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Multipartite uncertainty relation 
with quantum memory
Saeed Haddadi  1,2*, Mohammad Reza Pourkarimi  3 & Soroush Haseli  4

We present a new quantum-memory-assisted entropic uncertainty relation for multipartite systems 
which shows the uncertainty principle of quantum mechanics. Notably, our results recover some well-
known entropic uncertainty relations for two arbitrary incompatible observables that demonstrate the 
uncertainties about the results of two measurements. This uncertainty relation might play a critical 
role in the foundations of quantum theory.

The uncertainty principle is a special feature of quantum mechanics. Historically, the first uncertainty relation 
formulated by Heisenberg1 who showed that one cannot predict the results with arbitrary precision for two 
incompatible observables concurrently, such as measurements of position x and momentum p of a particle2. Fol-
lowing, Robertson3 proposed an inequality in terms of a standard deviation in respect to a pair of incompatible 
observables for the systemic state. Nevertheless, Robertson’s uncertainty bound is state-dependent and so will 
be trivial for some states. In order to eliminate this defect, Deutsch4 proposed to utilise the Shannon entropy as 
a proper criterion of uncertainty and introduced the so-called entropic uncertainty relation (EUR). Moreover, 
Kraus5 improved Deutsch’s uncertainty bound, and later Maassen and Uffink6 proved it as

where H(Q) = −
∑

i qi log2 qi and H(R) = −
∑

j rj log2 rj are the Shannon entropy of the probabilities of meas-
urement results of the incompatible observables Q and R, respectively. The complementarity c = maxi,j{|�qi|rj�|

2} 
is the maximal overlap of Q and R with |qi� and |rj� being the eigenstates of Q and R, respectively. Compared with 
Robertson’s uncertainty bound, the bound of EUR (1) depends only on the complementarity of the two observa-
bles, avoiding the deficiency of state dependence. Noteworthily, a recent study has shown that the variance-based 
and entropy-like uncertainty relations are mutually equivalent7.

After that, a striking result of the uncertainty principle is to study the effect of a quantum memory that is 
achievable with current technology. Berta et al.8 revealed that the entropic uncertainty can be decreased with 
the help of memory particle which might be correlated with the measured system. They demonstrated a new 
uncertainty relation, which can be called quantum-memory-assisted entropic uncertainty relation (QMA-EUR). 
This relation can be described by the interesting uncertainty game between two legitimate players, Alice and 
Bob. At the beginning of the game, Bob has a pair of correlated particles, A and B, and sends particle A to Alice, 
with B as a memory particle. In the next step, she carries out a measurement on her quantum system by choosing 
one of the observables Q and R. Afterwards, she announces to Bob her choice of the measurement. Finally, Bob’s 
task is to predict Alice’s measurement outcome. During this game, the uncertainty via von-Neumann entropies 
can be written as

where S(A|B) = S(ρAB)− S(ρB) is the conditional von-Neumann entropy of ρAB with ρB = trA(ρAB) and 
S(ρ) = −tr(ρ log2 ρ) is the von-Neumann entropy. Also, S(O|B) = S(ρOB)− S(ρB) with O ∈ {Q,R} is the 
conditional von-Neumann entropy of the post-measurement state after the quantum system A is measured, 
ρQB =

∑

i(
∣

∣qi
〉

A

〈

qi
∣

∣⊗ IB)ρAB(
∣

∣qi
〉

A

〈

qi
∣

∣⊗ IB), likewise for ρRB , and IB being an identity operator in Hilbert 
space of B.

In the literature, substantial efforts have been made to improve Berta et al.’s bound9–17. To be explicit, Pati 
et al.9 improved Berta et al.’s bound by a term added to the right-hand side of inequality (2). Indeed, Pati et al.’s 
bound is tighter than Berta et al.’s bound if the quantum discord is larger than the classical correlation. Then, 
Pramanik et al.10 obtained a new entropic uncertainty relation based on fine graining, which led to an ultimate 
limit on the accuracy achievable in measurements made on two incompatible observables in the presence of 

(1)H(Q)+H(R) ≥ − log2(c),

(2)S(Q|B)+ S(R|B) ≥ − log2(c)+ S(A|B),
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quantum memory. Moreover, Coles and Piani11 reported a strong bound by considering the second largest value 
of the overlap. Zhang et al.12 presented tighter bounds on both entropic uncertainty and information exclusion 
relations for multiple measurements in the presence of quantum memory. In Ref.13, Pramanik et al. derived a new 
form of the uncertainty relation through extractable classical information. In 2016, Xiao et al.14 tightened Berta 
et al.’s bound based on Coles and Piani’s remarkable bound. Later, Chen et al.15 improved the lower bounds for 
the entropic uncertainty relations via polynomial functions. Besides, Huang et al.16 presented a Holevo bound for 
QMA-EUR, where the difference between the entropic uncertainties and the new bound is always a fixed value. 
More recently, Li and Qiao17 proposed a method to decrease the local uncertainty. In this remarkable study a new 
kind of uncertainty relation based on conditional majorization18–20 has been formulated, which can be calculated 
for any number of observables. According to this new class of uncertainty relation and in the presence of quantum 
memory, one can get lower bounds in comparison to the conditional entropic uncertainty relation. On the other 
hand, continuing progress has been done by some groups from an experimental viewpoint21–31. Furthermore, a 
promising effort was made by Adabi et al.32 to tighten the Berta et al.’s bound, which is expressed as

where δ = I(A : B)− [I(Q : B)+ I(R : B)] , I(A : B) = S(ρA)+ S(ρB)− S(ρAB) is mutual information between 
Alice and Bob, and I(O : B) = S(ρB)−

∑

i piS
(

ρB|i
)

 is Holevo quantity. Note that, ρB|i = trA(�
A
i ρAB�

A
i )/pi is 

the post-measurement state of Bob after measuring of observable O by Alice and pi = trAB(�
A
i ρAB�

A
i ) is the 

probability of ith outcome.
Interestingly, the bipartite QMA-EUR has been the topic of many works in recent years33–48 (see Refs.49 and50 

for detailed reviews on bipartite QMA-EUR). However, Renes and Boileau51 showed that the bipartite QMA-EUR 
could be generalized to the tripartite case where two particles B and C are considered as the quantum memories. 
It is shown that the tripartite QMA-EUR can be written as

In this scenario, Alice, Bob, and Charlie share a tripartite quantum state ρABC and then Alice carries out one of 
two observables (Q and R) on her system. Briefly, if Alice measures Q, then Bob’s task is to minimize his uncer-
tainty about Q and whenever she measures R, then Charlie’s task is to minimize his uncertainty about R. Most 
recently, Ming et al.52 improved the tripartite uncertainty bound of the inequality (4) as

where

Subsequently, Dolatkhah et al.53 introduced a new lower bound for tripartite QMA-EUR that is tighter than Ming 
et al.’s bound. The new inequality can be derived by

with

Within the above, it is obvious that the studies only have been focused on the case of two measurements (Q and 
R). However, many attempts have been made to generalize the entropic uncertainty relations to more than two 
observables54–63. Here, one can refer to the result of Liu et al.55 that they considered Maassen and Uffink bound 
for multi-observable ( > 2 ) with the state of the measured system A ≡ ρA which is generally a mixed state, viz

in which

where c(u1i1 , u
2
i2
) = |�u1i1 | u

2
i2
�|2 and c(umim , u

m+1
im+1

) = |�umim | um+1
im+1

�|2 with 
∣

∣umim
〉

 which is the ith eigenstate of Om . 
Furthermore, this inequality in the presence of quantum memory B is converted to55

Until now, the inequalities revealed only for bipartite, tripartite, and multi-measurement cases, while the case of 
multipartite systems remains unstudied. In this paper, we will present a novel entropic uncertainty with quantum 
memory for multipartite systems where the memory is split into several parts. Herein, we highlight this relation 

(3)S(Q|B)+ S(R|B) ≥ − log2(c)+ S(A|B)+max{0, δ},

(4)S(Q|B)+ S(R|C) ≥ − log2(c).

(5)S(Q|B)+ S(R|C) ≥ − log2(c)+max{0,�},

(6)� =− log2(c)+ 2S(A)− [I(A : B)+ I(A : C)] + [I(Q : B)+ I(R : C)] −H(Q)−H(R).

(7)S(Q|B)+ S(R|C) ≥− log2(c)+
S(A|B)+ S(A|C)

2
+max{0, δ′},

(8)δ′ =
I(A : B)+ I(A : C)

2
− [I(Q : B)+ I(R : C)].

(9)
N
∑

m=1

H(Om) ≥ − log2(b)+ (N − 1)S(A),

(10)b = max
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
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(11)
N
∑

m=1

H(Om|B) ≥ − log2(b)+ (N − 1)S(A|B).
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for its key role in quantum theory and potential wide applications, as well as expect that this uncertainty relation 
can be demonstrated in various physical systems.

Generalization of QMA‑EUR
The following theorem reveals how to obtain the QMA-EUR for multipartite systems.

Theorem 1  By considering the measured system state A ≡ ρA that is generally mixed, the following multipartite 
uncertainty relation holds for any state ρAm ( m = 1, 2, ...,N)

where

with Om and Pm which are the different incompatible observables and the memory particles for mth measurement, 
respectively. In this scenario, Alice and the others share a multipartite quantum state ρAm and then Alice carries out 
one of the  observables ( Om,m = 1, 2, ...,N ) on her system. If Alice measures O1 , then P1 has the task to minimize 
his uncertainty about O1 . If she measures O2 , then P2 has the task to minimize his uncertainty about O2 . Generally, 
whenever Alice measures Om , then Pm has the task to minimize his uncertainty about Om.

Proof  Regarding S(O|P) = H(O)− I(O : P) , the left-hand side of inequality (12) can be rewritten as

where the inequality follows from Liu et al.’s result for N measurements (9) and the last equation comes from the 
identity S(A) = S(A|P1)+ I(A : P1) . By using S(A) = S(A|P2)+ I(A : P2) we have

In general, for m = 1, 2, . . . ,N by substituting the identity S(A) = S(A|Pm)+ I(A : Pm) into (14), one arrives at

which can be rewritten as the desired outcome (12). 	�  �

Corollary 1  If the prepared state is a bipartite state, our uncertainty relation will recover Adabi et al.’s result.

Proof  For any bipartite state, we consider two observables ( O1 = Q and O2 = R ) and P1 = P2 = B . Therefore, 
from Eq. (12) we obtain the Eq. (3) with the complementarity b = c and κ = δ.	�  �

Corollary 2  If the prepared state is a tripartite state, our uncertainty relation recover Dolatkhah et al.’s result.

Proof  For any tripartite state, we consider two observables ( O1 = Q and O2 = R ) and P1 = B and P2 = C . So, 
we restore the Eq. (7) with the complementarity b = c and κ = δ′ . 	�  �

Example: four‑partite QMA‑EUR
Let O1 , O2 , and O3 be three incompatible observables for a four-partite system ρABCD which is generally a mixed 
state. The following four-partite uncertainty relation holds (with P1 = B , P2 = C , and P3 = D)

where

(12)
N
∑

m=1

S(Om|Pm) ≥− log2(b)+
N − 1

N

N
∑

m=1

S(A|Pm)+max{0, κ},

(13)κ =
N − 1

N

N
∑

m=1

I(A : Pm)−

N
∑

m=1

I(Om : Pm),

(14)

N
∑

m=1

S(Om|Pm) =

N
∑

m=1

H(Om)−

N
∑

m=1

I(Om : Pm)

≥− log2(b)+ (N − 1)S(A)−

N
∑

m=1

I(Om : Pm)

=− log2(b)+ (N − 1)[S(A|P1)+ I(A : P1)] −

N
∑

m=1

I(Om : Pm),

(15)
N
∑

m=1

S(Om|Pm) ≥− log2(b)+ (N − 1)[S(A|P2)+ I(A : P2)] −

N
∑

m=1

I(Om : Pm).

(16)
N
∑

m=1

S(Om|Pm) ≥− log2(b)+
N − 1

N

N
∑

m=1

S(A|Pm)+
N − 1

N

N
∑

m=1

I(A : Pm)−

N
∑

m=1

I(Om : Pm),

(17)S(O1|B)+ S(O2|C)+ S(O3|D) ≥− log2(b
′)+

2

3
[S(A|B)+ S(A|C)+ S(A|D)] +max{0, κ ′},
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and

with |u1i � , |u
2
j � and |u3k� being the eigenstates of the three observables O1 , O2 and O3 , respectively.

It is worth noting that the memory has been split into three parts. In this situation, after preparing a four-
partite state ρABCD , particle A is sent to Alice, B to Bob, C to Charlie, and D to David. Now, Alice carries out 
one of the three observables ( Om,m = 1, 2, 3 ) on her system. Then, Alice informs Bob, Charlie, and David of 
her measurement choice. If Alice measures O1 , then Bob’s task is to minimize his uncertainty about O1 . If she 
measures O2 , then Charlie’s task is to minimize his uncertainty about O2 . Finally, if she measures O3 , then David’s 
task is to minimize his uncertainty about O3.

Conclusion
In summary, we have presented a generalized uncertainty relation with quantum memory for multipartite systems 
and obtained a new QMA-EUR for four-partite quantum systems. This generalized entropic uncertainty depends 
on the conditional von-Neumann entropies, Holevo quantities, and the mutual information. We expect that the 
inequality will bring on more potential applications in quantum information and communication, e.g., entan-
glement detection64, multipartite entanglement-structure detection65, witnessing multipartite entanglement66, 
detection of genuine multipartite entanglement in multipartite systems67, exploring the efficient multipartite 
entanglement criteria68–70, analyzing the monogamy and polygamy relations of multipartite quantum states71,72, 
and so on. It means that our multipartite uncertainty relation will have significant applications in entanglement 
detection and precision measurements. In a forthcoming paper, one may motivate to extend the results to get an 
uncertainty relation for multipartite systems based on conditional majorization in comparison to recent study17.
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