drought is a recurring phenomenon occurred naturally with significant impacts on human, agricultural 
and environmental activities across the world10. It is one of the most severe natural disasters that exert devastat-
ing influences on regional economic, agricultural, ecological and environmental conditions11. The severity and 
frequency of drought are expected to increase in the future, mainly results from decreasing trends of regional 
precipitation, increasing trends of temperature and evaporation driven by global warming12. Generally, drought 
originates from precipitation deficiency for an extended period and the influences of drought accumulated slowly 
in most cases. However, it is difficult to determine the onset, end and severity of the drought13,14. Various drought 
indices such as Palmer Drought Severity Index (PDSI), Crop Moisture Index (CMI), Drought Area Index (DAI), 
Normalized Soil Water Index (NSWI), Reconnaissance Drought Index (RDI), self-calibrating PDSI (sc_PDSI), 
Soil Moisture Anomaly Percentage Index (SMAPI), Standardized Precipitation Index (SPI), Standardized Precipi-
tation Evapotranspiration Index (SPEI) have been proposed to monitor, quantify and analyze the drought events 
and their characteristics mainly from three aspects including intensity, duration and spatial coverage15–17. These 
indices were usually used to measure the departure from the normal condition in a moisture variable based on 
historical distribution18–19. However, different drought indices probably lead to some differences both in values 
and characteristics20. Especially, it is difficult to quantify the moisture, thermal and drought conditions merely 
based on station-based meteorological or hydrological indices.

To avoid the weakness of conventional systems and drought indices to monitor drought, a new type of satel-
lite-based drought index was proposed to describe the cumulative moisture, temperature and vegetation health 
conditions, including Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation 
Health Index (VHI), which have been widely used to monitor and detect drought-related vegetation conditions. 
The satellite-based Vegetation Health Indices (VHIs) have been used to characterize drought and vegetation pro-
ductivity in many previous studies around the world5,21–26. For example, Kogan et al.5 studied the trends of global 
and regional drought area for several drought intensities based on the satellite-based vegetation health indices 
during the warmest decade, especially, two recent strongest droughts happened in Russia and USA in 2010 and 
2011, respectively. Li et al.24 and Pei et al.25 investigated the changing characteristics of drought and also detected 
the vegetation responses to weather-related variations using VHIs, which provided references for vegetation 
growth activity monitoring and water resources management. The VHIs has been used as one of useful indices 
to detect drought characteristics, to quantify the impacts of drought, to monitor regional vegetation growth and 
assess agriculture production26. Besides, the VHIs were further used to estimate the extreme wildfires17, crop 
yield27, malaria cases28, and design insurance contracts for drought-related yield losses29.

To reveal the change mechanism of vegetation growth activity, the paper further studied the linear and 
nonlinear relationships between VHIs and El Niño Southern Oscillation (ENSO), which is one of the coupled 
atmosphere–ocean global climate anomalies. ENSO is a recurring global climate oscillation involving changes 
of water temperature in the central and eastern tropical Pacific Ocean. A warming of the ocean surface or above 
average sea surface temperature (SST) indicates El Niño event, and in reverse for La Niña event30–31. It has been 
verified that ENSO had noticeable impacts on the vegetation growth in many regions around the world through 
global teleconnections. Many previous studies have investigated the relationships between vegetation growth and 
ENSO at different spatial scales and time periods. For example, Zhao et al.32 found that the ENSO is the leading 
climatic driver of interannual variability of Normalized Difference Vegetation Index (NDVI) during growing 
season to local and remote climate oscillations, especially in some regions such as southern and eastern African, 
northeastern Asia and northern South America for the period of 1982–2013. Asoka and Mishra33 developed a 
model to predict vegetation health using Niño 3.4 as predictor at one to three months lead time in India, which 
provides references for early warning and better planning in water resources and agricultural management. 
Erasmi et al.34 detected a close relation of ENSO warm events and periods of reduced vegetation greenness with 
a 12-month lag using annual NDVI during 1982–2010. The relationships between vegetation growth and ENSO 
provide the possibility to investigate the impacts of ENSO on vegetation growth using VHIs.

The superiority of satellite-based VHIs relative to other drought indices makes it one of the widely used 
indices to monitor drought and to assess vegetation growth activity, especially in large area with limited water 
resources. The Jing-Jin-Ji region includes Beijing city, Tianjin city and Hebei province which has thirteen cities 
including eleven prefecture-level cities and two county-level city, and it is the biggest urbanized region in North 
China Plain and one of the three largest regional economic communities in China. The rapid urbanization and 
economic development prompted the water demands to increase dramatically. Previous studies found that the 
Jing-Jin-Ji region had a dry tendency mainly located in the northern part for past several decades, which mainly 
affected the crop yield during growing season35–36. However, it is difficult to comprehensively assess the vegetation 
productivity together with drought characteristics using merely meteorological or hydrological monitoring data. 
The satellite-based VHIs provide advantages to assess the vegetation growth activity and analyze the drought 
characteristics. Therefore, the analysis of satellite-based VHIs is an important indicator to assess vegetation 
growth activity and help to monitor drought, which should be useful for the disaster prevention and reduction 
decision in Jing-Jin-Ji region.

The primary objectives of this study are: (1) to assess the spatiotemporal variations of vegetation growth activ-
ity using long duration (1982–2016) satellite-based vegetation health indices in Jing-Jin-Ji region; (2) to estimate 
the drought severity and vegetation condition using different categories of VHIs; (3) to reveal the vegetation 
sensitivity to ENSO based on VHIs using correlation and wavelet analysis. The paper is organized as follows: 
Material and methods are described in section "Material and methods", followed by results in section "Results" 
and discussion in section "Discussion and conclusions", and conclusions are presented in section "Definition of 
satellite-based VHIs".
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Material and methods
Study area.  The Jing-Jin-Ji region located at 36.02° N–42.62° N latitude and 113.06° W–119.88° W lon-
gitude (Fig. 1), and covers nearly 2% of China’s total territory. The total population reached 112 million and 
produced nearly 10% of China’s Gross Domestic Product (GDP)37. With the rapid development of economy 
and population, the Jing-Jin-Ji region has become one of the metropolitan regions with serious water scarcity, 
conflict between rapid economic development and sustainability38. To reduce above issues, the Programme on 
the Beijing-Tianjin-Hebei Coordinated Development has been approved in April 2015, providing one innova-
tive solution for regional coordinated development. The hydrological and meteorological conditions varied for 
different regions and periods because of the multifarious physiographic characteristics37. There is a tremendous 
conflict between water supply and demands because the water resources are limited but the water demands had 
increased dramatically. The annual average temperature is about 12 °C at southern part to nearly 2 °C at northern 

Figure 1.   Location and land cover of the study area. The land cover map was extracted from Globeland30 
dataset provided by National Geomatics Center of China in 2020. The maps were created using ArcGIS 10.2 
(http://​www.​esri.​com/​softw​are/​arcgis/​arcgis-​for-​deskt​op).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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part of Jing-Jin-Ji region. The average annual precipitation is about 540 mm for past several decades, and nearly 
70% of the annual precipitation concentrates in the flood season from June to September35. With the combined 
effects of climate variables, the water security encounters enormous pressure especially in Hebei province, and 
therefore affects the vegetation growth and agricultural production within the Jing-Jin-Ji region.

Date source.  The satellite-based VHIs used to assess the vegetation growth activity and drought conditions 
were derived from the National Oceanic and Atmospheric Administration (NOAA) Satellite and Information 
Service Global Area Coverage (GAC) dataset, which were produced based on the Advance Very High Resolu-
tion Radiometer (AVHRR) daily reflectance and emission in the visible, near infrared and two infrared bands 
including IR4 and IR5. The AVHRR was flown in NOAA polar-orbiting satellites including NOAA-7 (launched 
on June 23, 1981), NOAA-9 (December 12, 1984), NOAA-11 (September 24, 1988), NOAA-14 (December 30, 
1994), NOAA-16 (September 21, 2000), NOAA-18 (May 20, 2005) and NOAA-19 (June 2, 2009). The 7-day 
composite temporal resolution and 16 km spatial resolution VHIs data were aggregated from original daily data 
for the period of 1982–2016. The weekly VHIs were processed to remove high frequency noise, which should 
be more suitable for climatology analysis. The 16 km spatial resolution of VHIs were used since the time series 
were longer22. The VHIs were extracted from blended vegetation health product which was reprocessed from 
AVHRR data (1981–2012) and blended Visible Infrared Imaging Radiometer Suite (VIIRS) data (2013–2016), 
which can be obtained from the Center for Satellite Applications and Research of NOAA at http://​www.​star.​
nesdis.​noaa.​gov/.

The Niño 3.4 indicating the regional average equatorial SST over the central tropical Pacific located at 5° S–5° 
N, 170° W–120° W39, was used as a substitution of ENSO to reveal the vegetation sensitivity in Jing-Jin-Ji region. 
It can be downloaded from National Weather Service Climate Prediction Center (CPC) of NOAA available at 
https://​www.​cpc.​ncep.​noaa.​gov/​data/​indic​es/.

Definition of satellite‑based VHIs.  Five categories of VHIs including smoothed NDVI (SMN, elimi-
nated noise with respect to NDVI), smoothed Brightness Temperature (SMT, eliminated noise with respect to 
BT), VCI, TCI and VHI were used as substitutions to investigate the change patterns of vegetation growth activ-
ity, to detect the change characteristics of drought and to reveal the impacts of Niño 3.4 on the vegetation growth 
activity. Definitions of VHIs are shown in Table 1. NDVI indicates the property of green vegetation to emit and 
reflect solar radiation, defined as the reflectance difference between visible (VIS, Ch1, 0.58–0.68 μm) and near 
infrared (NIR, Ch2, 0.72–1.1 μm) bands of solar spectrum40. It is one of the most popular vegetation indices 
for monitoring short and long term variations of terrestrial vegetation productivity and land cover because it 
reflects leaf area index (LAI) and vegetation biomass. Positive values of NDVI indicate vegetated conditions and 
near zero values indicate non-vegetated conditions. Bigger value of NDVI indicates that large difference exists 
between VIS and NIR band, which substantially indicates greener and denser vegetation. The BT was converted 
from the IR4 defined as the infrared reflectance at band of 10.3–11.3 μm. The smoothed Normalized Difference 
Vegetation Index (SMN) and smoothed Brightness Temperature (SMT) are derived from no noise NDVI and no 
noise BT because the NDVI and BT could be affected by noises resulted from atmosphere constituents, unusual 
events, pre- and post-launch calibrations. Since different sources of noise affect NDVI and BT, it is hard to pro-
pose individual procedure for each source of noise. In general, the noise in NDVI and BT were removed empiri-
cally by comparing satellite and in situ observations using methods of mathematical statistics and validation, 
such as, Empirical Distribution Function (EDF) and statistical methods. More details of noise removal can refer 
to Kogan et al.41. After smoothing, the SMN can be used to assess the start and senescence of vegetation, detect 
the growing season, and at the same time, the SMT can be used to estimate thermal condition and cumulative 
degree days for vegetation growth. The interannual differences in SMN and SMT fluctuated due to the weather 
variation after smoothing, which were estimated relative to the maximum and minimum intervals of both NDVI 
and BT variations.

The VCI, TCI and VHI are used to assess the cumulative moisture, temperature and vegetation health con-
ditions, respectively. The VCI is a proxy for moisture condition, based on the pre- and post-launch calibrated 
radiance converted to the SMN, which can be calculated as SMN anomaly relative to its multi-year climatology 
estimated based on bio-physical and ecosystem laws. The TCI is a proxy for thermal condition. It is calculated 
based on 10.3–11.3 µm AVHRR’s radiance measurements converted to BT of land surface, which can estimate 
the hotness of the vegetation canopy. It is expressed as SMT anomaly with respect to multi-year climatology. 

Table 1.   Definition of VHIs.

VHIs Full name Definition Range

NDVI Normalized Difference Vegetation Index NDVI = (NIR-VIS)/(NIR + VIS) [− 1, 1]

BT Brightness Temperature IR4 for AVHRR, or IR5 for VIIRS N/A

SMN Smoothed NDVI No noise NDVI [−1, 1]

SMT Smoothed BT No noise BT N/A

VCI Vegetation Condition Index VCI = 100 × (SMN-SMNmin)/(SMNmax − SMNmin) [0, 100]

TCI Temperature Condition Index TCI = 100 × (SMTmax − SMT)/(SMTmax − SMTmin) [0, 100]

VHI Vegetation Health Index VHI = a × VCI + (1 − a) × TCI [0, 100]

http://www.star.nesdis.noaa.gov/
http://www.star.nesdis.noaa.gov/
https://www.cpc.ncep.noaa.gov/data/indices/
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Calculated based on the BT with completely removed high frequency noise, the value of TCI varies for hot or 
cold years. For example, in hot years with high temperature and insufficient water supply, the vegetation canopy 
can be overheating, which intensifies negative moisture deficit impacts on vegetation. The VHI indicates the 
combination of VCI and TCI to assess total vegetation health5,42. As shown in Table 1, the algorithms of VCI, 
TCI and VHI consist of comprehensive processing of smoothed NDVI and BT after removal of high frequency 
noise, enhancing seasonal period and calculation of climatology. The SMNmax and SMNmin (SMTmax and SMTmin) 
are multi-year absolute maximum and minimum values of SMN (SMT), respectively. Coefficient a is used to 
quantify contribution of VCI and TCI to total vegetation health. It was assumed that the share of VCI and TCI 
into the VHI is equal and a = 0.5, because the share is uncertain for a specific location and time.

Drought estimation using satellite‑based VHIs.  The satellite-based VHIs products can be used as 
proxy to monitor moisture condition, thermal conditions, vegetation health condition and drought. The dura-
tion, affected area and intensity of drought can be estimated based on different ranges of VHIs. The values of 
VHIs including VCI, TCI and VHI vary from 0 (extreme stress) to 100 (most favorable condition), with normal 
conditions during 40–60 corresponding to the average cumulative moisture, temperature and vegetation health 
conditions25. Higher values indicate better moisture, thermal or vegetation condition22. E.g., VCI < 40 indicates 
moisture stress, 40 < VCI < 60 for normal moisture condition, and VCI > 60 indicates favorable moisture condi-
tion. Decreasing trends of VHIs from 40 to 0 indicate intensification of vegetation stress, and vice versa for VHIs 
from 60 to 100. Further, drought-related stress can be assessed based on VCI, TCI and VHI if their values are 
less than 40. Taking VHI as an example, the VHI < 5 indicates exceptional drought intensity (D4), VHI < 15 for 
extreme-to-exceptional (D3-D4) drought intensity, VHI < 25 for severe-to-exceptional (D2–D4) drought inten-
sity, and VHI < 35 indicates moderate-to-exceptional (D1–D4) drought intensity (Table 3).

Cross wavelet transform and wavelet coherence.  To reveal the impacts of Niño 3.4 on the VHIs, 
the non-stationary relationships between Niño 3.4 and VHIs were investigated using wavelet analysis. Wavelet 
transforms including Continuous Wavelet Transform (CWT) and its discrete counterpart can expand time series 
into time and frequency space, to identify both the dominant modes of variability and localized intermittent 
periodicities. The Cross Wavelet Transform (XWT) consisting of two CWTs is used to detect regions in time and 
frequency space where both time series show high common power. The Wavelet Coherence (WTC) between two 
CWTs is used to identify regions with significant coherence even though two time series do not necessarily have 
high comer power, and show the significant level against red noise backgrounds43. Details of CWT can be found 
in the previous studies37,44,45.

The XWT used to analyze the covariance of two time series X and Y, is defined as follows44:

where n and s indicate the time and scale of wavelet transform, WX
n (s) and WY

n (s) are the wavelet transforms of 
X and Y, and WY∗

n (s) denotes complex conjugation of WY
n (s).

The XWT is further defined as 
∣

∣WXY
n (s)

∣

∣ . The phase angle of WXY
n (s) indicates the phase relationships between 

X and Y in time and frequency space, and statistical significance is estimated with respect to a red noise45.
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follows46:
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where C1, C2 are the normalized constants, � is the rectangle function, and coefficient 0.6 is the empirically 
decorrelation length for Morlet wavelet. The wavelet phase difference is given as follows:

where ℑ{·} and ℜ{·} are the imaginary part and real part of wavelet spectra, respectively.
The Monte Carlo method is used to estimate the statistical significance level of the WTC, with 5% significance 

level against red noise representing as a thick contour. The relative phase relationship is described as arrows with 
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edge drops that the edge effects are negligible beyond this point. However, it is noteworthy that the edge effects on 
and outside the COI cannot be ignored because the wavelet is not completely localized over the study period43,44.

Trend analysis.  The linear fitting regression and Mann–Kendall non-parametric methods were used to ana-
lyze the trends of VHIs. The linear trends of VHIs were calculated as follows:yt = a+ bt + et , where y indicates 
the percentage of area of regional average weekly VHIs which is affected at different ranges at year t for the 
period of 1982–2016. The regression coefficient b is the linear slope of VHIs per year, and et is the residuals.

The nonlinear trends of VHIs were analyzed using the Mann–Kendall non-parametric test at a 5% signifi-
cance level. The trend magnitude is estimated using Thiel-Sen approach, also known as Sen’s slope, defined as the 
median of all possible combinations for the time series. Details of Mann–Kendall non-parametric test and Sen’s 
slope can be found in previous studies47. The Mann–Kendal test was used to analyze the trends of VHIs during 
growing season, and the Sen’s slope was used to investigate the trend magnitudes of regional average monthly 
VHIs for the period of 1982–2016 in Jing-Jin-Ji region.

Results
Variations of regional average VHIs and their relationships.  Figure 2 shows the 35-year regional 
average values and trend magnitudes of monthly SMN (Fig. 2a), SMT (Fig. 2b), precipitation (Fig. 2c) and the 
Pearson’s correlation coefficients between SMN and SMT (precipitation) (Fig. 2d) for the period of 1982–2016 
in Jing-Jin-Ji region. The largest regional average value of monthly SMN occurred in August (0.3964), followed 
by September (0.3682) and July (0.3663). The regional average values of monthly SMN in winter season were 
smaller (from 0.1077 in January to 0.1177 in December) than other seasons for the period of 1982–2016, which 
mainly because that the vegetation growth is relatively weak due to the low temperature, especially, this region 
can be sometimes covered with snow in winter. The trend magnitudes of monthly SMN were positive throughout 
the year, indicating that the monthly SMN had increased for past 35-year period. Two peak values were found 

Figure 2.   Thirty-five year regional average values and trend magnitudes of monthly SMN, SMT, precipitation 
and their correlations for the period of 1982–2016 in Jing-Jin-Ji region. (a) SMN; (b) SMT; (c) precipitation; 
and (d) Correlation coefficients between SMN and SMT/precipitation. The empty circles indicate statistically 
significant trends at 5% significance level, and the dash lines indicate that the SNM is significantly correlated 
with SMT or precipitation at 5% significance level.
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for trend magnitudes of monthly SMN, and the largest trend magnitude was detected in May (0.1640 × 10–2 /
year), indicating that the regional average SMN in May had increased 0.0574. Two periods from March to June 
and from September to November had statistically significant increasing trends at 5% significance level. Similar 
with regional average values of monthly SMN, the trend magnitudes of SMN in winter season were smaller than 
those in other seasons. Surprisingly, the trend magnitude decreased from May to August, which might be caused 
by the shapely decreased precipitation (Fig. 2c) or other climate variables.

It is important to monitor the plant phenology using satellite-based SMN especially during growing season. 
Given that different SMN values at the beginning and end of the growing season are important for the satellite-
based study of plant phenology. As used in previous studies2,48, this paper assumes 0.20 and 0.25 as the beginning 
and end of the growing season, respectively. It can be observed in Fig. 2a that the duration of growing season 
starts at approximate April and ends at about October, lasting about seven months. The vegetation growth peaked 
in the middle of the growing season (summer). The trend magnitudes of summer SMN were relatively smaller, 
but two peaks of trend magnitudes of SMN were found in the beginning and end of growing season, suggesting 
that the growing season had lengthened for past 35 years.

Regional average monthly SMT and precipitation showed similar patterns with SMN, larger values detected 
in summer, followed by spring and autumn, and relatively smaller values in winter. The largest value of SMT was 
detected in May (28.49 °C), followed by April (28.24 °C). However, the SMT during April and May had decreased 
for past 35-year period. The largest trend magnitude of regional average value of monthly SMT was detected in 
March with an annual rate of 0.05 °C, indicating that regional average value of SMT in March had increased up 
to 1.82 °C over past 35 years. The reasons for increasing trend of SMT might due to the global warming effects 
and urban heat island, since the urbanization and human activities for big cities such as Beijing city, Tianjin city 
and Shijiazhuang city have increased for past several decades. However, regional average values of SMT in sev-
eral months had decreased, especially from October to December, which indicated that the warming trends had 
slowed down. No statistically significant trend was detected at 5% significance level (Fig. 2b). The largest value 
of monthly precipitation occurred in July (139.86 mm), followed by August (108.02 mm) and June (79.02 mm). 
However, the trend magnitudes of precipitation in July and August had decreased. The largest negative slope was 
detected in July with an annual rate of -0.37 mm, which indicated that regional average precipitation in July had 
decreased by 12.95 mm for the period of 1982–2016. Precipitation in three months including February, August 
and October had statistically significant trend at 5% significance level (Fig. 2c).

To further reveal the possible impacts of precipitation and temperature on SMN, the correlation coefficients 
between regional average SMN and SMT, SMN and precipitation were presented in Fig. 2d. For SMT, stronger 
positive correlation coefficients mainly occurred in winter and spring, with the largest correlation coefficient 
detected in January (0.7350), followed by December (0.6727). The significant correlations between SMN and SMT 
were detected from November to March at next year, and also in July at 5% significance level. The correlation 
coefficients between SMN and SMT in three months from May to July were negative, indicating that higher tem-
perature might affect vegetation growth (Fig. 2b). On the other hand, the correlation coefficients between SMN 
and precipitation fluctuated from 1982 to 2016. The positive correlation coefficients mainly occurred in winter, 
during which time the vegetated areas might be affected by frost. The largest negative correlation coefficient was 
found in January (-0.5834). SMN in four months including January, May, June and September was significantly 
correlated to precipitation at 5% significance level. It is noteworthy that the SMN in August had also negatively 
correlated to precipitation, which might be caused by sharp decreasing trend of August precipitation (Fig. 2c).

It can infer that the SMN was mainly opposite correlated with SMT and precipitation, especially, in winter. 
E.g., the SMN is positively correlated with SMT and negatively correlated with precipitation from November in 
last year to February in the next year, indicating the dominate climate variable that affect the vegetation growth 
changed for different time period throughout the year. A comparative analysis of SMN trends (Fig. 2a) and cor-
relation coefficients between SMN and SMT/precipitation (Fig. 2d) indicated that SMN variations were mainly 
dominated by SMT increase in March and April (Fig. 2b) and precipitation decrease in July and August (Fig. 2c). 
The effects of climate variables might delay by one or two months, because the largest trend magnitude of SMT 
occurred in March and May for SMN.

Spatial and temporal variations of vegetation growth based on VHIs.  To reveal the spatial and 
temporal variations of vegetation growth activity in past decades, regional average values and Sen’s slopes of the 
VCI, TCI and VHI during growing season were studied for each individual grid between 1982 and 2016 in Jing-
Jin-Ji region. As shown in Fig. 3, average values of VCI during growing season for each grid were between 29 and 
68 (Fig. 3a), in comparison with the TCI within the ranges of 31–73 (Fig. 3b), and VHI from 30 to 66 (Fig. 3c), 
respectively. The slopes varied for different VHIs and different grids, with the maximum (2.4457) and minimum 
(-2.6147) values found in VCI (Fig. 3b), and the VHI had relatively small slopes (Fig. 3f). We further analyzed 
the significant test using Mann–Kendall non-parametric method, and the results show that the significant trends 
distributed scattered, which however, not the focus of this study.

Spatially, the results showed that about 77% of the Jing-Jin-Ji region had positive slopes for VCI (Fig. 3b), 
38% based on the TCI (Fig. 3d) and 65% for VHI (Fig. 3f), indicating that the vegetation growth had enhanced 
in majority of Jing-Jin-Ji region for both VCI and VHI. However, the regions with increasing vegetation stress 
based on the VHI were wider than that of VCI. This was more evident in big cities such as Beijing city, Tianjin 
city and Shijiazhuang city (Fig. 3f), similar with that of VCI, indicating that those regions might sustain more 
moisture stress for vegetation growth. In case of TCI, the decreasing slopes mainly detected in the northern 
part, especially in Beijing city, Tianjin city and northwest of Jing-Jin-Ji region. Most of the southern part of the 
study area showed increasing trends, indicating that the southern part of Hebei province might be subjected to 
more thermal stress.
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Figure 3.   Spatial distributions of thirty-five year average values and slopes of VHIs during growing season for 
the period of 1982–2016 in Jing-Jin-Ji region. (a) average values of VCI, (b) trends of VCI, (c) average values of 
TCI, (d) trends of TCI, (e) average values of VHI, and (f) trends of VHI.
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Drought and vegetation growth condition estimation based on VHIs.  It is very important for 
farmers and decision makers to know the drought intensity to estimate the potential disaster loss and to make 
drought relief measures, especially for severe drought. Regional moderate-to-exceptional (D1-D4) droughts 
were estimated based on regional average weekly VHI. Figure 4 shows percentage changes of area affected by 
drought at different intensities for the period of 1982–2016 in Jing-Jin-Ji region. Generally, the percentage of 
area that affected by drought had decreased from 1982 to 2016, and the slopes of linear fitting of percentage of 
area affected by drought had decreased from exceptional drought (-0.0239) to moderate drought (-0.3935). The 
average percentage of area affected by drought had decreased from moderate drought (22.03%) to exceptional 
drought (0.65%). It is worth mentioning that in some periods (e.g., during 2003–2005), no D3-D4 drought 
occurred, and the percentage of area affected by drought was relatively small after 2003. However, in some peri-
ods (e.g., during 2000–2001), droughts happened basically throughout the year. Especially, the percentage of 
area affected by exceptional drought (D4) reached the highest (12.75%) at nearly middle of 2000.

The percentage changes of area indicating vegetation stress (VHI < 40), normal vegetation condition 
(40 < VHI < 60) and favorable vegetation condition (VHI > 60) were further studied, as shown in Fig. 5. Again, 
the percentage of area with vegetation stress (VHI < 40) had decreased from 1982 to 2016, and the slope of linear 
fitting (valued -0.4735) was larger than drought at other intensities (Fig. 5a). At the same time, the percentage 
of area with normal vegetation condition (Fig. 5b) and favorable vegetation condition (Fig. 5c) had increased 
from 1982 to 2016. To be more specific, the slope of linear fitting of percentage of area with favorable vegetation 
condition was bigger than that of normal vegetation condition, reached 0.3195 per year, indicating that the aver-
age value of percentage of area with favorable vegetation condition had increased up to nearly 11%, which might 
mainly because the vegetation coverage had increasing trends for past several decades, especially since the twenty-
first century. Generally, the percentage of area fluctuated for VHI at different ranges. The largest percentage of 
area with favorable vegetation condition was detected in May of 1998 (79%), followed by August of 2004 (75%).

To reveal the effects of drought on the vegetation growth activity at different areas of Jing-Jin-Ji region, the 
percentage of area with regional average weekly VHI at different ranges in Beijing and Tianjin cities were also 
investigated for the period of 1982–2016. It is noteworthy that drought in some regions such as Beijing and 
Tianjin cities might affected by the urbanization. Based on highly resolution NDVI data derived from the Terra 
Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1) Version 6 dataset, 
we have analyzed the change characteristics of NDVI for different land coverage. The results found that the 
urban area mainly increased in the 21st, especially after 2010. The urban area has increased from 6.92% in 2000 
to 8.14% in 2010 and 12.11% in 2020. Thus, we should take into account the urbanization effects when analyze 
the drought condition. The results of Table 2 show that the average and maximum values of percentage of area 
affected by moderate-exceptional (D1-D4) droughts in Beijing city and Tianjin cities were slightly higher than 
those in Jing-Jin-Ji region, which might partly because of the urbanization effects, as we analyzed above. Further, 
the average and maximum values of percentage of area affected by D1-D4 droughts in Tianjin city were bigger 
than those in Beijing city. For example, the average (maximum) values of percentage of area affected by D4 
drought were 28.72% (97.83%) in Tianjin city, 25.20% (91.46%) in Beijing city, and 22.03% (83.20%) in Jing-Jin-
Ji region. The similar results can be detected for D2-D4 droughts. The linear fitting results provide the primary 
change of the percentage of area with regional average weekly VHI at different ranges, as shown in Figs. 4 and 
5. The slope of linear fitting method indicated the trends for percentage of area affected by different ranges of 
VHI, with the positive value indicating increasing trend, and vice versa. The percentage of area had decreas-
ing trends for all ranges of drought in Beijing city, which might because of the afforestation and forest planting 
activities. However, the slopes of linear fitting equation for D1-D4 droughts in Beijing city were bigger than those 
in Jing-Jin-Ji region, indicating that Beijing city suffered more severe drought stress than Jing-Jin-Ji region as a 
whole, which again might due to the relatively strong urbanization. At the same time, the slope of linear fitting 
for vegetation stress in Beijing city was bigger than that in Jing-Jin-Ji region. To the contrary, the slope of linear 
fitting for favorable vegetation condition was smaller than that in Jing-Jin-Ji region. However, the percentage of 
area with normal vegetation condition had decreased, differed from Jing-Jin-Ji region and Tianjin city. In case 
of Tianjin city, surprisingly, the percentage of area affected by D2–D4 drought intensity had increased, and the 
percentage of area with favorable vegetation condition (VHI > 60) had decreased from 1982 to 2016, indicating 
that the vegetation growth activity in Tianjin city became weaken, which might due to the rapid urban develop-
ment for past several decades.

We further investigated change patterns of different vegetation conditions and corresponding duration for 
each grid in Jing-Jin-Ji region based on weekly VHI at different ranges including D1-D4, 0–40, 40–60 and 60–100, 
respectively. Generally, the spatial distributions of average values and their corresponding duration of VHI at 
each range were scattered and complex. The results of average values and their average corresponding duration 
of weekly VHI at each category during 1982–2016 are shown in Table 3. As expected, the average values and 
their corresponding average duration decreased from moderate drought (D1) to exceptional drought (D4), and 
increased from vegetation stress (VHI < 40) to normal vegetation condition (40 < VHI < 60) and finally favorable 
vegetation condition (VHI > 60). Taking moderate drought (D1) for an example, the average value of weekly VHI 
between 0 and 35 was 24.59 at an average duration of 398 weeks from 1982 to 2016 (nearly 80 days per year), in 
comparison with average VHI valued 28.24 at an average duration of 552 weeks from 1982 to 2016 (approximate 
110 days per year). The results indicated an extensive distribution of vegetation stress for a long time (nearly 
4 months) in Jing-Jin-Ji region. Compared with favorable vegetation condition (VHI > 60) with normal vegeta-
tion condition (40 < VHI < 60) and vegetation stress (VHI < 40), it can be detected that the average duration of 
weekly VHI between 40 and 60 was the longest (728 weeks), followed by 552 weeks for VHI < 40 and 492 weeks 
for VHI > 60. We can deduced that the vegetation growth activity was normal condition dominated with average 
weekly VHI value of 49.92 for the period of 1982–2016 in Jing-Jin-Ji region.
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Figure 4.   Percentage changes of area affected by drought at different intensities for the period of 1982–2016 in 
Jing-Jin-Ji region. (a) VHI < 5 indicates exceptional drought (D4); (b) VHI < 15 indicates extreme drought (D3); 
(c) VHI < 25 indicates severe drought (D2) and (d) VHI < 35 indicates moderate drought (D1).
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Based on the relationships between drought and VHIs, the drought can be predicted 4–8 weeks in advance. 
Figure 6 illustrates the dynamic of regional average values of VHIs and their relationships in 2000 in Jing-Jin-Ji 
region for an example. The beginning of drought is identified in week of 23 when VHI crossed down 40 and end 
in week of 32, which lasted for 10 weeks. Based on the significantly positive correlation between TCI and VHI 
(ρ = 0.89), it might be possible to estimate the drought when TCI started to decrease, especially from fourteen 
week, which had several weeks before the drought happened. Considering the early detection of drought, it can 
provide early warning for farmers and decision maker and thus help to prepare precautionary measures for 
drought disaster in advance.

Correlation analysis between Niño 3.4 and VHIs.  The Niño 3.4 was used as a substitution to reveal the 
sensitivity of regional vegetation health during growing season to ENSO by correlating the Niño 3.4 with VHIs 
for each grid during 1982–2016 in Jing-Jin-Ji region, as shown in Fig. 7. Generally, the relationships between 
Niño 3.4 and VCI were negatively dominated, with 65.25% of grids had negative correlation coefficients. The 

Figure 5.   Percentage changes of area indicating vegetation stress, normal vegetation condition and favorable 
vegetation condition for the period of 1982–2016 in Jing-Jin-Ji region. (a) VHI < 40 indicates vegetation stress; 
(b) 40 < VHI < 60 indicates vegetation with normal condition; (c) VHI > 60 indicates vegetation with favorable 
condition.
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minimum value of correlation coefficient was -0.2638, located in the northwest of Jing-Jin-Ji region. Spatially, the 
negative correlations between Niño 3.4 and VCI were predominately located in the northwest and southeast of 
Jing-Jin-Ji region, and the grids irregularly located in the middle and southwest of Jing-Jin-Ji region were mainly 
positively correlated to Niño 3.4 (Fig. 7a).

On the contrary, for TCI, 67.71% of grids were positively correlated to Niño 3.4, with the maximum cor-
relation coefficient ρ = 0.1997. The grids that exhibited positive correlation coefficients were mainly detected in 
Zhangjiakou and Chengde cities, located in the northern part of Jing-Jin-Ji region, especially in the northwest 
part. The negative correlation coefficients were mainly detected in the south of Jing-Jin-Ji region, such as Handan 
city and Xingtai city. The correlation coefficients were irregularly distributed in the middle of Jing-Jin-Ji region, 
which indicated that the Niño 3.4 exerted inconspicuous impacts on the thermal condition (Fig. 7b).

In case of VHI, the grids with positive (56.22%) and negative (43.78%) correlation coefficients were approxi-
mately equivalent. Spatially, the grids had positive and negative correlation coefficients between Niño 3.4 and VHI 
distributed more uniform than those of Niño 3.4 correlated to VCI and TCI. The grids located in the southeast 
and northwest of Jing-Jin-Ji region were negatively dominated, and the grids located in Beijing city, Tianjin city 
and some other sporadic areas had positive correlation coefficients (Fig. 7c). In comparison of Fig. 7a, b, it can 
be seen that the impacts of Niño 3.4 on VCI and TCI were opposite to some extent, especially in the south and 
northwest of Jing-Jin-Ji region, to partly counteract the impacts of Niño 3.4 on VHI (Fig. 7c).

Nonlinear relationships between Niño 3.4 and VHIs using wavelet analysis.  Based on the linear 
relationships between Niño 3.4 and VHIs, the nonlinear relationships in time and frequency space between 

Table 2.   Liner trends of percentage of area with regional average weekly VHI at different ranges for the period 
of 1982–2016 in Jing-Jin-Jin region, Beijing and Tianjin cities.

Region VHI range Linear equation Trend Average value (%) Max value (%)

Jing-Jin-Ji region

VHI < 5 y = −0.0239x + 48.4540 Decrease 0.65 12.75

VHI < 15 y = − 0.0859x + 174.7868 Decrease 3.07 31.26

VHI < 25 y = − 0.2123x + 433.9317 Decrease 9.48 57.49

VHI < 35 y = − 0.3935x + 808.8915 Decrease 22.03 83.20

VHI < 40 y = − 0.4735x + 977.5322 Decrease 30.64 90.49

40 < VHI < 60 y = 0.1543x − 259.3224 Increase 49.19 87.76

VHI > 60 y = 0.3195x − 618.6419 Increase 20.17 81.38

Beijing City

VHI < 5 y = − 0.0055x + 11.6835 Decrease 0.72 22.80

VHI < 15 y = − 0.0038x + 11.3928 Decrease 3.84 47.54

VHI < 25 y = − 0.0215x + 54.5699 Decrease 11.55 72.05

VHI < 35 y = − 0.1146x + 254.4341 Decrease 25.20 91.46

VHI < 40 y = − 0.1793x + 392.5272 Decrease 34.04 96.02

40 < VHI < 60 y = − 0.0163x + 79.5513 Decrease 46.95 94.85

VHI > 60 y = 0.1956x − 372.1544 Increase 19.01 85.31

Tianjin City

VHI < 5 y = 0.0104x − 19.8853 Increase 0.80 28.83

VHI < 15 y = 0.0324x − 60.8101 Increase 4.22 76.91

VHI < 25 y = 0.0386x − 65.1976 Increase 12.95 94.13

VHI < 35 y = − 0.0256x + 76.8262 Decrease 28.72 97.83

VHI < 40 y = − 0.0535x + 145.6432 Decrease 38.63 98.85

40 < VHI < 60 y = 0.0553x − 64.5055 Increase 46.07 82.28

VHI > 60 y = − 0.0019x + 19.1741 Decrease 15.31 80.10

Table 3.   Regional average value and their corresponding duration of weekly VHI at different ranges for the 
period of 1982–2016 in Jing-Jin-Ji region.

Category VHI range Average value Duration(weeks)

D4 VHI < 5 2.01 14

D3-D4 VHI < 15 9.06 57

D2-D4 VHI < 25 16.88 174

D1-D4 VHI < 35 24.59 398

Stress VHI < 40 28.24 552

Normal 40 < VHI < 60 49.92 728

Favorable VHI > 60 71.33 492
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them were further studied using XWT and WTC. Figure 8 shows the XTW and WTC between Niño 3.4 and 
VCI, TCI and VHI. The 5% significance level against a red noise is shown using thick contour, and enclosed areas 
designate statistically significant coherence at 5% significance level with respect to a red noise background using 
Monte Carlo simulation. The relative phase relationship between two time series is described using arrows when 
phase difference exceeds 0.5. The vectors indicate the phase difference between Niño 3.4 and VHIs. A horizontal 
arrow point from left to tight indicates in phase, and an arrow points vertically upward signifies the second series 
lags the first by 90°, i.e., the phase angle is 270°, and vice versa when the arrows point left and downward.

Figure 8a shows the cross wavelet transform between Niño 3.4 and regional average VCI during growing 
season for the period of 1982–2016 in Jing-Jin-Ji region. The significant common power was detected mainly 
in the 2–6 year band between 1988 and 2000, also in the centered six year band during 2000s. The results show 
that Niño 3.4 and VCI are in phase for sectors with significant common power, and the phase relationship is in 
phase dominated outside the significant power areas. We can conclude that the Niño 3.4 is mainly positively 
correlated to VCI, which concurred with the results of correlation analysis as shown in Fig. 7a. Figure 8b shows 
scattered coherence between Niño 3.4 and VCI at mainly of 2–3 year band during 1990s and 6–8 year band after 
2000, which is mainly located at the edge of COI and thus should be interpreted in cautious. It is noticeable 
that no significant common power was detected between Niño 3.4 and VCI for the period of 1982–2016, which 
might due to the relative weak correlation between them. However, the VCI was positively correlated to Niño 
3.4 because the phase relationship is mainly in phase from Fig. 8b.

The vectors in Fig. 8c, d indicate the phase difference between Niño 3.4 and TCI at each time and period 
between 1982 and 2016. Large covariance between Niño 3.4 and TCI was detected at 2–6 year band, especially 
for wavelet coherence. The significant cross-wavelet common power was mainly detected during 1990s, which 
was anti phase dominated. Compared with wavelet coherence between Niño 3.4 and VCI (Fig. 8b), the coher-
ence between Niño 3.4 and TCI were stronger at both inter-annual and inter-decadal oscillations. The significant 
coherence were mainly detected at 2–6 year band before 2010 and nearly 10 year band, which however located 
at the border or outside the COI, and therefore it might be subject to errors. Obviously, the significant wavelet 
coherence between Niño 3.4 and TCI was anti phase dominated within the COI based on their phase differences, 
which is also consistent with results of correlation analysis at Fig. 7b.

The cross wavelet transform between Niño 3.4 and VHI shows similar significant common power with respect 
to VCI and TCI, with nearly 2–6 year band before 2005, which mainly within the COI. However, the phase dif-
ferences between them based on the common power are fickle, changing from about 45° in the 2–4 year band 
at the beginning of 1990s to nearly 135° in the 4–6 year band in 2000. The wavelet coherence between Niño 3.4 
and VHI is relatively stronger than results of VCI but weaker than results of TCI at the same time, as shown in 
Fig. 8b, d. Two strong oscillations were detected including 1–4 year band before 1990 and 6–10 year band between 
1990 and 2005 within the COI. However, the phase differences for above two oscillations are generally opposite, 
as we detected in Section "Correlation analysis between Niño 3.4 and VHIs" that the grids exhibited positive 
and negative correlations between Niño 3.4 and VHI were approximately equal (Fig. 7c). Significant wavelet 
coherence were also found before 2000, which located at the edge and outside of COI, again should be discarded.

Generally, relationships between Niño 3.4 and different VHIs including VCI, TCI and VHI are complex and 
unstable based on the results of correlation analysis in Section "Correlation analysis between Niño 3.4 and VHIs" 
and wavelet analysis in Section "Nonlinear relationships between Niño 3.4 and VHIs using wavelet analysis". The 
linear correlations between Niño 3.4 and VHIs varied for different grids and different VHIs, and the nonlinear 
wavelet common power and coherence likely change both in time and frequency. It seems that Niño 3.4 had 
more teleconnected to TCI than VCI, which might be interpreted that the Niño 3.4 exerted more direct impacts 
on the thermal than moisture condition.

Figure 6.   Dynamic change of regional average values of VHIs and their relationships in 2000 in Jing-Jing-Ji 
region.
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Discussion and conclusions
Using satellite-based VHIs, the paper assessed the spatiotemporal variability of vegetation growth activity for 
both regional average and individual grids, and estimated the change characteristics of drought for the period of 
1982–2016 in the Jing-Jin-Ji region. To reveal the influence mechanism of vegetation growth activity, the linear 
and nonlinear relationships between VHIs and ENSO (using Niño 3.4 as a substitution) were further investigated 
using correlation and wavelet analysis. Our findings are summarized as follows:

Assessment of vegetation growth based on VHIs.  Generally, the vegetation growth activity has 
increased for past 35 years, especially after 2000. The monthly SMN had increased throughout the year especially 
during growing season. Analysis of related climate variables including SMT and precipitation showed similar 
change patterns with that of SMN. However, the trend magnitudes varied in different months for SMT and pre-
cipitation. The correlation analysis between SMN and SMT/precipitation indicated that the temperature is the 
dominant variable that affected the vegetation growth.

Figure 7.   Correlation analysis between the Niño 3.4 and (a) VCI, (b) TCI, (c) VHI during growing season for 
the period of 1982–2016 in Jing-Jin-Ji region.
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Figure 8.   Cross wavelet transform and wavelet coherence between Niño 3.4 and regional average VCI (a,b), TCI (c,d), and VHI (e,f) 
during growing season for the period of 1982–2016 in Jing-Jin-Ji region. The sag dashed line draw through the wavelet spectrum is 
the cone of influence, and the thick enclosed areas indicate statistically significant wavelet coherence at a 5% significance level against 
a red noise. The arrows indicate the phase difference of period and coherence that are bigger than 0.5 between Niño 3.4 and regional 
average VCI. Left (right) pointing arrows indicate anti (in) phase coherence. The figures were created using Cross Wavelet and Wavelet 
Coherence Toolbox (http://​grins​ted.​github.​io/​wavel​et-​coher​ence/).

http://grinsted.github.io/wavelet-coherence/
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The spatiotemporal variations of VHIs for each individual grid showed that the VCI (TCI) was positive 
(negative) trends dominated during growing season, and the trend magnitudes varied for different VHIs and 
grids. The decreasing trends of VCI and VHI were mainly detected in big cities such as Beijing, Tianjin and 
Shijiazhuang, which should take into account the effects of urbanization since the urbanization level in the 
Jing-Jin-Ji region had increased a lot for past several decades, especially in large cities. The dominated positive 
trends of VCI and VHI revealed at Fig. 3 mainly concurred with results of Chen et al.49, who found a greening 
pattern especially prominent in China and India using satellite data for the period of 2000–2017. The VHIs were 
proposed by Kogan42 and had been widely used to assess the terrestrial vegetation productivity, land cover and 
drought characteristics. It is noteworthy that the VCI and TCI are normalization of smoothed NDVI and BT, 
which are the proxy for moisture and thermal conditions. The VHI is a proxy characterizing vegetation health, 
and can be calculated based on a combine estimation of moisture and thermal conditions. However, it still needs 
to further investigate whether it is reasonable to include both NDVI and BT in the vegetation health index. For 
example, the Land Surface Temperature (LST) is related to the albedo of the soil and vegetation, an important 
parameter to monitor the state of crops and vegetation, and also an important indicator of greenhouse effect at 
both global and local scales. It might be more suitable to indicate the thermal of the vegetation condition with 
respect to brightness temperature, especially for urban areas50, which should be useful to combine the LST into 
VHIs in the future. Another issue should note that the algorithms of VCI and TCI are based on comprehensive 
processing of smoothed NDVI and BT that remove the high frequency noise, and the algorithm of VHI is based 
on the weighted sum of VCI and TCI, which again need to interpret in cautious.

The strong relationships between SMN and SMT/precipitation provided the possibility to predict SMN using 
climate variables such as temperature and precipitation as predictors. The results agree with previous study of 
Jiang et al.2, who developed an artificial neural network calibrated by the genetic algorithm (ANN-GA) to esti-
mate Alberta’s vegetation productivity using precipitation and temperature as predictors. However, the influence 
mechanism of vegetation growth was complex, which needs to be further investigated.

Estimation of drought conditions based on VHIs.  The relationships between VHI and drought inten-
sity make it possibility of using VHI to monitor the start, duration and end of drought. As studied by Kogan 
et al.5, who used vegetation health indices for early detection and monitoring of drought. The VHIs have been 
successfully used for early drought detection and crop production losses estimation in 20 countries around the 
world. The intensity, duration, affected area of drought were estimated based on weekly VHI at different cat-
egories for both regional average values and each individual grid. In general, the percentage of area affected by 
drought at different intensities (D1-D4) had decreased, and the percentage of area with normal vegetation con-
dition and favorable vegetation condition had increased from 1982 to 2016. However, the slopes of linear fitting 
of percentage of area affected by drought varied for different drought intensities, different regions and different 
time periods. It is noteworthy that the percentage of area affected by D2-D4 drought intensities and percentage 
of area with favorable vegetation condition had decreased from 1982 to 2016 in Tianjin city, indicating that the 
vegetation growth activity in some regions had become weaken, which might due to the urbanization effects and 
should be emphasized. The spatial distributions of average values and their corresponding duration of weekly 
VHI at each categories were mainly scattered and complex for each grid in Jing-Jin-Ji region.

Relationships between Niño 3.4 and VHIs.  The Niño 3.4 was mainly negatively (65.25% of grids) cor-
related to VCI, which were predominated located in the northwest and southeast of Jing-Jin-Ji region. However, 
the linear relationship between Niño 3.4 and TCI was positively dominated and 67.71% of grid had positive cor-
relation coefficients mainly located in the northern part of Jing-Jin-Ji region. However, the spatial distribution 
of positive and negative correlation coefficients between Niño 3.4 and VHI was inconspicuous with respect to 
VCI and TCI, which might be caused by predominantly opposite effects of Niño 3.4 to VCI and TCI. The results 
are mainly concurred with previous studies. Kogan et al.23 evaluated the sensitivities of different land ecosystems 
by correlating VHIs with Niño 3.4 globally. The results indicated that satellite-based VHIs provided a combined 
contribution of moisture and thermal conditions with respect to cumulative vegetation response, which deline-
ated more precisely the affected areas and period compared to weather-based features such as precipitation and 
temperature.

The nonlinear relationships between Niño 3.4 and three VHIs revealed using cross wavelet transform and 
wavelet coherence were in accordance with linear relationships revealed using correlation analysis. The nonlinear 
wavelet common power and coherences were unstable and complex, changing both in time and frequencies. It is 
expected that Niño 3.4 extracts more influences on temperature than precipitation, given the fact that ENSO is 
associated with variations in SST in the tropical Pacific Ocean1. The relatively weak relationships between Niño 
3.4 and VHI might because Niño 3.4 had mainly positively affected the VCI with respect to mainly negative 
impacts on the TCI. However, the results varied at different regions and period, and the influence mechanism 
of the impacts of Niño 3.4 on the VHI still need to be further investigated.

Future research.  Our results in this study provide assessment of regional vegetation growth activity and 
drought estimation, which should be useful for the vegetation productivity assessment, drought detection and 
prevention, and also help to agriculture management for farmers and decision makers. Especially, the relation-
ships between large-scale global anomalies and vegetation growth activity were further revealed using correla-
tion and wavelet analysis, which expands our knowledge to predict vegetation and drought conditions using 
climate variables (e.g., precipitation and temperature) and large-scale global climate anomalies (e.g., Niño 3.4) 
as potential predictors. However, this study has limitations which need to be further investigated. For example, 
the trends of SMT, SMT and precipitation, the percentage changes of area affected by drought and different 
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vegetation conditions were applied to regional average values. It is gratifying that this does not affect our mainly 
conclusions revealed above. As an extension of this study, our future work will therefore focus on the vegeta-
tion growth and drought assessment for different vegetation types and different climate division, and hopefully, 
a linear and nonlinear combined predicted model, as developed by in previous study of Jiang et al.2, might be 
applied to predict vegetation growth and drought conditions based on revealed VHIs-climate relationships in 
Jing-Jin-Ji region.
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