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Prediction of population behavior 
of Listeria monocytogenes 
in food using machine learning 
and a microbial growth and survival 
database
Satoko Hiura, Shige Koseki & Kento Koyama*

In predictive microbiology, statistical models are employed to predict bacterial population behavior 
in food using environmental factors such as temperature, pH, and water activity. As the amount and 
complexity of data increase, handling all data with high-dimensional variables becomes a difficult 
task. We propose a data mining approach to predict bacterial behavior using a database of microbial 
responses to food environments. Listeria monocytogenes, which is one of pathogens, population 
growth and inactivation data under 1,007 environmental conditions, including five food categories 
(beef, culture medium, pork, seafood, and vegetables) and temperatures ranging from 0 to 25 °C, 
were obtained from the ComBase database (www. comba se. cc). We used eXtreme gradient boosting 
tree, a machine learning algorithm, to predict bacterial population behavior from eight explanatory 
variables: ‘time’, ‘temperature’, ‘pH’, ‘water activity’, ‘initial cell counts’, ‘whether the viable count 
is initial cell number’, and two types of categories regarding food. The root mean square error of 
the observed and predicted values was approximately 1.0 log CFU regardless of food category, and 
this suggests the possibility of predicting viable bacterial counts in various foods. The data mining 
approach examined here will enable the prediction of bacterial population behavior in food by 
identifying hidden patterns within a large amount of data.

Research in food microbiology has led to the accumulation of a large amount of data on bacterial responses to 
various environments, such as changes in number of bacterial population over  time1. In predictive microbiology, 
statistical models are employed to quantitatively evaluate the relationship between growth or inactivation behav-
ior of pathogenic/spoilage bacteria in food and  environment2. Statistical models in predictive food microbiology 
can be used to evaluate the effects of processing and storage conditions on the final pathogen contamination level 
of  products3. Predictive microbiology is defined as observations of the effects of environmental factors, integra-
tion of the data into statistical models, and predictions of bacterial behavior in  food4. To date, various statistical 
models have been developed, such as the sigmoid growth functions for growth  kinetics2 and the log-linear5 and 
Weibull  models6 for inactivation kinetics to predict bacterial population behavior. In general, datasets employed 
for statistical and model development are collected with a specific  purpose7. For example, in the case of bacterial 
behavior, data are collected to observe inactivation or growth behavior. Thus, most statistical models developed 
in predictive microbiology focus separately on either microbial growth or  inactivation8. Furthermore, most 
predictive models are developed based on the data obtained in laboratory media, and to confirm the accuracy of 
the model, validation is performed using real food  matrices9. In other words, various mathematical models for 
predicting bacterial behavior have been independently developed for distinct experimental conditions.

The food environment can be complex, and quantifying some of its features and their effects on microbial 
population dynamics may be  difficult10. This is mainly due to the poor understanding of the combined effects 
of environmental factors on the function of bacterial growth and inactivation. Specifically, identifying the rela-
tionship between bacterial population behavior and multidimensional variables such as temperature,  aw, pH, 
and food name is a difficult task. In particular, categorical data such as food names make it more difficult to 
recognize relationships than numerical data. It becomes difficult to express the relationships between bacterial 
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behavior and the effects of environmental conditions, including categorical data, using statistical models. This 
is because it is not possible to perform arithmetic operations for categorical data, which are qualitative  values11. 
Furthermore, statistical models face difficulties when the number of experimental conditions increases. Therefore, 
an alternative approach is required that can overcome the problems associated with an increase in the amount 
of data and can predict bacterial behavior without prior information such as the relationship between bacterial 
behavior and explanatory variables such as types of food and environmental conditions.

Data mining combines statistical analysis, machine learning, and databases to extract hidden patterns from 
databases. The core of data mining is machine  learning12, and various machine learning algorithms have been 
 developed13. The relationships between the response and function can be determined empirically from data 
using machine learning. Statistical models generally require analysts to specify the functional form between 
the predictor and response  variables14. This approach requires sufficient knowledge for analysts to specify the 
appropriate model, such as the relationship between explanatory and objective  variables14. When analysts do not 
know the relationship between explanatory variables and objective variables, the misuse of statistical models can 
lead to prediction  errors15. However, data mining does not face this issue because the relationship between the 
predictor and response variables are recognized as a pattern by machine learning and can be specified without 
the user’s  specifications14. Data mining has been employed in various fields such as  agriculture13,  ecology14 and 
 medicine16. Cortez et al. (2009) predicted the taste preference of wine using physicochemical data, such as citric 
acid, pH, and alcohol. To date, data mining has not been employed in predictive microbiology, even though a 
large amount of data related to population behavior has been obtained and aggregated. The ComBase database 
(http:// www. comba se. cc) has been developed as a means of providing easy access to records of bacterial popula-
tion behavior obtained in research establishments and  publications1, and has registered approximately 60,000 
records to date. The ComBase database provides bacterial population behavior categorized using various envi-
ronmental conditions such as temperature, pH, and  aw, food categories like pork and seafood, and food names 
such as ham and smoked salmon. By introducing data mining, bacterial population behavior can be predicted 
from environmental conditions using the large amount of accumulated data. Developing models that predict 
bacterial behavior based on a large amount of data will lead to objective prediction because a stable prediction 
would be made regardless of the predictor’s previous experience and knowledge.

In the present study, a data-mining approach was introduced as a proof of concept to predict bacterial 
population behavior in various foods by using effectively a large amount of data accumulated so far. The Data 
regarding the change in viable cell number over time of Listeria monocytogenes were used as a model study. L. 
monocytogenes is one of the pathogens that cause food poisoning all over the  world17, and a large amount of data 
are available. Data for microbial responses to the food environment were collected from the ComBase database 
and the literature. The collected data included population behavior based on five food categories—‘beef ’, ‘culture 
medium’, ‘pork’, ‘seafood’, and ‘vegetables’—with temperature ranging from 0 °C to 25 °C. The eXtreme gradient 
boosting tree (XGBoost), a machine learning algorithm that easily handles missing value, was used to predict 
viable cell counts in both the ComBase database and the literature. The data mining approach would enable the 
prediction of bacterial population behavior in food by identifying hidden patterns within a large amount of data.

Results
Model development and evaluation of model accuracy for the ComBase dataset. Figure  1 
shows the number of observed points for the training and test data for each feature (viable cell counts, tempera-
ture, pH,  aw, initial cell number, and food category). The data obtained from ComBase were evenly divided into 
training and test datasets. Figure 2 shows the relative feature importance of the developed XGBoost model. The 
relative importance of each feature represents the ratio of the importance of each feature when the sum of all 
feature importance values was 1. All features contributed to model development. Environmental conditions such 
as  aw, temperature, and pH contributed the most to model development and to the same extent. Information 
regarding food such as food category and food name also contributed to some extent to model development.

The number of environmental conditions used in the test dataset was 103, and the number of observed plots 
was 2,887. Bacterial counts in all test data from ComBase were predicted and plotted by food category against 
the observed counts (Fig. 3), and the  R2 and RMSE values were 0.75 and 1.02, respectively. Bacterial counts in the 
test data from ComBase were also predicted and plotted against the observed counts by food category (Fig. 3). 
For each food category, the  R2 values were 0.74, 0.80, 0.60, 0.79, and 0.39 for beef, culture medium, pork, seafood, 
and vegetables, respectively. The RMSE values for beef, culture medium, pork, seafood, and vegetables were 1.15, 
0.96, 1.11, 0.95, and 1.11, respectively. To quantify the model performance,  Bf and  Af were calculated for each 
food category. The  Bf values for beef, culture medium, pork, seafood, and vegetables were 0.98, 0.99, 0.91, 0.82, 
and 1.30, respectively. A bias factor of less than 1 means underestimation, and a bias factor of 1 or more means 
overestimation.  Bf > 1 means fail-safe18. Other than vegetables, the predicted results were underestimation or close 
to 1, which was not a big underestimation. The  Af values for beef, culture medium, pork, seafood, and vegetables 
were 1.47, 1.37, 1.46, 1.43, and 1.59, respectively. Furthermore, the residuals were plotted by food category as 
functions of temperature,  aw, pH, and initial cell numbers (Fig. 4). Although environmental conditions lacking 
in pH and/or  aw were mixed in all food categories except for the culture medium, residuals were not affected by 
the presence/absence of missing values (Fig. 4).

Prediction of bacterial behavior in literature data. To confirm the applicability of developed model, 
the developed model was verified using data which were not registered in ComBase. Figure 5a shows the pre-
dicted bacterial behavior in TSB (culture medium) at 5 °C, pH 4.5,  aw = 0.997, and an initial cell number of 6.6 
(log CFU). Similar to the observed value, a slight inactivation behavior was predicted. The developed model 
could predict bacterial behavior to some extent, with an RMSE of 1.13. Figure 5b shows the predicted bacterial 
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behavior in TSB (culture medium) at 4 °C, pH 7.3,  aw = 0.997, and an initial cell number of 0.7 (log CFU). Growth 
behavior was predicted based on the observed value. The developed model could roughly predict changes in via-
ble cell counts over time with an RMSE of 1.51. Depending on the conditions such as small initial cell numbers, 
the prediction accuracy of bacterial behavior may be inaccurate (Fig. 5b), because the amount of data used for 
model development was small. Furthermore, the bacterial behavior in food was also predicted in tuna (seafood) 
at 6 °C with initial cell numbers of 2.6 (c) and 4.3 (log CFU) (d). The predicted results were compared with the 
results observed for the three strains. Figure 5c shows the predicted bacterial behavior in tuna with the initial 
cell numbers of 2.6 (log CFU). When the predicted results were compared with observed values of the three 
strains, the prediction was performed with high accuracy with RMSE values of 0.99, 0.57, and 0.61. Figure 5d 
shows the predicted bacterial behavior in tuna with an initial cell number of 4.3 (log CFU). When the predicted 
results were compared with data for three strains, the RMSE was 1.02, 0.82, and 0.72, and prediction was per-
formed with high accuracy. The growth behavior was predicted under initial cell numbers of 2.6 and 4.3 (log 
CFU). In condition (c), viable cell counts were predicted under conditions in which the pH and  aw were missing. 
However, even if there were missing values, viable cell counts in foods could be predicted. Predicted inactivation 
and growth behavior in various food and conditions in the literature could be predicted with RMSE values of 
approximately 1 (Fig. 5) and with the same accuracy as prediction by test data (Fig. 3).

Figure 1.  Histograms of the number of observed points for each variable (viable counts (a), initial cell numbers 
(b), temperature (c), pH (d), water activity (e), and food category (f)). The black and gray bars show the number 
of training data and test data, respectively.

Figure 2.  Feature importance of the developed XGBoost model. The X-axis indicates the relative importance, 
and the Y-axis indicates the explanatory variable name. Blue bars indicate categorical data, and gray ones 
indicate numerical data.
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Discussion
In the present study, we demonstrated the possibility of applying machine learning to predict bacterial population 
behavior through a data mining approach using data from ComBase. Categorical data such as food category and 
food name also contributed to the construction of the model to some extent (Fig. 2). The viable cell counts in 
food could be roughly predicted in the ComBase database (Fig. 3) and in the literatures (Fig. 5) and the missing 
value doesn’t affect prediction accuracy (Fig. 4). The data mining approach allowed us to model the complex 
relationship between food and bacterial population behavior. Although there is still room for improvement in 
terms of the prediction accuracy, we demonstrated that the accumulated data in a database could be useful for 
predicting bacterial population behavior through a data mining approach.

One of the roles of ComBase in predictive microbiology is to provide a lot of data. McMeekin (2006) pointed 
out the possibility of using the discrete data on ComBase for estimating bacterial behavior within interpola-
tion  region10. Le Marc et al. (2005) used the distinct data on ComBase to develop several models of the growth 
boundary for each pathogen in culture  media19. In contrast, no study has been conducted to predict the number 
of bacteria in food using data of various food using one model. In the present study, a data mining method was 
introduced as a proof of concept to predict the behavior of bacterial populations from the large amount of distinct 
data. This data mining approach can be a step toward effective use of data points in database to fast look bacterial 
population behavior within interpolation region.

Data mining was performed using a large amount of data collected from ComBase and machine learning, 
and bacterial behavior was predicted for some food category (“culture medium” and “seafood”). In general, the 
collected data comprise both numerical and categorical  variables11. Categorical variables represent qualitative 
attributes and cannot be treated using numerical  variables11. Therefore, food category and food name were 
replaced with numerical values as dummy variables to perform machine learning. This is a common technique 
in models based on decision trees, such as GBDT. Thus, from the feature importance of the model developed, 
all eight explanatory variables contributed to model development (Fig. 2). Although numerical variables like 
temperature, pH, and  aw contributed the most, because food category and food name also affected model devel-
opment to some extent, categorical data such as food category and food name would play an important role in 
model development.

A few previous studies have developed statistical models that encompass quantitative and qualitative 
 information20–22. For example, Zwietering et al. (1992) combined qualitative and quantitative information to 
predict the probability of microbial growth in food. Zwietering et al. (1992) used the physical similarity of food 
products and compounds contained in a specific product, such as pH,  aw, and temperature. In statistical mod-
eling, it takes some efforts to select manually the function expressing relationship between the response and 
explanatory variables. In particular, manually identifying the interaction effects between explanatory variables 

Figure 3.  Comparison the observed and predicted values for test data of all food categories (a), beef (b), culture 
medium (c), pork (d), seafood (e), and vegetables (f). The solid line represents residuals (r) = 0 (log CFU).
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with high-dimensional data is a difficult task. In contrast, the relationships between the response and explana-
tory variables can be determined empirically from the data using machine learning through data mining. Even 
when the number of environmental conditions and the range of environmental conditions increase, the pattern 

Figure 4.  Residual plots of the number of cells predicted for test datasets as functions of temperature,  aw, pH, 
and initial cell numbers for beef (a), culture medium (b), pork (c), seafood (d), and vegetables (e). The blue 
plots denote data lacking pH and/or  aw, and the black ones denote data without missing values. The solid line 
represents residuals (r) = 0 (log CFU).
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of population behavior is empirically determined using a machine learning algorithm. Thus, a data mining 
procedure with a machine learning approach can overcome the effects caused by an increase in the number 
of complicated datasets of population behavior in the food environment. Our model shows an example of the 
applicability of a data mining approach to a microbial database instead of a statistical approach.

Recently, artificial neural networks (ANNs) have been introduced as a means of modeling the relationship 
between multiple environmental factors and bacterial responses in the field of predictive microbiology. ANN 
can reveal knowledge beyond the given information by directly processing the experimental  data23. ANNs have 
been employed in analysis of various bacteria and  foods24–28. Previous studies have not been conducted using a 
large amount of data taken from the database. As with the ANN introduced in previous studies, XGBoost could 
predict the number of bacteria as an objective variable from multiple explanatory variables (time, initial cell 
numbers, temperature, pH,  aw, food category, and food name) in the present study. A disadvantage of ANN is 
that it is difficult to explain the relationship between the explanatory variables and the objective  variable23,24. 
Thus, quantifying which explanatory variables are important for a predictor is  difficult29. In contrast, decision 
trees are suitable for quantifying the importance of  features29. The XGBoost model is based on decision trees, 
and the variables that contributed to model development could be identified by visualizing the feature impor-
tance (Fig. 2). Recognizing the contribution of variables to model development could help interpret the model.

By introducing data mining using many viable cell counts accumulated in ComBase, we predicted the popu-
lation behavior of L. monocytogenes in the food environment. The bacterial population behavior predicted by 
this procedure could provide guidelines for determining food processing and storage conditions. Databases that 
contain information on bacterial behavior and pathogen characteristics play an important role in food safety 
 management10. The advantage of using ComBase was the free accessibility. Thus, anyone can perform data mining 
using machine learning. The data used in the present study were only part of the data registered in ComBase. By 
applying the procedure introduced in this study to pathogens other than L. monocytogenes, bacterial population 
behavior can be predicted regardless of the type of food category, environmental conditions, and type of bacteria.

Figure 5.  Comparison between the observed and predicted behavior of Listeria monocytogenes in culture 
medium with pH 4.5 and  aw 0.997 at 5 °C (a), in culture medium with pH 7.3 and  aw 0.997 at 4 °C (b), and in 
tuna at 6 °C with initial cell numbers of 2.6 (c) and 4.3 (log CFU) (d). Predicted results are plotted as a circle. 
The observed results are plotted as a triangle.
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Materials and methods
Data sets. Data selection from ComBase database. The ComBase database contains quantified microbial 
responses to the food environment with approximately 60,000 records, which have been collated from various 
research establishments and publications. The data in ComBase include ‘Record ID’, ‘Organism’, ‘Food Category’, 
‘Food Name’, ‘Temperature’, ‘pH’, ‘Water activity  (aw)’, ‘Conditions’, ‘time’ and ‘viable cell counts’. Each dataset 
of changes in population is assigned a ‘Record ID’, which allows us to recognize one series of experiments of 
population behavior.

Changes in the population of Listeria monocytogenes obtained from the ComBase database were used in this 
study. Five types of food categories were included because of the large amount of data: ‘beef ’, ‘culture medium’, 
‘pork’, ‘seafood/fish’, and ‘vegetable or fruit and their product’. In addition, ‘seafood/fish’ and ‘vegetable or fruit and 
their product’ were abbreviated as ‘seafood’ and ‘vegetables’, respectively. The data used for model development 
and evaluation were those with temperatures ranging from 0 °C to 25 °C and containing greater than or equal 
to five observed values in each series of experiments on bacterial population behavior. L. monocytogenes can 
grow in a wide range of temperature (0 to 45 °C)30, and ready-to-eat foods that are usually stored at refrigeration 
temperature are associated with food poisoning due to L. monocytogenes17, thus the range of lower temperature 
was selected. In addition, records for which viable counts at 0 h were not present were excluded because the ini-
tial cell numbers could not be determined. However, records lacking pH and  aw values were included for model 
development and evaluation. Some records lacked pH and/or  aw values in food categories other than culture 
medium. In particular, records with lacking pH values were also lacking in  aw data. The  aw of all records for which 
 aw information was not missing in the beef category was 0.98. The number of environmental conditions miss-
ing both  aw and pH was 92. In total, 2,531 records of bacterial population behavior were extracted for five food 
categories available in ComBase, and 27,059 viable count data were used. The extracted data from ComBase are 
summarized in Table 1 by food category. The entire list of “Record ID” and “Food Name” obtained from ComBase 
can be found as Supplementary Data S1 and Supplementary Data S2 online, respectively.

Datasets from literature. To confirm the applicability of developed model in general, the bacterial population 
behavior uncontained in ComBase database were predicted. The literature for external validation was selected, 
considering that the data in literature was unregistered in ComBase and the environmental conditions can be 
simply explained using eight explanatory variable. Bacterial cell numbers at a certain time were predicted under 
three conditions: (a), (b), and (c), which have already been published. The viable cell counts of L. monocytogenes 
in culture medium with pH 4.5 and  aw 0.997 at 5 °C was reported by Tiganitas et al.31 (a). The viable cell counts of 
L. monocytogenes in culture medium with pH 7.3 and  aw 0.997 at 4 °C was reported by Pal et al.17 (b). The pH and 
 aw were determined to be common values for TSB, 7.3 and 0.997, respectively, because the culture medium was 
TSB. Furthermore, viable cell counts of L. monocytogenes in tuna at 6 °C was reported by Liu et al.32 (c). Because 
pH and  aw were not described clearly, they were treated as missing values.

Data pre-processing. The data obtained in Sect. 4.1.1 were mixed numerical data and categorical data. 
For each Record ID, the objective variable was the number of bacteria (log CFU). Eight types of explanatory 
variables were included: ‘Time (h)’, ‘Temperature (°C)’, ‘pH’, ‘aw’, ‘Initial cell number (log CFU)’, ‘Initial number 
or not’, ‘Food category’, and ‘Food name’. ‘Time’, ‘Temperature’, ‘pH’, ‘aw’, and ‘Initial cell number’ were numerical 
data, which were used without changes for model development. The viable counts at 0 h were used as the initial 
cell numbers for each record ID. Data with a time of 0 (h) were labeled as 0, and other data were labeled as 1 to 
characterize whether each record contained the data relevant to the initial cell number. Furthermore, because 
food category and food name were categorical data, they were converted into numerical values. The five food 
categories were converted to 0–4, while the 112 different food names were converted to 0–111. The data acquired 
from ComBase included ‘Record ID’ and could be employed for each series of experimental results of pathogen 
survival registered based on the record ID. Here, we renamed ‘Record ID’ as ‘Environmental ID’ to avoid over-
lapping with the environmental conditions in the training and test datasets as follows. The record IDs for which 
temperature, pH,  aw, food category, and food name were completely the same were regarded as the results of 

Table 1.  Summary of the extracted data from ComBase. a Number of Food Name: number of specific food 
name. (The entire list of Food Name can be found as Supplementary Data S2 online). b Number of Missing 
values: number of data lacking  aw or pH.

Food category Temperature pH aw
aNumber of food name

Number of viable cell 
count data

Total

bNumber 
of missing 
values

aw pH

Beef 3–21 5.5–6.8 0.98 12 1,156 908 681

Culture medium 0–25 3.5–7.5 0.793–0.999 19 15,281 0 0

Pork 0–20 4.8–6.72 0.95–0.998 22 5,155 990 799

Seafood 0–25 3.7–7.2 0.955–0.998 24 2,452 1,606 889

Vegetables 3–25 4.3–7.1 0.750–0.993 35 3,015 1,176 887
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experiments conducted through different repetitions under the same conditions, and the same ‘Environmental 
ID’ was reassigned as the result of a single experimental condition. Thus, 2,531 types of record IDs were assigned 
to 1,007 types of environmental IDs. A part of the dataset obtained from the above procedure is presented in 
Table 2. Both ComBase and literature data were preprocessed as described above. All preprocessing steps, model 
development, and statistical analyses were performed in Python (Version 3. 7. 9).

Model development. XGBoost model. The eXtreme Gradient Boosting Tree (XGBoost), which extends 
the concept of the gradient boosting decision tree (GBDT). GBDT is an iterative decision tree algorithm which 
includes multiple decision  trees33. This algorithm is a machine learning method that combines gradient boost-
ing, which is a step-by-step method focused on gradient reduction of the loss function, and a decision tree, 
which is a machine learning algorithm. Boosting is an ensemble learning method, which can create a high-
performance model by combining multiple weak base models. Tree-based ensemble techniques that combine 
multiple simple decision trees include random forests, gradient boosting machines, and boosting regression 
trees. GBDT uses a decision tree as the base model, and gradient boosting trains it sequentially by adding each 
base model and fixing the errors generated by the previous tree model. The GBDT method has been widely 
employed in machine learning and data mining  studies34,35. XGBoost was used in the present study because it 
can handle missing values without specific processing. XGBoost models were built using the XGBoost Python 
Package (https:// xgboo st. readt hedocs. io/ en/ latest/ python/ index. html).

Modelling procedure. We aimed to develop a machine learning model for predicting bacterial responses to food 
environments characterized by controlling factors such as temperature, pH, and  aw. The flow of the machine 
learning process is shown in Fig. 6. First, the dataset was divided into training and testing data. The data included 
1,007 types of environmental IDs, and each of the five food categories was split into training data and test data 
randomly so that the proportion of the number of environmental conditions in the training and test datasets 
was 9:1. Eight input variables that included five numerical data types—temperature (°C), pH,  aw, time (h), and 
initial cell number (log CFU)—and three categorical data types—food category, food name, and initial number 
or not—were used to develop a model to predict viable counts. Parameters of the XGBoost model used in this 
study were determined by grid search and a fivefold cross-validation. The XGBoost model parameters were the 
maximum depth of a tree of 9, min_child_weight of 1, gamma of 0.4, subsample of 0.6, colsample_bytree of 0.65, 
and learning rate of 0.01.

To interpret the developed model, the importance of each variable was calculated. The importance of the fea-
tures was evaluated using gain, which is an index showing how much the evaluation criteria could be improved, 
and calculated by using package (https:// xgboo st. readt hedocs. io/ en/ latest/ python/ python_ api. html). Feature 
importance allows us to understand how each explanatory variable contributes to the predicted performance 
during training of the XGBoost  algorithm36.

Evaluation of performance of model. The prediction accuracy of the developed model was evaluated 
using 103 test datasets that were not used in the training. The coefficient of determination  (R2) and root mean 
square error (RMSE) were calculated for all test data and for each food category as an index to evaluate the 
accuracy of the model. The bias  (Bf) and accuracy  (Af) factors proposed by  Ross18 are widely used methods for 

Table 2.  Sample of product characteristics and storage conditions for the collected dataset. a Index: serial 
number of viable cell count data. b Environmental ID: serial number of environmental condition. c logN: 
logarithmic of viable cell number. d Time: elapsed time. e logN0: logarithmic of initial cell number. f Food 
Category: number of food category (0: culture medium, 1: seafood, 2: vegetable, 3: beef, 4: pork). g Food Name: 
number of food name (0–111), which is described in Supplementary Data S2. h Initial number or not: dummy 
variable showing whether the viable cell number is the initial cell number (0: initial cell number, 1: not initial 
cell number).

aIndex bEnvironmental ID

Response variable Explanatory variable

Numerical data Categorical data

clogN (log CFU) dTime (h) elogN0 (log CFU) Temperature (°C) aw pH fFood category gFood name
hInitial number 
or not

0 0 6.49 0 6.49 0 0.894 3.5 0 0 0

1 0 5.04 24 6.49 0 0.894 3.5 0 0 1

2 0 4.4 48 6.49 0 0.894 3.5 0 0 1

3 0 3.85 72 6.49 0 0.894 3.5 0 0 1

4 0 3.41 96 6.49 0 0.894 3.5 0 0 1

27,054 1006 5.89 144 2.40 9 0.977 6.11 4 110 1

27,055 1006 7.25 216 2.40 9 0.977 6.11 4 110 1

27,056 1006 7.62 288 2.40 9 0.977 6.11 4 110 1

27,057 1006 8.41 384 2.40 9 0.977 6.11 4 110 1

27,058 1006 8.54 480 2.40 9 0.977 6.11 4 110 1

https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html
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evaluating model performance in predictive  microbiology37.  Bf and  Af factors are also used in predictive model 
of viable  counts38. Bias and accuracy factors are shown in Eqs. (1) and (2), respectively.

where pdi is the value predicted by the model, obi is the observed value, and n is the number of data used in 
the calculation. A bias factor of less than 1 indicates underestimation, and a bias factor of 1 or more indicates 
overestimation. Since  Bf cancels overestimation and underestimation,  Af was also  calculated39.  Af takes a value 
of 1 or more, and the larger the value, the lower the prediction  accuracy40. Furthermore, the residuals ( r ) were 
calculated from the observed and predicted values as follows:

where ri (log), yi , and ŷi are the i th residual (log), i th observed value (log), and i th predicted value (log), respec-
tively. To determine whether temperature,  aw, pH, and initial cell numbers affected the residuals, the relationships 
between each variable (temperature,  aw, pH, and the initial cell numbers) and the residuals were plotted for each 
food category. In addition, the data shown in the literature were used to predict the changes in viable cell numbers 
over time, and evaluated by calculating RMSE from the observed and predicted values.
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