
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11191  | https://doi.org/10.1038/s41598-021-90666-w

www.nature.com/scientificreports

Superspreading of airborne 
pathogens in a heterogeneous 
world
Julius B. Kirkegaard*, Joachim Mathiesen & Kim Sneppen

Epidemics are regularly associated with reports of superspreading: single individuals infecting 
many others. How do we determine if such events are due to people inherently being biological 
superspreaders or simply due to random chance? We present an analytically solvable model for 
airborne diseases which reveal the spreading statistics of epidemics in socio-spatial heterogeneous 
spaces and provide a baseline to which data may be compared. In contrast to classical SIR models, 
we explicitly model social events where airborne pathogen transmission allows a single individual 
to infect many simultaneously, a key feature that generates distinctive output statistics. We find 
that diseases that have a short duration of high infectiousness can give extreme statistics such as 
20% infecting more than 80%, depending on the socio-spatial heterogeneity. Quantifying this by a 
distribution over sizes of social gatherings, tracking data of social proximity for university students 
suggest that this can be a approximated by a power law. Finally, we study mitigation efforts applied to 
our model. We find that the effect of banning large gatherings works equally well for diseases with any 
duration of infectiousness, but depends strongly on socio-spatial heterogeneity.

The statistics of an on-going epidemic depend on a number of factors. Most directly: How easily is it transmit-
ted? And how long are individuals affected and infectious? Scientific papers and news paper articles alike tend 
to summarize the intensity of epidemics in a single number, R0 . This basic reproduction number is a measure of 
the average number of individuals an infected patient will successfully transmit the disease to. It has become 
evident, however, that in many epidemics most people who are infected do not themselves infect even a single 
other individual. The trajectories of the such epidemics are instead driven by fewer people who infect  many1. As 
a statistical phenomenon, this can be captured by modelling individuals with a varying reproduction  number2.

But what is the cause of this dispersion? The simplest explanation is perhaps that of biological variation. Some 
people might inherently be superspreaders, and for the recent spreading of Covid-19 there is some evidence for 
 this3–8. However, other sources of heterogenity could also explain much of the observed  superspreading9, includ-
ing heterogeneous social  interactions10,11, which has previously been studied by simulating epidemic spreading on 
heterogeneous  networks12–14. Typical models use variations of the SIR (susceptible-infected-recovered)  model15. 
The direct generalisation of the SIR model to a network model is one in which individuals interact pairwise. 
This is the typical approach and has the property that individuals can only infect one at a time, even in the case 
of modelling spread on heterogeneous  network16. To account for one-to-many interactions one may consider 
agent-based models on bipartite networks (of e.g. individuals and locations).

Here, we consider a model for disease propagation in which an infectious individual can infect several people 
at the same time, which will be the case when the method of transmission is through air. This change has conse-
quences not only for the average infection rate, but also for the variation in the number of secondary infections. 
We consider people with equal infectiousness and expect superspreading events to occur when infectivity co-
occur with a large gathering of people. We explicitly model social activity by assuming that people participate in 
social events of different sizes assigning a risk of infection that increases at crowded places. We derive the spread-
ing statistics caused by this heterogeneity alone, and predict superspreading when the infectious period is short.

Results
Model. In our model world people move from location to location, and infected people are imagined to 
spread a cloud of virus that can infect everybody within some distance set by the property of the disease, as 
illustrated in Fig. 1. We consider time discrete, and assume that at each timestep people move to a new location. 
The duration of infectiousness is parametrized by a number M, which counts the number of locations a person 
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visits while being infectious. Thus a very short period with high infectivity is modeled by M = 1 , while large M 
corresponds to a disease with a prolonged infectious state.

Our social world model consists of visits to locations, and is quantified by the size distribution over these 
social gatherings. Consider first the case in which an infected individual at each time step visits a location where 
the number of people is exponentially distributed. For fixed R0 , the total the number of secondary infections 
will then follow a negative binomial distribution with parameter (1+ R0/M)−1 , independent of the shape of the 
exponential distribution (see SI). Thus the statistics will at most be marginally overdispersed, and in particular 
we find that the 20% most infectious individuals will at most infect 65% for R0 ≥ 1.0.

However, many social events are much larger than the family size events that dominate our daily life. Thus 
we assume a fat-tailed probability density function for the chance of being at a location in which one on average 
could infect up to n other people,

Here the exponent ν > 2 determines the broadness of the distribution: For small ν people will often visit 
locations where they interact with large crowds. The parameter a regularises our model to make it valid for 
small locations, and sets the scale of the typical location size. The distribution corresponds to picking a random 
person and asking how many other people the airborne particles from this person will reach on average. This will 
typically be lower than the total number of people at the location. Further, this distribution is marginalized over 
time in the sense that it should be thought to include rare events that people go to perhaps just once a month, etc.

The number of people an individual infects at a location Zi we take to follow Poisson statistics, 
Zi|Ni ∼ Pois(αNi) , where α is the overall infectiousness of the disease and Ni is a random number drawn from 
PN . This effectively means that a single person can infect many in a single timestep of the model, which is in line 
with how airborne pathogens are believed to  spread17.

We derive the solution to our model in the “Methods” section. We note that while we discretize time, a 
qualitatively similar model can be developed with time continuous and for which the duration of events vary.

Superspreading. We consider epidemics of known basic reproduction number R0 . In our model this aver-
age infection number reads

To compare varying values of ν and M, we choose α such that R0 is fixed. Naturally, increasing the number 
of events (M), i.e. the duration of the infectious stage, the infectivity per event has to decrease in order to keep 
R0 fixed. Note how, as ν → 2 , the infectiousness must be scaled to zero, α → 0 reflecting the fact that infec-
tions become dominated by extremely large events. Thus for ν → 2 the epidemic is driven solely by extreme 
superspreading events. We further note that for small R0 , confusingly the term superspreading actually refers to 

(1)PN (n) = (ν − 1)
aν−1

(a+ n)ν
.

(2)R0 = �Z� =
aαM

ν − 2
.

Figure 1.  Illustration of model world. An infectious person visits M places while being infectious, at each visit 
spreading airborne pathogens that can infect many. The number of people that can potentially be infected at 
each location depends both on the size of the location and the range of spread of the airborne pathogens.
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quite small infection events: the criteria for a superspreading event is simply that it is significantly larger than 
the average  event2.

The value of M, which is defined by the disease, and may differ widely between diseases with equal R0 , has 
a crucial effect on the offspring distribution, as shown in Fig. 2. As M becomes small, to keep R0 fixed, α must 
be increased, and thus the chance of infecting a lot in a single location goes up. So a disease with a short time of 
infectiousness will be more prone to yield superspreading events, while long infectiousness gives statistics similar 
to a homogeneously spreading disease. Further, in our model, since we fix R0 , the average size of the events will 
be independent of the time of infectiousness.

As a concrete example, we find from Fig. 2 that the probability of a person to infect 100 others is a full order 
of magnitude smaller with M = 25 compared to M = 1 . The inset of Fig. 2 shows that as M is decreased, the 
chance of infecting exactly zero increases. The simple logic is that when a few is infecting many, there must 
be many who infect none. We note that in practice the effective M will typically be smaller than the duration 
of infectiousness if people are aware of the disease and its symptoms and decide to self-isolate. In this case, M 
should reflect the amount of time spent being infectious while on a normal daily routine and not the inherent 
duration of infectiousness of the disease. Thus an airborne diseases with short pre-symptomatic infectivity may 
likely be driven by superspreading events.

We present in Fig. 3 mobility tracking data of ∼650 students at a Danish university (details in “Methods” 
section). This data allow us to determine the average time that people spend at a location. We estimate this by 
calculating the distribution of time τ spent consecutively together for all pairs of students. The inset of Fig. 3a 
shows that this approximately follows an exponential distribution with characteristic time τ0 ∼ 1.6 h. The fit 
does not match the data for small τ , where students simply passing one another, and not actually staying nearby 
one another, bias the data. If we denote the duration of infectiousness of the disease by T, and assume that the 
disease only spreads for meetings longer than a certain duration, one can approximate M ∼ T/τ0 . Taking into 
account that for the student data presented here, time spent alone (such as sleeping) is not captured, we get an 
estimate of M in the range of 5–10 for T ∼ 24 h.

The other crucial parameter in our model is the exponent ν . It is well-established that the sizes of, for example, 
cities or companies approximately follow a Zipf distribution ∼x−2  asymptotically18,19. Although firm sizes are 
indicative of places people visit, we expect such a distribution to be steeper in general. Further, the distribution 
will vary from country to country, city to city, and neighbourhood to neighbourhood. As a concrete example 
we employ the mobility tracking data, for which we find that the sizes of groups (Fig. 3a) that students gather in 
follow a power law distribution with exponent in the range of ∼2.5–3.0.

The number of potential infections at a location depends on the range and suspension time of the airborne 
pathogens. Although the tracking data is limited in size, and thus exponential cutoffs are quite small, we can 
nonetheless calculate the average number of people that are within short range of one another within each cluster. 
Figure 3b shows that in a cluster of x people, each person in on average close to ∼

√
x other people.

In the general case of a location size distribution, which asymptotically goes like ∼x−γ , the chance of pick-
ing a person at a location of size n must then scale as ∼x−(γ−1) . PN describes the average number of people one 
interacts with at a location. If we assume that these x people are distributed in a two-dimensional space, and that 
during the visit a person walks in a few straight lines through this space, there will of the order of 

√
x interac-

tions, precisely as observed in the tracking data. Transforming we find Pn ∼ n−2(γ−1)+1 . Thus γ = 2.5–3.0 of 
Fig. 3 leads to ν = 2.0–3.0, which can be compared to social contact studies for  individuals20. We stress that these 
parameters are estimated for a small cohort of university students, and different parameters will most likely be 
obtained on data sets concerning people with different demographics.

Figure 2.  Offspring statistics. The distribution of Z, the number of individuals an infected individual will infect. 
Inset shows the probability that an individual will infect precisely zero. In all plots we take a = 3.
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Our model becomes invalid as ν → 2 , where an exponential cutoff must be included. All figures are repro-
duced in the SI including such a cutoff. For ν = 2.5 the numerical deviations of superspreading statistics are 
small when comparing the model with and without an exponential cutoff.

In Fig. 4a we show the classical superspreading plot: the fraction fx of infected people infected by the x most 
infectious people. The concavity of these curves signify superspreading. The inset, adapted from Ref.2, shows, for 
instance, that for the SARS epidemic, the 20% most infectious infected more than 80% of the total.

In reality, the ‘ideal’ homogeneous distribution shown in the inset, in which the top x infectors infect exactly 
x, is unattainable simply due to the randomness of Poisson statistics. For finite R0 , the grey ( R0 = 1.0) and dark-
grey ( R0 = 2.0 ) background indicate the minimal statistics demanded by Poisson randomness alone. As we 
include spatial heterogeneity, the statistics become more extreme, especially for small M (blue curves, Fig. 4).

Figure 3.  Statistics of social interaction networks generated from proximity data. Proximity is determined 
using Bluetooth by an app installed on smartphones distributed to a group of students at a Danish university 
( N ∼ 650 ). (a) The proximity data are split in one hour windows and in each window we identify the connected 
components of the social interaction network and plot the distribution of cluster sizes. Power law fits over the 
entire range of clusters gives ∼x−2.5 , whereas restricting the range to smaller cluster gives ∼x−3 . Parameter 
errors from fits are smaller than the error due to range selection. Inset shows the distribution of the duration 
of time that people spent together. Blue curve allows gaps in the data of 5 min and pink allows 30 min gaps 
(see “Methods” section). Fitting these curves with ∼ exp(−τ/τ0) for times > 30 min yields characteristic times 
τ0 ≈ 1.5 h for the blue curve and τ0 ≈ 1.7 for the pink curve. (b) For each cluster, the plot shows the average 
number of students that had a strong Bluetooth signal with one another indicating proximity � 2 m. A power 
law fit of the data yields ∼x0.5.

Figure 4.  Spreading statistics. (a) The fraction fx of people infected by the x most infectious people. Dark 
background indicates limit set by Poisson statistics alone. Colored indicate M as in (b), and full lines are for 
R0 = 1.0 and dashed for R0 = 2.0 . Inset adapted from Ref.2 showing estimated graphs for select historical 
epidemics. (b) The fraction of people f20 that the most infectious 20% will infect for R0 = 2.5 as it varies with 
ν . Inset shows f20 in the simple case of pure Poisson statistics as a function of R0 . Dashed line in main plot 
indicates the Poisson value for R0 = 2.0.
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Figure 4b fixes x = 20% and the curves show f20 , the fraction infected by the most infectious 20% as a func-
tion of ν . The inset shows the fraction demanded by Poisson statistics alone. For R0 = 2.0 and ν = 2.5 , the frac-
tion infected by the most infectious 20% depends strongly on M. For a short time of infectious, M = 1 , we find 
f20 ≈ 85% . Already at M = 2 this falls to f20 ≈ 75% , and at M = 25 we find f20 ≈ 55% . Thus if a disease has a 
short period of high infectiousnes it can show similar heterogeneous infection pattern as an epidemic dominated 
by biological superspreaders. As ν is lowered, the statistics become more extreme, but so does the effect of an 
exponential cutoff. We show in the SI, that with a cutoff of n = 1000 , f20 can never be larger than 90% (for M = 1).

Mitigation. As an epidemic unfolds, mitigation measures can be employed to halt the spread of disease. In 
SIR models, effects of mitigation are captured by lowering the infectiousness. [ α in our model]. In contrast, in 
network  models21 the number of connections between individuals can be lowered for a similar effect.

We capture the effects of mitigation by calculating how a measure affects the instantaneous value of R0 . 
Mitigation measures such as enforcing the use of masks and good hygiene will directly affect α . As R0 is directly 
proportional to α , the effect of this measure is mathematically trivial in our model. As we directly model people 
visiting different locations, we focus instead on the effect of closing locations. We emphasize that the effect on R0 
of closing places is in fact independent of the duration of infectiousness (M) in our model, and is thus effective 
even for a disease that does not show spreading heterogeneity. This is a direct consequence of allowing infectious 
individuals to infect many in each time step.

Instructionally, we begin by calculating the effect of closing locations of a given size. Figure 5 shows that if 
small locations are closed, R is actually increased as some of the people that would visit a small location instead 
go to larger locations. However when locations of a reasonable size are closed, we see that R decreases. This effect 
subsequently diminishes for very large n, as there are only few large gatherings of a particular size.

A more natural approach is to close all places larger than a given cutoff size, i.e. a ban on large gatherings. We 
derive in the SI, the distribution resulting from replacing PN (n) with PN (n, x) =

[∫ x
0
(a+ n)−ν dn

]−1
(a+ n)−ν , 

where x is the location cutoff size. Figure 5 shows that a much stricter mitigation effort is required to bring down 
R for large ν than for small. For small ν , a large fraction of all infectious take place at large locations and thus 
one can get away with a smaller mitigation effort. It is thus crucial to gauge the value of ν for a community when 
choosing the size of mitigation needed to bring R0 below one.

A separate mitigation effort comes through contact  tracing22–24: finding and isolating people who have been 
in contact with an infectious individual. Automated contact tracing depends strongly on the participation of a 
large fraction of the  population25, whereas manual contact tracing comes with a large administrative burden. In 
the present context, we find that the duration of infectiousness M and the power law exponent ν likewise have 
big consequences for the effectiveness of this approach.

We show in Fig. 6a the probability, given a person was infected, that he was infected at an event of size z ≥ 50 . 
If this probability is high, the effect of contact tracing is eased, as the epidemic will be driven by large spread-
ing events. In this way, our model demonstrates that social parameters should be taken into to account when 
evaluating whether contact tracing is a viable strategy.

We can further gauge this behaviour by calculating the likelihood of where events took place. For instance, 
consider the case where, say, c = 3 members of a family all got infected and we can assume that they got infected 
at the same event. Where is this most likely to have happened? This will depend on the socio-spatial parameters 
of the community they live in and on the duration of infectiousness of the disease. By Bayes’ theorem, we have
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Figure 5.  Effect of mitigation by banning gatherings. Curves shows the fractional change in R0 as a function of 
a cutoff size, larger than which gatherings are disallowed. Inset shows the effect of bans of a specific size, dashed 
line indicating the line of no change. The scale of the y-axis is arbitrary in the inset as we are considering a ban 
on an infinitesimally small range of location sizes. Also note that the cutoff can be fractional in that we consider 
the average number of interactions at a location.
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where the terms on the right side are given by Eq. (1), the partial sum of a Poisson distribution, and 1 minus 
the sum of Eq. (4), respectively. Note that this equation depends on a and α independently. Figure 6b shows 
this for c = 3 and ν = 2.5 . We see that, for fixed R0 , the larger the time of infectiousness, M, the more likely it 
is that this happened at a large location. In the same manner, the value of R0 affects the distribution as well as 
shown in the figure.

Discussion
We have presented a model that is simple enough to be studied analytically, yet reveals key insights into the sta-
tistics of epidemics spreading in heterogeneous spaces. The model is equally applicable to populations ranging 
from a full country to a small isolated neighbourhood, the difference being modelled by the parameter ν and 
the exponential cutoff. In contrast, the infectiousness period M is set by the disease, and thus does not change 
by location.

Given knowledge of a disease and the space in which it is spreading, our model gives baseline statistics which 
can give quite extreme measures (e.g. 20% infecting 80%) even in the absence of biological superspreaders. We 
thus conclude that to judge directly from data if superspreaders are important drivers in an epidemic, it should 
also be contrasted to a baseline model that include spatial heterogeneity and duration of infectiousness instead 
of a simple homogeneous population.

Our model does not directly take into account effects such as a variance in infectiousness attributed to fac-
tors such as ventilation or the type of event taking place at a location (concert or dinner?). However, this simply 
amounts to a re-interpretation of PN , as variations in the type of event would either increase or decrease the 
number of effective interactions.

In the SI we develop and solve analytically a version of the model that includes an exponential cutoff. Such 
a cutoff is necessary to get accurate statistics for ν � 2.5 (dependent on the exact cutoff). In particular, with an 
exponential cutoff we can further allow ν < 2 , which perhaps could be representative for very social demograph-
ics such as young people. The value of the exponential cutoff could be estimated based on spreading events: 
If one observes that it is rare to find a person who infects more than k other people, then one can employ an 
exponential cutoff in the order of k/α.

With an exponential cutoff, a bound can be put on statistics such as f20 even without knowing the value of ν . 
Thus, by simply knowing the approximate value of the exponential cutoff as well as the duration of infectious-
ness, our model predicts extremeness statistics such as f20 . If these are found to be more extreme in an ongoing 
epidemic it would be strong evidence for the existence of biological superspreaders no matter the value of ν . 
For example, as detailed in the SI, if the exponential cutoff is s ∼ 1000 , we find for a disease with R0 = 2.0 that 
f20 � 0.9 implies the existence of superspreaders for M = 1 and any value of ν . For M = 5 this drops to f20 � 0.7 , 
while for M = 25 we have f20 � 0.55 . We note further that an alternative regularization to an exponential cutoff 
is a direct cap on the number of interactions. This is equivalent to a ban of gatherings, the details of which can 
be found in the SI.

While the above arguments show that knowledge of ν is not always required, our model naturally gives more 
accurate results when ν is known. We have presented example data for which ν can be approximately extracted. 
The social mobility data is generated from Bluetooth signals between smartphones of ∼650 students. Naturally, 
these people will in general be in rooms with many other people, for whom we have no data. Thus the data 

(3)P(n |Zi ≥ c) =
P(n)P(Zi ≥ c | n)

P(Zi ≥ c)
,

Figure 6.  (a) The fraction of people infected in an event in which more than 50 people got infected as a 
function of ν . (b) The probability density of event size n given knowledge that at least three people were infected 
at this event. M and R0 vary as indicated by the legend of (a).
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will in general underestimate the number of people at locations. In particular, after study/work hours will be 
highly underestimated as people will go home or away from university campus, where there is little chance to 
encounter other students that participate in the study. Conversely, student life tend to quite regularly gather 
people in large crowds for instance at lectures. Thus depending on the range over which we extract the power 
law, different exponents are found. Further, since our data is limited to students at a university, the results should 
be considered in this context. Data for other demographics will lead to different parameters. The data, in any 
case, demonstrates that power laws can approximate the size distribution of locations that people visit also on 
the scale of 102–103 people.

To pinpoint social heterogeneity our study calls for active sociological studies that go beyond the contact time 
measurements of Ref.26. Most effectively this could be done by mobile tracking, in analogy to the limited study 
among student used in our work. With social structure input and estimates of M and R0 for a given ongoing 
disease we may fix α . The assumption of all people being equally infectious can then be tested from observed 
rate of household  transmissions27, taking into account the fraction of time spent by individuals in the household. 
Likewise, one of the parameters of the model could be fixed by comparing to e.g. the fraction of people that 
infect no one (Fig. 2).

In the context of the 2019 SARS-CoV-2 epidemic, there is strong evidence that the spread is by  aerosols28. 
Further, viral load during the infection is quite  peaked29, which could indicate a short period of high infectious-
ness on the order of 1–2 days. Superspreaders have been suggested to play a role in driving the SARS-CoV-2 
 epidemic7, which, in turn, has an effect on the choice of mitigation efforts. It is thus of paramount importance 
to fully understand the true distribution of superspreading, taking into account that superspreading statistics 
can result from many sources, one being socio-spatial heterogeneity as discussed here.

Our model could further be expanded to explicitly include biological superspreaders. For instance, if one 
expects varying viral loads to be driving the variation in spreading, the constant infectivity α can be replaced 
with a dispersed probability distribution with mean value α . In this case, special care should be taken when α for 
some highly infectious individuals can exceed unity. Below this limit, however, our conclusions on mitigation 
strategies by banning large gatherings remain unaffected. If, on the other hand, variations in spreading are due 
to e.g. varying particle sizes of the airborne pathogens, the variation should instead be applied to PN directly, 
as some individuals will be able to infect a higher fraction of people at a given location. For example, if only 
some people produce pathogenic aerosol these would have a much higher range than  others17. In a location of x 
people, such a superspreader might reach the entirety of the x people, instead of just ∼

√
x . This would take the 

exponent ν from, say, 2.5–1.75.
Our model further gives insights into applying mitigations. In the case of SARS-CoV-2, many countries 

chose to implement bans on large gatherings. These range from banning gatherings larger than 1000 people e.g. 
in France, to banning social gatherings of more than 6 people in the UK. Figure 5 shows how the difference in 
effectiveness of such bans depend strongly on the value of ν . In particular, the shape of the power law in Eq. (1) 
sets the range over which changing the size of the ban has the highest effect. Naturally, the lower the ν the better 
the effect of a ban of a certain size. However, one may also consider the effect of changing a ban from one size 
to another. For instance, for ν = 2.5 changing from a ban of gathering larger than 100–10 reduces R by ∼50% , 
whereas for ν = 3.0 the reduction is more than ∼68% . Further, as long as the ban size is significantly smaller 
than the exponential cutoff, the effect of such a cutoff is negligible.

The traditional approach to modelling a heterogeneous population is to consider network models. In our 
model, time is discretized by location visits, during which an infectious individual can, in principle, infect the 
entirety of an event. In contrast, in agent-based SIR and network models infectious individual typically interact 
with one person per time step. Our approach thus focuses on airborne pathogens, where transmission does 
not require one-to-one interactions such as touch, and has the effect that the number people that are together 
becomes central. This in turn leads to the prediction that mitigation strategies aimed at reducing R0 depends 
strongly on the socio-spatial distribution of gatherings, but is in fact independent of the duration of infectivity M. 
Thus we find that for airborne diseases, mitigation by reducing large gatherings will also work well for diseases 
that do not exhibit heterogeneous spreading ( M ≫ 1).

The distance of infection of such airborne transmissions can vary a lot between diseases and this should be 
reflected in the final choice of distribution exemplified by Eq. (1). In particular, for diseases that spread as aerosol, 
the distance of influence can become very big whereas a disease that is transmitted by larger droplets only allow 
limited secondary infections even at very large events. Likewise, in calculating the statistics of our model we 
have assumed a fully susceptible population. For diseases such as influenza, where cross-immunity plays a major 
 role30–32, the number of susceptible people at the social events should be re-scaled accordingly.

Methods
To derive the statistics of our model, we consider the early stages of an epidemic where only a fraction of the 
entire population has been infected. Here, we can neglect saturation and derive analytically the offspring distri-
bution in terms of α and the social parameters a and ν from Eq. (1). We find

where A is a matrix with entries

and b is a vector with entries

(4)PZi (z) = (ν − 1)eaα[A b]z ,

(5)Aij =
(−aα)i

i!

(

i

j

)
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and En(·) is the exponential integral function. We relegate the derivation to the SI, but note that Eq. (4) is exact 
even when truncating A and b to be finite. We furthermore use Eν+j(aα) = 1

aα

(

e−aα − (ν + j)Eν+j+1(aα)
)

 , 
permitting evaluation by recursion as long as Eν(aα) =

∫∞
1

e−aα t/tν dt is known, which can be evaluated using 
Gaussian quadrature or any other standard method.

Finally, we can use a (zero-padded) discrete Fourier transform (DFT) to obtain the probability for any M:

An important special case of our general formula is

the probability that a person infects exactly zero after having visited M places. These people represent an impor-
tant dual aspect of superspreading: When few are infecting the majority, only few infection events are left to the 
majority of people.

We note that a and α always appear in the combination a · α , thus one of them can be chosen freely if the other 
is adjusted to fix R0 . In this way, our calculations are valid for any value of a as long as α is adjusted accordingly, 
and thus the exact behaviour of the power law at small values is not important for the statistics when consider-
ing fixed R0.

For the purpose of estimating the social parameter ν , we utilized data collected from smartphones distrib-
uted to around 1000 students at a Danish  university33. Of these students we only used the subset of 642 students 
who had daily records of proximity to others. The cell phone tracking data consist of proximity measurements 
achieved from repeated Bluetooth scans by the smartphones every fifth minute. The study lasted two years and the 
data set contains more than 30 million data points. We divide the data into into blocks of 1 h, and subsequently 
discretize the data in a consistent manner by capping the received signal strength indicator at a value that cor-
responds to ∼2 m. This results in hourly networks of students that are within the vicinity of one another. We use 
the connected components of these graphs as indicators for the sizes of locations to generate Fig. 3a. Parameter 
errors are estimated from the sample variance of the data.

The relatively low number of total students who participate in the study combined with infrequent Blue-
tooth scans result in low exponential cutoffs for the number of direct connections within 2 m. Nonetheless, as 
an approximation for the range of an airborne pathogens, we consider the average number of students that are 
directly connected within each cluster. Figure 3b shows that this average approximately grows like the square root 
of the cluster size. The true number of potential infections in a location of a given size depends on the precise 
characteristics of the disease, in particular if it spreads as aerosol or  not17.

For estimating the amount of time people spent together at locations, we calculate the distribution of the 
duration of meetings between all pairs of students. Two students are considered to be in the same room, if they 
are in the same cluster. We only have Bluetooth signals every fifth minute, and a person can be beyond the reach 
of this signal for a brief time without having actually left a certain location. Thus we permit gaps in the tracks. 
Figure 3 shows the result of allowing gaps of 5 min and 30 min. Naturally, the latter yields larger times spent 
together, but the difference is not massive. We further note that the data show peaks at around 2 h and 4 h, which 
we suspect to be the result of students going to a single lecture or two lectures in a row, respectively.
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