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Lung adenocarcinoma and lung 
squamous cell carcinoma 
cancer classification, biomarker 
identification, and gene expression 
analysis using overlapping feature 
selection methods
Joe W. Chen & Joseph Dhahbi*

Lung cancer is one of the deadliest cancers in the world. Two of the most common subtypes, lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), have drastically different 
biological signatures, yet they are often treated similarly and classified together as non-small cell 
lung cancer (NSCLC). LUAD and LUSC biomarkers are scarce, and their distinct biological mechanisms 
have yet to be elucidated. To detect biologically relevant markers, many studies have attempted 
to improve traditional machine learning algorithms or develop novel algorithms for biomarker 
discovery. However, few have used overlapping machine learning or feature selection methods for 
cancer classification, biomarker identification, or gene expression analysis. This study proposes to 
use overlapping traditional feature selection or feature reduction techniques for cancer classification 
and biomarker discovery. The genes selected by the overlapping method were then verified using 
random forest. The classification statistics of the overlapping method were compared to those of the 
traditional feature selection methods. The identified biomarkers were validated in an external dataset 
using AUC and ROC analysis. Gene expression analysis was then performed to further investigate 
biological differences between LUAD and LUSC. Overall, our method achieved classification results 
comparable to, if not better than, the traditional algorithms. It also identified multiple known 
biomarkers, and five potentially novel biomarkers with high discriminating values between LUAD and 
LUSC. Many of the biomarkers also exhibit significant prognostic potential, particularly in LUAD. Our 
study also unraveled distinct biological pathways between LUAD and LUSC.

Abbreviations
AUC   Area under curve
DAVID  The Database for Annotation, Visualization, and Integrated Discovery
DGE  Differential gene expression
FPR  False positive rate
GO  Gene ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
Lasso  Least absolute shrinkage and selection operator
LUAD  Lung adenocarcinoma
LUSC  Lung squamous cell carcinoma
mRMR  Minimum redundancy maximum relevance
NSCLC  Non-small cell lung cancer
PCA  Principal component analysis
ROC  Receiving operating characteristics
TCGA   The Cancer Genome Atlas
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TPR  True positive rate
Xgboost  Extreme gradient boosting
QSOX1  Quiescin sulfhydryl oxidase 1
ARHGAP12  Rho GTPase activating protein 12
ARHGEF38  Rho guanine nucleotide exchange factor 38
ELFN2  Extracellular leucine rich repeat and fibronectin type III domain containing 2
MUC1  Mucin 1, cell surface associated
GPC1  Glypican 1 GPC1
NECTIN1  Nectin cell adhesion molecule 1
PERP  P53 apoptosis effector related to PMP22
REPS1  RALBP1 associated Eps domain containing 1
TRIM29  Tripartite motif containing 29
CELSR2  Cadherin EGF LAG seven-pass G-type receptor 2
TUBA1C  Tubulin alpha 1c
S100A2  S100 calcium binding protein A2
KRT5  Keratin 5
KRT14  Keratin 14
KRT6A  Keratin 6A
TP63  Tumor protein P63
NAPSA  Napsin A aspartic peptidase
MLPH  Melanophilin
DSC3  Desmocollin 3

Lung cancer is the most commonly diagnosed malignant tumor and is a leading cause of cancer-associated 
mortality. It is the second highest cause of new cancer cases in both genders in the United States and is the 
second leading cause of cancer deaths in females  globally1,2. The most common subtypes of lung cancers are 
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), classified together as non-small cell 
lung cancer (NSCLC)3,4. However, recent studies have suggested that LUAD and LUSC should be classified and 
treated as different  cancers5.

Identifying the mechanisms underlying LUAD and LUSC is needed to develop useful biomarkers for better 
diagnosis and design therapeutic interventions. Multiple gene expression and immunohistochemistry studies 
have identified biological pathways and biomarkers that differentiate between LUAD and  LUSC6–8. Other studies 
classified cancers using both novel and traditional machine learning or feature selection  methods9–12. However, 
few have investigated cancers by applying multiple feature selection methods and selecting the overlapping 
features.

In this study, we downloaded LUAD and LUSC RNA-Seq datasets from The Cancer Genome Atlas (TCGA)13 
and analyzed them with five feature selection methods with ranking abilities: Differential Gene Expression 
Analysis (DGE), Principal Component Analysis (PCA), Least absolute shrinkage and selection operator (Lasso), 
minimal-Redundancy-Maximal Relevance (mRMR), and Extreme Gradient boosting (XGboost). DGE applies a 
normalization method and uses the negative binomial distribution to detect significant changes in gene expres-
sion across  samples14,15. Many studies have shown that DGE, though being the most widely used algorithm to 
detect differentially expressed genes, often yields some false positive results; in addition, it is often sensitive 
to  outliers14–17. On the other hand, XGboost is a tree-based machine learning method that is not sensitive to 
outliers but is prone to  overfitting17,18. To minimize this problem, we chose to use Lasso, a linear regression 
technique that avoids overfitting but can be influenced by highly correlated features and potentially leading to 
false  discoveries17–20. mRMR is then used to maximize the relevance between the features and the output, and 
minimize the relevance among the feature themselves, thus, limiting highly correlated  features21–23. PCA is 
another well-known and widely used feature reduction technique in machine learning to reduce high dimen-
sional data into orthogonal principal components, which also removes correlated  features17,18. However, amidst 
other disadvantages, the result of PCA by itself is often not  interpretable17,18. These algorithms were also chosen 
because of their ability to rank features or select a reasonable number of features. In short, overlapping these 
algorithms is promising because different methods select features using different criteria. Since each method has 
its strengths and weaknesses, focusing on the overlapping features will optimize the strengths and minimize the 
weaknesses of each method, thereby reducing the number of false positives and producing reliable results. This 
study will serve as a proof of concept for the validity of the approach to overlap feature selection methods while 
investigating NSCLC subtype differences and discovering novel biomarkers.

Results
Study design and overview. We obtained LUAD and LUSC RNA-Seq data from TCGA 13 and the sum-
mary of their clinical information was provided in Table 1, with more comprehensive details available on TCGA 
 website13. We selected discriminatory genes by overlapping DGE, PCA, mRMR, XGboost, and lasso as depicted 
in Fig. 1. The genes that were overlapped by two or more algorithms were validated and used for LUAD and 
LUSC classification as well as gene expression analysis. The genes that were overlapped by three or more algo-
rithms were selected as biomarker candidates, and their diagnostic values were assessed using ROC analysis and 
AUC value, and then further verified in an external dataset,  GSE2858224,25, which is a microarray dataset that 
includes 50 LUAD and 28 LUSC samples The prognostic values of the biomarker candidates were also assessed 
using Kaplan Meier  Plotter26.
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Selection of genes. Top 500 genes from DGE (Table S1) were selected as top features based on their low-
est p-values. Similarly, top 500 genes from the first principal component in PCA and the top 500 genes from 
mRMR (Table S1) were selected based on the ranking of the algorithm. Also, 148 genes in Xgboost (Table S1) 
and 68 genes in lasso (Table S1) using probability or prediction threshold of 0.5 were identified and selected. The 
different number of genes selected was due to the nature of the algorithm, with most of the parameters in each 

Table 1.  Summary of clinical information from TCGA with each entry indicating number of samples.

Gender
AJCC pathologic 
stage Treatment Primary diagnosis subtypes

Lung adenocarcinoma

Male 220 Stage IA 124 Pharmacotherapy only 56 Adenocarcinoma, NOS 311

Female 259 Stage IB 131 Radiotherapy only 101 Adenocarcinoma with mixed subtypes 108

Missing 50 Stage IIA 46 Both therapies 70 Papillary 22

Stage IIB 63 No treatment 242 Bronchiolo-alveolar, NOS 3

Stage IIIA 66 Missing 60 Bronchiolo-alveolar, nonmucinous 19

Stage IIIB 11 Brionchio-alviolar Carcinoma, mucinous 5

Stage IV 24 Micropapillary 3

Stage I 5 Clear cell 2

Stage II 1 Solid carcinoma 6

Missing 58 Missing 50

Lung squamous cell carcinoma

Male 368 Stage IA 89 Pharmacotherapy only 57 Squamous cell carcinoma, NOS 465

Female 130 Stage IB 150 Radiotherapy only 65 Basaloid 14

Stage IIA 64 Both therapies 48 Keratinizing 13

Stage IIB 94 No treatment 265 Papillary 3

Stage IIIA 63 Missing 63 Large cell, nonkeratinizing 2

Stage IIIB 18 Small cell, nonkeratinizing 1

Stage IV 7

Stage I 3

Stage II 3

Stage III 3

Missing 4

Figure 1.  An overview of the experimental design. A scheme summarizes the selection methods and the 
numbers of the resulting overlapped genes.
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algorithm were set to default. The specifics of each metric can be found in the code at the data availability section 
Since each of these methods has its own selection criteria, the overlapping genes must satisfy multiple selection 
criteria, making them significant candidate biomarkers that differentiate LUAD and LUSC. Therefore, the five 
independent sets of top genes were compared with a Venn diagram to identify the overlapping genes detected 
by multiple algorithms. Venn diagram (Fig. 2) comparison detected 131 genes (Table S2) overlapped by two or 
more algorithms and 17 genes (Table 2) overlapped by three or more algorithms.

Validation of selected genes. To evaluate how effective the selected genes are in classifying LUAD and 
LUSC, we used random forest to validate the top 500 genes selected from PCA, mRMR, and DGE, as well as the 
148 genes from xgboost and 68 genes from lasso (Table S1). All of the validation results for each feature selec-
tion method returned high classification accuracies of over 90% (Table 3). To compare to the previous feature 

Figure 2.  Venn diagram shows overlapping genes selected by each algorithm. Venn diagram of selected genes 
from PCA, mRMR, DGE, Lasso, and XGboost.

Table 2.  17 Biomarker candidate genes that were selected by three or more.

Genes Upregulated or downregulated Significantly expressed in LUSC or LUAD Number of algorithms that selected the gene

KRT17 (Keratin 17) Upregulated LUSC DGE, Lasso, PCA, XGBoost

KRT14 (Keratin 14) Upregulated LUSC DGE, PCA, XGboost

KRT6A (Keratin 6A) Upregulated LUSC DGE, PCA, XGboost

KRT5 (Keratin 5) Upregulated LUSC DGE, PCA, XGboost

S100A2 (Calcium Binding Protein A2) Upregulated LUSC DGE, PCA, XGboost

TUBA1C (Tubulin Alpha 1c) Upregulated LUSC DGE, Lasso, XGboost

CELSR2 (Cadherin EGF LAG seven-pass G-type 
receptor 2) Upregulated LUSC DGE, Lasso, XGboost

TRIM29 (Tripartite Motif Containing 29) Upregulated LUSC DGE, Lasso, PCA

REPS1 (RALBP1 Associated Eps Domain Con-
taining 1) Upregulated LUSC DGE, Lasso, XGboost

PERP (P53 Apoptosis Effector Related To PMP22) Upregulated LUSC DGE, Lasso, PCA

NECTIN1 (Nectin Cell Adhesion) Molecule 1 Upregulated LUSC DGE, Lasso XGboost

GPC1 (Glypican 1) Upregulated LUSC DGE, PCA, XGBoost

MUC1 (Mucin 1, cell surface associated) Downregulated LUAD DGE, Lasso, PCA

ELFN2 (Extracellular Leucine Rich Repeat And 
Fibronectin Type III Domain Containing 2) Downregulated LUAD DGE, Lasso, XGboost

ARHGEF38 (Rho Guanine Nucleotide Exchange 
Factor 38) Downregulated LUAD DGE, Lasso, XGboost

ARHGAP12 ( Rho GTPase Activating Protein 12) Downregulated LUAD DGE, Lasso, XGboost

QSOX1 (Quiescin Sulfhydryl Oxidase 1) Downregulated LUAD DGE, Lasso, PCA
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selection methods, the overlapping 131 genes were validated the same way as the other algorithms. The binary 
classification statistics (Table 3) were calculated using LUAD as ‘positive’ and LUSC as ‘negative’. The overlapping 
131 genes showed comparable, if not better, results to the other algorithms (Table 3). The 17 proposed biomark-
ers also showed to be effective classifiers, having statistics comparable to the other algorithms despite only using 
17 genes. Heatmaps for the top 131 and the top 17 genes were also generated (Fig. 3A,B). Both heatmaps, in par-
ticular the heatmap with 17 genes, displayed clear borders separating LUAD from LUSC. Dot plots of the gene 
expression distribution between LUAD and LUSC for each of the 17 genes are displayed in Fig. 4.  

Table 3.  LUAD and LUSC Classification Statistics.

Feature selection method Accuracy Specificity Sensitivity Precision F-measure 95% Bootstrap confidence interval

DGE (Top 500) 0.932476 0.901235 0.966443 0.9 0.932039 (0.9035, 0.9614)

PCA (Top 500) 0.942122 0.901235 0.986577 0.90184 0.942308 (0.9132, 0.9678)

mRMR (Top 500) 0.916399 0.888889 0.946309 0.886792 0.915584 (0.8842, 0.9453)

Lasso (68 Genes) 0.938907 0.907407 0.973154 0.90625 0.938511 (0.9100, 0.9646)

Xgboost (148 Genes) 0.935691 0.901235 0.973154 0.900621 0.935484 (0.9068, 0.9614)

Overlapping 131 Genes 0.938907 0.895062 0.986577 0.896341 0.939297 (0.9100, 0.9646)

17 Proposed Biomarkers 0.92926 0.889 0.9735 0.88957 0.9296 ( 0.9003, 0.9550 )

Figure 3.  Heatmap shows the 131 selected genes (A) for gene expression analysis and the 17 selected genes (B) 
as biomarker  candidates87. The x-axis represents the samples and the y-axis represents the genes.
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Identification of the 17 potential biomarkers and their ROC analysis. The 17 biomarker candi-
dates (Table 2) were subjected to ROC curve analysis (Fig. 5). Most of the genes had areas under the curve (AUC) 
of over 0.9, with NECTIN1 (0.9514), PERP (0.9529), KRT5 (0.9731), KRT6A (0.9532), and ARHGEF38 (0.9574) 
having AUC of over 0.95. Among the upregulated genes (Fig. 5A), KRT5 has the highest AUC of 0.9731, thereby 
displaying the most significant diagnostic potential in classifying LUAD and LUSC, consistent with the study 
reported by Jain Xiao et al.6 in which KRT5 also had the highest diagnostic potential. All of the upregulated genes 
show significant discrimination potential as well (Fig. 5A,B).

To minimize the inherent RNA expression noise and to ensure that these results are reproducible, an external 
dataset GSE28582 was used for external validation. AUC and ROC were also used to analyze the 17 genes in 
GSE28582 validation dataset (Fig. 6). Largely consistent with our result, most of the genes show AUC values well 
above 0.9; all except one gene, ARHGEF38, have AUC values above 0.8 (Fig. 6).

Kaplan Meier plotter analysis of the 17 potential biomarkers. Of the 17 potential biomarkers 
(Table 2), only CELSR2 shows a significant prognostic p-value in LUSC, with its higher expression correspond-

Figure 4.  Normalized Gene Expression Distribution Dot Plots for the 17 Biomarker  Candidates87. The x-axis 
represents the NSCLC subtypes and the y-axis represents the normalized gene expression values.
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ing to a more favorable prognosis in LUSC (Table 4). In contrast, many genes show significant prognostic poten-
tial in LUAD. High expressions of KRT17, KRT6A, S100A2, TRIM29, REPS1, and GPC1 correspond to an unfa-
vorable prognosis in LUAD, while high expressions of PERP, ELFN2, ARHGAP12, and QSOX1 correspond to a 
favorable prognosis in LUAD (Table 4).

Figure 5.  ROC and AUC analysis demonstrate discriminating potential for Upregulated (a,b) and 
Downregulated (c) Genes in TCGA  Dataset87. X-axis is sensitivity, or true positive rate (TPR). The Y-axis is 
1-Specificity, or false positive rate (FPR). Higher AUC indicates higher discriminating potential for the gene.
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Figure 6.  GSE28582 microarray dataset ROC and AUC validation of the 17 candidate  biomarkers87. (A,B) The 
upregulated genes, and (C) shows the downregulated genes. The x-axis represents sensitivity, or true positive 
rate (TPR). The y-axis is 1 − Specificity, or false positive rate (FPR). Higher AUC indicates higher discriminating 
potential for the gene.
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GO term enrichment analysis. To further understand the biological differences between LUAD and 
LUSC, we performed gene expression analysis by splitting the identified 131 genes into two groups: 57 downregu-
lated and 74 upregulated genes in LUSC compared to LUAD. Functional pathway annotation of these two groups 
of genes was performed using The Database for Annotation, Visualization and Integrated Discovery (DAVID)27 
analysis tool with Gene Ontology (GO) biological pathway enrichments. GO terms with P-value < 0.01 were 
obtained (Tables S3 and S4). The top 10 most significantly upregulated and downregulated GO terms ranked by 
p-value are shown in Table 5. In addition, DAVID has the functionality to group similar GO terms into clusters 
of the same biological pathway. To elucidate the potential biological differences between LUAD and LUSC, the 
top five most significantly upregulated and downregulated clusters ranked by enrichment scores were deter-
mined (Table 6 and Tables S5 and S6).

In the upregulated group, most pathways are concentrated in cell adhesion, intermediate filament organiza-
tion, and cell junction assembly. In the downregulated group, the most significant cluster is platelet degranulation 
and cell exocytosis, as well as other pathways such as tyrosine kinase signaling pathway, homeostasis, protein 
translation and circulatory system. These results suggest that LUSC tends to express more genes related to cell 
adhesion and cytoskeleton organization, and LUAD tends to express more genes involved in platelet degranula-
tion and exocytosis, along with other signaling pathways.

Reactome gene expression analysis. Reactome  pathways28 were also generated for both upregulated 
and downregulated groups. The most significantly upregulated pathway is the cornification, or the keratiniza-

Table 4.  Kaplan Meier prognostic values of the 17 biomarker.

LUAD LUSC

HR (95% CIs) P-value/FDR HR (95% CIs) P-value/FDR

KRT17 1.28 (1.01–1.61) 0.037/0.0629 1.11 (0.88–1.4) 0.39/0.947

KRT14 (EBS4) 1.19 (0.94–1.5) 0.14/0.2164 1.2 (0.95–1.52) 0.13/1

KRT6A (K6C) 1.67 (1.32–2.12) 1.6e−05/0.00014 0.99 (0.78–1.25) 0.92/0.98

KRT5 1.14 (0.9–1.43) 0.28/0.366 1 (0.79–1.27) 1/1

S100A2 1.73 (1.36–2.19) 4.3e−06/7.31E−5 1.07 (0.85–1.36) 0.55/1

TUBA1C 1.1 (0.87–1.39) 0.43/0.522 1.2 (0.94–1.52) 0.14/0.793

CELSR2 0.92 (0.73–1.16) 0.47/0.533 0.79 (0.62–1) 0.049/0.833

TRIM29 1.31 (1.04–1.66) 0.022/0.0416 0.93 (0.74–1.18) 0.57/0.969

REPS1 1.38 (1.08–1.76) 0.0093/0.0226 0.9 (0.66–1.23) 0.51/1

PERP 0.67 (0.52–0.85) 0.0012/0.0051 0.85 (0.62–1.16) 0.3/0.85

NECTIN1 (PVRL1) 1.19 (0.94–1.5) 0.14/0.198 0.94 (0.74–1.2) 0.63/0.974

GPC1 1.36 (1.08–1.72) 0.0091/0.0258 0.98 (0.77–1.23) 0.83/1

MUC1 1.02 (0.81–1.29) 0.84/0.084 1.02 (0.8–1.29) 0.88/1

ELFN2 0.72 (0.56–0.92) 0.0076/0.02584 1.07 (0.78–1.47) 0.67/0.876

ARHGEF38 (FLJ20184) 0.97 (0.77–1.23) 0.83/0.882 1.16 (0.91–1.47) 0.22/0.748

ARHGAP12 0.61 (0.48–0.77) 2.3e−05/0.00013 1.17 (0.93–1.49) 0.18/0.765

QSOX1 0.76 (0.6–0.96) 0.021/0.0446 0.95 (0.75–1.2) 0.66/0.935

Table 5.  Top 10 Upregulated and Downregulated GO Biological Pathways.

Top 10 upregulated pathways Top 10 downregulated pathways

GO term Pathway P-value GO term Pathway P-value

GO:0009888 Tissue development 4.45E−07 GO:0002576 Platelet degranulation 2.86E−04

GO:0045104 Intermediate filament cytoskeleton 
organization 8.82E−07 GO:1901575 Organic substance catabolic process 8.18E−03

GO:0045103 Intermediate filament-based process 9.95E-−07 GO:0009057 Macromolecule catabolic process 8.29E−03

GO:0007155 Cell adhesion 4.25E−06 GO:0045055 Regulated exocytosis 1.05E−02

GO:0022610 Biological adhesion 4.49E−06 GO:0009056 Catabolic process 1.32E−02

GO:0008544 Epidermis development 4.64E−06 GO:00034613 Cellular protein localization 1.80E−02

GO:0098609 Cell–cell adhesion 5.07E−06 GO:0070727 Cellular macromolecule localization 1.89E−02

GO:0034330 Cell junction organization 9.93E−06 GO:0043129 Surfactant homeostasis 2.36E−02

GO:2001233 Regulation of apoptotic signaling 
pathway 3.06E−05 GO:0016553 Base conversion or substitution editing 2.65E−02

GO:0061436 Establishment of skin barrier 5.65E−05 GO:0048875 Chemical homeostasis within a tissue 2.94E−02
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tion pathway (Fig. 7, Table S7), along with other similar pathways related to cell adhesion, which is consistent 
with GO term analysis. TP53 regulation pathway, which is often implicated in cancer, is among the top enriched 
pathways as well (Table S7). For the downregulated group, the most significant pathway is peptide elongation 
synthesis (Fig. 8, Table S8), which GO term analysis also reveals to be significant.

KEGG gene expression analysis. Only the p53 signaling pathway appeared in the upregulated group 
(Table 7) in Kyoto Encyclopedia of Genes and Genomes (KEGG)29 gene expression analysis. Though it has a 
p-value of slightly over 0.01, this result is consistent with Reactome analysis which ranks TP53 regulation as 
the second most upregulated pathway after keratinization and other cell junction related pathways. Only the 
lysosome seems to be significant in the downregulated group (Table 7). The lysosomal pathway is coherent with 
platelet degranulation and exocytosis, as reported in GO term analysis. Even though the ribosomal pathway has 
a p-value slightly greater than 0.05, it is most likely important as it is also shown to be significantly enriched in 
both GO and Reactome term analyses (Tables S3 and S8).

Discussion
Previous studies have utilized traditional feature selection and machine learning methods for cancer diagnosis, 
detection, and  classification10,11,22, but few have extended them to study potential biomarkers and biological 
pathways to discriminate between LUAD and LUSC. To improve cancer classification accuracy, novel machine 
learning, and feature selection methods have been  developed12,30–32. However, few studies have used overlapping 
features from different methods for classification, gene expression analysis, and biomarker discovery. To provide 
a proof of concept for the validity of this method, we took advantage of the capabilities and the strengths of PCA, 

Table 6.  Top 5 Clusters of Upregulated and Downregulated Biological pathways.

Top 5 clusters of upregulated biological pathways Top 5 clusters of downregulated biological pathways

Cluster Enrichment score Cluster Enrichment score

Cell adhesion 4.05 Platelet degranulation and exocytosis 1.34

Intermediate filament organization 3.87 Tyrosine kinase pathways 0.74

Cell junction organization 3.42 Homeostasis 0.69

Cell component organization 3.28 Protein translation and localization 0.68

Hemidesmosome assembly 2.67 Circulatory system regulation 0.63

Figure 7.  Keratinization pathway is upregulated in  LUSC28. The Keratinization pathway is the most upregulated 
pathway according to Reactome analysis with p-value 3.33E−15 and FDR 1.95E−12. The boxes partially 
highlighted in brown indicate the number of genes identified in the analysis that are associated with each box.
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mRMR, XGboost, DGE, and lasso to select 131 overlapping genes for classification and gene expression analysis, 
and 17 genes for classification and potential biomarkers. Overall, the overlapping 131 genes showed several 
high-ranking metrics with lasso and PCA methods. Though the best method may vary depending on the metric, 
the classification result of using both the overlapping 131 and 17 genes was by many metrics comparable if not 
better than the other methods that use more genes. The 131 overlapped genes achieved the highest sensitivity 
with PCA, the second highest accuracy with lasso, and the second highest F-measure overall, indicating that 
overlapping feature selection methods can be used to perform cancer classification.

Furthermore this method proves to be valuable in biomarker discovery. In agreement with our result, previ-
ous studies have reported levels of several genes to be greatly elevated in LUSC compared to LUAD; these genes 
include  KRT66,8,33,34,  KRT56,8,35,  KRT148,33,34,  KRT178,33,  PERP8,33,  TRIM298,33,  GPC18,  CELSR28,  S100A28, and 
 TUBA1C36. Also, consistent with our result, levels of  QSOX133 and  MUC18 were reported to be lower in LUSC 
than in LUAD. Many current biomarkers such as Tumor Protein P63 (TP63), Napsin A Aspartic Peptidase 
(NAPSA), Melanophilin (MLPH), Desmocollin 3 (DSC3), and others are also part of the top 131 genes selected 
by our  method33,37–40. To our knowledge, ARHGAP12, ARHGEF38, ELFN2, NECTIN1, and REPS1 are among 
the top 17 genes in this study to be identified as biomarkers for the first time. All 17 candidate biomarkers, except 
ARHGEF38, are also validated in GSE28582 exhibiting high discriminating potential. Although the selection of 
ARHGEF38 may be due to bias in the TCGA dataset, it is important to note that there are many more samples 
in TCGA compared to GSE28582; GSE28582 as a microarray dataset is also significantly worse than RNAseq at 
detecting gene expression differences when the expression values are low or when the fold change is less than 
 241–43. Notably, ARHGEF38 has relatively lower fold change and expression value.

Moreover, studies have shown that biomarkers for diagnosis and prognosis are most reliable when they are 
biologically related to the disease in addition to being statistically  significant44,45. Although this study is primarily 
data-driven, the results reveal biomarkers that would corroborate with a knowledge-based approach. For instance, 
the most significant candidate biomarkers between LUAD and LUSC are all cytokeratins and cadherins, which 
is reasonable because they are markers of squamous epithelial cells. In particular, NECTIN1, as a novel cadherin 
biomarker, consistently demonstrates high discriminating potential both in the TCGA and the external validation 
dataset; it also directly binds and signals fibroblast growth factor  receptor46, a pathological signaling pathway 
that is more prominent in  LUSC47,48. NECTIN1 also serves a key role in herpes simplex virus type 1 (HSV-1) 
viral entry and is important in oncolytic therapy in squamous cell  carcinomas49,50. Similarly, it is logical that 
MUC1 can be used to identify LUAD, as it is a marker for columnar cells from which LUAD arise. In addition to 

Figure 8.  Peptide elongation pathway is downregulated in LUSC when compared to  LUAD28. The peptide 
elongation pathway is the most down-regulated pathway according to Reactome analysis with p-value 9.72E−6 
and FDR 0.00157. The boxes partially highlighted in brown indicate the number of genes identified in the 
analysis that are associated with each box.

Table 7.  KEGG Upregulated and Downregulated Pathways.

KEGG upregulated pathways KEGG downregulated pathways

KEGG term Pathway P-value KEGG term Pathway P-value

Hsa04115 P53 signaling pathway 0.0476 Hsa04142 Lysosome 0.00727

NA NA NA Hsa03010 Ribosome 0.0749
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satisfying the aims of both data-driven and knowledge-based approach, many of the 17 genes identified through 
this method show significant prognostic importance, particularly in LUAD (Table 4).

The other candidate biomarkers also show strong association with cancers. ARHGEF38 and ARHGAP12 are 
both part of the Rho family GTPase regulators. Rho GTPases are essential to cell cytoskeletal structure, motil-
ity, and morphogenesis, and they have been implicated in many cancer proliferation and  metastases51–54. The 
other upregulated genes ELFN2, QSOX1, and MUC1 have been shown to directly promote metastasis in various 
 cancers55–59, including lung cancer. Furthermore, the loss of certain genes upregulated in LUSC such as TRIM29 
and KRT6A is associated with more cellular  invasion60,61. Clinical differences between LUAD and LUSC are 
well known. In particular, LUAD has a higher metastatic rate than  LUSC62. Studying these potential biomarkers 
may provide insight into tumor progression, metastatic, and therapeutic differences between LUAD and LUSC. 
Overall, these results not only align with known literature, but also provide reasonable and promising biomark-
ers, suggesting that using overlapping feature selection methods can be used to reliably detect new biomarkers. 
With the validity of this overlapping method shown both in cancer classification and biomarker identification, 
we performed gene expression analysis for further investigation.

Aside from cell adhesion or cytoskeleton organization, LUSC demonstrates higher regulation of p53 signal-
ing in both KEGG and Reactome analyses. It is known that TP53 mutation is more common in LUSC than in 
 LUAD63–65, and that such mutation may predominantly be a non-truncated mutation in LUSC leading to higher 
expression levels of genes involved in the p53 regulation  pathway66. Moreover, P53 mutations often lose their 
tumor suppression function while gaining oncogenic abilities, leading to increased cell growth and proliferation 
compared to  LUAD67.

The most prominent pathway associated with LUAD, compared to LUSC, is platelet degranulation and exocy-
tosis (Tables 5, 6). Interestingly, lung cancer is the most common malignancy to coexist with venous thromboem-
bolism, especially pulmonary  embolism68. LUAD, in particular, has been shown to be an independent risk factor 
for pulmonary embolism even among lung  cancers69,70. Because platelet granulation directly causes thrombus 
formation, the differential enrichment of platelet granulation pathway can therefore help explain a more active 
and a more common hypercoagulation and thrombotic process in LUAD compared to  LUSC71. In addition, 
platelet degranulation can modulate innate immunity via the release of cytokines, and platelet-leukocyte interac-
tions can lead to leukocyte recruitment and activation in  cancer72. In fact, CD63, one of the genes in the platelet 
degranulation pathway (Tables S3 and S6), is directly involved in leukocyte recruitment through endothelial 
P-selectin73. LUSC has recently been associated with a relatively more suppressed immune response, implying a 
more active immune response in LUAD, which supports our  result67,74.

There are several limitations of this study. One of them is that this study does not prioritize the RNA expres-
sion fold changes, which some groups have used to rank differentially expressed  genes75,76. Also, although this 
study aims to minimize the discovery of false positive biomarkers by overlapping different feature selection 
methods, the proposed biomarker candidates in this study still lack experimental verification. Nevertheless, these 
results may shed light into the biological differences between LUAD and LUSC, as well as aid the discovery of 
better diagnosis and treatment for  each77,78.

In conclusion, we designed and implemented a workflow of overlapping five different feature selection meth-
ods to perform cancer classification, identify novel biomarkers, and study biological differences in NSCLC. This 
overlapping method proves to be reliable in both cancer classification and biomarker identification, yielding 
statistically promising genes that also support our current knowledge. We identified ARHGAP12, ARHGEF38, 
ELFN2, NECTIN1, and REPS1 as novel biomarkers, along with 12 other strong biomarker candidates. We also 
provided insight into potential explanations for different clinical findings and biological characteristics between 
LUSC and LUAD through gene expression analysis. Further validation studies of these biomarkers and biological 
mechanisms are therefore warranted.

Method
RNA-Seq data processing. The LUAD and LUSC HTSeq read counts data were downloaded from TCGA 
13 using TCGAbiolinks from  R79,80. As of June 2020, there were 529 LUAD and 498 LUSC samples. The samples 
were normalized using TMM method and standardized using the CPM (read counts per million) function in 
R. Genes < 1 CPM in over 600 samples were considered noise and discarded to obtain 14,010 genes. The filtered 
genes were analyzed with different gene selection methods to further narrow down potential gene candidates for 
biomarkers and pathway analyses.

Gene selection and cancer classification. Gene selection analysis was performed using five different 
selection methods to generate five independent sets of top genes (Fig. 1). The 5 independent sets were com-
pared, and the resulting overlapped genes were used for cancer classification, biomarker identification, and gene 
expression analysis. The selection methods used were DGE, PCA, xgboost, lasso, and mRMR. DGE between 
LUAD and LUSC was performed using the edgeR  package81. Though there are other options to perform dif-
ferential gene expression analysis, edgeR was chosen mostly because of its speed and efficiency in analysis. Also, 
one of the other popular algorithm, DESeq, has also been shown to yield similar result as  edgeR16. After using 
edgeR analysis and filtering for genes that have FDR < 5E−2 and log(Fold Change) > 0.5, 4702 genes were identi-
fied as differentially expressed. Top 500 of the 4702 differentially expressed genes (Table S1) were selected as top 
features based on their lowest p-values; validation of these genes was performed using random forest with the 
ranger  package82. The top 500 genes from the first principle component in PCA and the top 500 genes ranked 
from  mRMR83 algorithm were selected and validated the same way as the differentially expressed genes. Genes 
with probability or prediction threshold over 0.5 were selected from  Xgboost84 and  lasso85 (Table S1), and vali-
dated in a similar manner as the other algorithms. For each validation, the data were randomly split into a train-
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ing set and a testing set in a 7:3 ratio, where the training set was used to construct the model while the testing set 
was used to evaluate the model’s performance. To compare each selection method more effectively, we split the 
training sets and testing sets the same way for all validations. We applied fivefold cross validation to decide the 
optimal parameters for each training model and estimated its accuracy by applying the best determined param-
eters to the test set. The detailed parameters can be found in the data availability section.

For classification and gene expression analysis, we selected genes that were detected by at least two methods, 
and they were validated using  ranger82. We also used  bootstrapping86 with 10,000 replicates to calculate the 
confidence interval for the accuracy of each method, including the proposed method of classification. The genes 
that were detected by at least 3 methods were considered candidate biomarkers. Their diagnostic potential was 
determined and assessed using receiving operating characteristics (ROC) curve analysis.  GSE2858224,25, was 
used as an external dataset to validate the chosen 17-gene classifier.

Prognostic value analysis using Kaplan–Meier plotter. Kaplan–Meier Plotter is an online database 
that contains comprehensive clinical and microarray data for various cancers, including lung  cancer26. Prognos-
tic values of the identified biomarkers in LUAD and LUSC were evaluated using Kaplan–Meier Plotter with each 
gene used as an univariate analysis. The parameters were set such that the only restricted subtypes were LUAD 
and LUSC, and the median was used as the cutoff. The rest of the parameters were in the default settings.

Gene expression analysis of selected genes. To further investigate and understand the biological dif-
ference between LUAD and LUSC, we performed pathway enrichment analysis using  KEGG29, Gene Ontol-
ogy (GO), and  Reactome28. Modified Fisher’s exact tests were performed using DAVID v6.827. Pathways with 
false discovery rate (FDR) < 5% or p-value less than 0.01 were considered significant. These databases were all 
accessed in November 2020.

Data availability
All data generated and/or analyzed during the current study are included in this published article (and its sup-
plementary information files). The custom code used for data analysis can be accessed at https:// github. com/ 
chenj oe569/ NSCLC- Resea rch.
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