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Subgap dynamics of double 
quantum dot coupled 
between superconducting 
and normal leads
B. Baran *, R. Taranko & T. Domański *

Dynamical processes induced by the external time-dependent fields can provide valuable insight into 
the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic 
heterostructure, consisting of the double quantum dot coupled in series to the superconducting and 
the metallic reservoirs, analyzing its response to (i) abrupt bias voltage applied across the junction, 
(ii) sudden change of the energy levels, and imposed by (iii) their periodic driving. We explore 
subgap properties of this setup which are strictly related to the in-gap quasiparticles and discuss 
their signatures manifested in the time-dependent charge currents. The characteristic multi-mode 
oscillations, their beating patters and photon-assisted harmonics reveal a rich spectrum of dynamical 
features that might be important for designing the superconducting qubits.

The double quantum dots embedded on interfaces between various external leads have been proposed for possible 
 spin1 and spin-orbit quantum  bits2. Specifically, the superconducting  qubits3 have been considered as promising 
candidates, making use of the bound states formed inside the pairing  gap4. Their implementations could protect 
the parity of Cooper pairs on proximitized superconducting nonoscopic  islands5. Further perspectives for the 
proximitized double quantum dots appeared with the topological  superconductors6, where the zero energy in-
gap modes are protected by symmetry reasons. These Majorana-type quasiparticles could be used for construct-
ing the charge qubit in a transmission line resonator (transmon)7 and may be incorporated in the gate tunable 
superconducting qubits (gatemons)8. Readout by means of a switching-event measurement using the attached 
superconducting quantum interference devices has revealed quantum-state oscillations with sufficiently high 
 fidelity9, that seems appealing for realization of quantum computing.

So far the static properties of in-gap bound states have been throughly investigated for the single and mul-
tiple quantum  dots10,11 and recently also for nanoscopic length atomic chains, semiconducting nanowires, and 
magnetic islands proximitized to bulk  superconductors12. Their particular realizations in the double quantum 
dots (DQDs) have been experimentally probed by the tunneling spectroscopy, using  InAs13–18,  InSb19, Ge/Si20 
and carbon  nanotubes21,22 and by the scanning tunneling microscopy applied to various di-molecules depos-
ited on superconducting  substrates23–27. Rich properties of such in-gap bound states of the DQDs have been 
analyzed theoretically by a number  groups11,19,28–43. Major features of two quantum dots coupled in series to 
the superconducting lead(s) originate from the ground state configuration which can vary its even-odd par-
ity, depending on: the energy levels, hybridization with the external reservoirs, the inter-dot coupling, and the 
Coulomb  potential30,38. Such parity changes are corroborated by crossings of the in-gap bound states and can be 
empirically detected by discontinuities of the Josephson current in S-DQD-S  junctions14–16 or the subgap Andreev 
current in N-DQD-S  junctions14,18,19. The resulting zero-bias conductance as a function the quantum dot levels 
(tunable by the plunger gates) resembles a honeycomb  structure14–16 instead of a diamond shape, typical for the 
single quantum dot junctions. Influence of the coupling to external reservoirs is also meaningful. For instance 
in a regime of the strong coupling to superconducting lead(s) the spin of quantum dots would be  screened14. 
In general, various arrangements of two quantum dots enable realization of the on-dot and inter-dot electron 
pairing, affecting the measurable charge transport  properties36. In particular, for the singly occupied quantum 
dots (what can be assured by appropriate gating) the superconducting proximity effect could be blocked. Such 
triplet blockade effect has been recently reported in S-DQD-S17 and N-DQD-S18 nanostructures. As regards 
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the Coulomb potential, its influence is indirectly manifested through the singlet-doublet transitions (related to 
variations between the even-odd occupancies of the quantum  dots17,18) and, under specific conditions, can lead 
to the subgap Kondo  effect22,23,30,38,44.

To our knowledge, however, the dynamical signatures of proximitized DQDs have not been investigated yet. 
Such dynamics could be important for designing future operations on the superconducting qubits, thefore we 
analyze here various time-dependent observables of the setup, comprising two quantum dots arranged in series 
between the superconducting and normal metallic electrodes (Fig. 1). We inspect response of this heterostruc-
ture to several types of external perturbations, leading either to a  melting45 or  buildup46 of the electron pairing. 
For specific discussion we consider (i) abrupt detuning of the chemical potentials by the source-drain voltage, 
(ii) quench of the quantum dot energy levels, and (iii) their periodic driving. The latter effect has been recently 
achieved experimentally in the microwave-assisted tunneling via the single quantum dot in the Josephson-type 
 junctions47–49, but similar measurements should be feasible using N-DQD-S heterostructures as well. Our calcu-
lations of the time-dependent electron occupancy and charge currents reveal the damped quantum oscillations 
whose frequencies coincide with the energies of in-gap bound sates. We inspect their nature and determine the 
characteristic time/energy scales, focusing on the limit of large superconductor gap, � = ∞ , and assuming the 
strongly asymmetric couplings, ŴS ≫ ŴN . Under stationary condictions it has been shown for the  single50,51 and 
for the double quantum dot  heterostructures52 that � → ∞ results do especially well and rather unexpectedly 
fit the results for systems with the finite pairing gap. We show that periodic driving imposed on the quantum 
dot levels, εiσ (t) , induces the oscillating currents whose conductance (averaged over the period) has a structure 
reminiscent of the Floquet systems. Dynamical properties studied in this work could be realized experimentally 
by applying either dc or ac external potentials.

Results
We start by discussing the microscopic model of our setup (Fig. 1) and next present the numerical results 
obtained for three types of the quantum quench protocols. On this basis we infer the typical time-scales, char-
acterizing in-gap bound states that would be useful for designing future operations on the Andreev qubits. In 
“Methods” section we present the eigenstates and eigenvalues for the case ŴN = 0 and provide some details about 
the computational techniques for N-DQD-S setup.

Model and formalism. Our heterostructure, consisting of the quantum dots QD i  ( i = 1, 2 ) placed in linear 
configuration between the normal (N) and superconducting (S) leads, can be described by the following Ham-
iltonian

We treat the normal lead as free fermion gas ĤN =
∑

kσ ξNkσ ĉ
†
Nkσ ĉNkσ , where ĉ†Nkσ ( ̂cNkσ ) is the creation (anni-

hilation) operator of itinerant electron with the momentum k and spin σ whose energy ξNkσ = εNkσ − µN is 
measured with respect to the chemical potential µN . The superconducting lead is assumed in the standard BCS 
form ĤS =

∑

qσ ξSqσ ĉ
†
Sqσ ĉSqσ −

∑

q(�SCĉ
†
Sq↑ĉ

†
Sq↓ + h.c.) , where �SC stands for the isotropic pairing gap. The 

double quantum dot part is modeled by the single-level localized states

where ĉ†iσ ( ̂ciσ ) is the creation (annihilation) operator of electron at i-th quantum dot, εiσ denote for the energy 
levels, and V12 is the interdot coupling. The quantum dots are hybridized with the external reservoirs via 
ĤN−QD2 =

∑

kσ

(

VNk ĉ
†
Nkσ ĉ2σ + h.c.

)

 and ĤS−QD1 =
∑

qσ

(

VSq ĉ
†
Sqσ ĉ1σ + h.c.

)

 , where VNk ( VSq ) denotes 
the coupling to normal (superconducting) lead.

(1)Ĥ = ĤS + ĤS−QD1 + ĤDQD + ĤN−QD2 + ĤN .

(2)ĤDQD =
∑

iσ

εiσ ĉ
†
iσ ĉiσ +

∑

σ

(

V12ĉ
†
1σ ĉ2σ + h.c.

)

,

Figure 1.  Schematics. Two quantum dots (QD1 and QD2 ) coupled in series between the superconducting (S) 
and normal (N) metallic reservoirs whose energy levels εiσ (t) could be varied by the external gate potential. We 
also consider dynamical phenomena driven by the time-dependent bias voltage imposed between the external 
leads.
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We restrict our considerations to the wide-band limit, assuming the constant (energy-independent) auxiliary 
couplings ŴN/S = 2π

∑

k/q |VNk/Sq|2δ(ε − ǫNk/Sqσ ) . We also treat the pairing gap �SC as the largest energy scale, 
focusing on dynamical processes solely inside in the subgap regime. In the limit of infinite |�| the selfenergy of 
the Nambu-matrix Green’s function becomes static and the value ŴS/2 appearing in the off-diagonal terms can 
be interpreted as the proximity induced pairing potential. The resulting low-energy physics can be described  by53

In what follows we discuss the time-dependent charge currents jNσ (t) , jSσ (t) and occupancies of the quantum 
dots imposed by the following types of quantum quenches: (i) abrupt bias potential Vsd = µN − µS applied 
between N and S electrodes, (ii) sudden change of the energy levels εiσ due to the gate potential Vg , and (iii) 
periodic driving of the quantum dot levels with a given amplitude and frequency. Expectation values of the 
physical observables are computed numerically, solving a closed set of the differential equations for appropriate 
correlation functions (see “Methods” section). The charge current jNσ (t) flowing between the normal lead and 
QD2 can be derived from the time-dependent number of electrons in the normal lead. For εNkσ (t) = εNkσ this 
current is formally given  by54

were 〈. . . 〉 denotes the quantum statistical averaging and �niσ (t)� ≡ n̂iσ (t) . The interdot charge flow j12σ (t) is 
expressed as

whereas the current jSσ (t) flowing from the superconducting lead to QD1 can be obtained from the charge 
conservation law dn1σ (t)dt = j12σ (t)+ jSσ (t) . Using equation (4) for the current jNσ we can define its time-depend-
ent differential conductance GNσ (Vsd , t) = d

dVsd
jNσ (t) as a function of the source-drain voltage Vsd . Peaks appear-

ing in the dependence of GNσ (Vsd , t) against Vsd can be interpreted as the excitation energies between eigenstates, 
comprising even and odd number of electrons (dubbed the Andreev bound states). Upon approaching the steady 

limit, t → ∞ , they emerge in the uncorrelated system at energies E = ± 1
2

(

√

4V2
12 + Ŵ2

S/4± ŴS
2

)

 (see “Meth-

ods” section) and acquire a finite broadening caused by the relaxation processes on continuous spectrum of the 
normal lead.

In practical realizations of such N-DQD-S heterostructure (Fig. 1) one should also take into account the 
Coulomb repulsion between electrons, 

∑

i=1,2 Uini↑ni↓ , competing with the proximity-induced electron pair-
ing and thereby affecting the bound states. Some aspects of the correlations effects have been previously studied 
under the stationary conditions for this heterostructure by the numerical renormalization group  method30. 
Here we shall address the post-quench dynamics, treating the electron–electron interactions within the Har-
tree–Fock–Bogoliubov decoupling scheme

This approximation applied to the static case of the correlated quantum dot hybridized with superconducting 
lead(s) can qualitatively describe the parity crossings and the energies of in-gap bound  states55. We use of this 
decoupling (6) to provide a preliminary insight into the complicated quench-driven dynamics of the interacting 
setup, which is effectively described by

with the renormalized energy levels ε̃iσ (t) = εiσ (t)+ Uiniσ (t) and the effective on-dot pairings 
�1(t) = ŴS

2 − U1�ĉ1↓(t)ĉ1↑(t)� , �2(t) = −U2�ĉ2↓(t)ĉ2↑(t)� . Such mean-field approximation might be reliable 
at least for the weak interaction case. More subtle analysis, including the Kondo effect of the strongly correlated 
system ( Ui ≫ ŴS ), is beyond a scope of this paper. We have done numerical calculations for U1 = U2 ≡ U  , 
considering U/ŴS = 0.5 , 1 and 1.5, respectively. Technically we have adapted for this purpose the algorithm 
outlined in “Methods” section, extending the previous study of the single dot superconducting  junctions46,54.

We use the convention e = � = 1 , expressing the charge currents, time and frequency ω in units of eŴS/� , 
�/ŴS and ŴS/� , respectively. In realistic experimental situations the value of ŴS ∼ 200 µ eV would imply the 
following typical units of time ∼ 3.3 psec, current ∼ 48 nA and frequency ∼ 0.3 THz. We assume the super-
conducting lead to be grounded, treating its chemical potential as the convenient reference level ( µS = 0 ). Our 
calculations are performed for zero temperature.

(3)ĤS + ĤS−QD1 ≈
ŴS

2

(

ĉ†1↓ĉ
†
1↑ + ĉ1↑ĉ1↓

)

.

(4)jNσ (t) = 2Im

(

∑

k

VNk exp(−iεNkσ t)�ĉ†2σ (t)ĉNkσ (0)�
)

− ŴN n2σ (t),

(5)j12σ (t) = −Im
(

V12�ĉ†1σ (t)ĉ2σ (t)�
)

(6)n̂i↑n̂i↓ ≃ n̂i↑�n̂i↓� + n̂i↓�n̂i↑� + ĉ†i↑ĉ
†
i↓�ĉi↓ĉi↑� + ĉi↓ĉi↑�ĉ†i↑ĉ

†
i↓�.

(7)

Ĥeff ≈
∑

i,σ

ε̃iσ (t)ĉ
†
iσ ĉiσ −

∑

i

(

�i(t)ĉ
†
i↑ĉ

†
i↓ + h.c.

)

+
∑

σ

(

V12ĉ
†
1σ ĉ2σ + h.c.

)

+
∑

k,σ

(

VNk ĉ
†
Nkσ ĉ2σ + h.c.

)

+
∑

kσ

ξNkσ ĉ
†
Nkσ ĉNkσ
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Response to a bias voltage. For computational reasons it is convenient to assume that initially, at t = 0 , 
the quantum dots are disconnected from both external reservoirs (see “Methods” section). Figure 2a presents 
the transient currents jNσ (t) and jSσ (t) right after forming the N-DQD-S heterostructure. In analogy to the 
previously discussed N-QD-S  case54 such evolution to the stationary limit is achieved through a sequence of 
the damped quantum oscillations, whose frequencies coincide with the energies of in-gap bound states. In par-
ticular, for εiσ = 0 the period of such oscillations is equal to T = 4π/ŴS and the relaxation processes (originat-
ing from the coupling ŴN of QD2 to the metallic lead) impose the damping via exponential envelope function 
e−tŴN /2 . In practice, at times t ≥ 50 , the stationary state seems to be fairly well approached.

Let us turn to the dynamical response of N-DQD-S setup induced by its biasing, at t = 60 , when the chemical 
potentials are detuned by by source-drain voltage µN − µS = Vsd . Figure 2b presents the charge currents jNσ (t) 
and jSσ (t) obtained for V12/ŴS = 2 , assuming Vsd/ŴS = 1.5 , 2 and 20, respectively. For the large bias voltage, 
|Vsd | ≫ V12 , we observe emergence of the quantum beats with the period TB = π/V12 superimposed with the 
higher frequency oscillations. Let us recall that charge transport is provided here solely by the anomalous particle-
to-hole (Andreev) scattering, which is sensitive to the in-gap bound states. For the particular set of model 
parameters such in-gap bound states appear at energies ± 1

2

√

4V2
12 + Ŵ2

S/4± ŴS/4 . It has been previously 
 shown56 that the single quantum dot placed between both normal electrodes responds to a sudden external 
voltage by the coherent oscillations of the charge current with frequency ω = |Vsd − εdot | . In the present situa-
tion we should replace εdot by the effective in-gap quasiparticle energies, at which the Andreev scattering is 
amplified. We have four such in-gap bound states, therefore total current can be viewed as a superposition of 
sinusoidal waves, oscillating with the frequencies �1/2 = Vsd ± ω1 and �3/4 = Vsd ± ω2 , where 
ω1/2 = V12 ± ŴS/4 . It can be effectively expressed as 

∑4
i=1 aie

−�i t sin(�it) . Individual terms refer here to the 
damping processes with different parameters �i , whereas the coefficients ai control the contributions from these 
in-gap bound states. For the large bias |Vsd | ≫ V12 and |Vsd | ≫ ŴS/4 the quantum beats are superimposed with 
the faster oscillations. It can be  shown56 that such beating patterns depend on a ratio

For the case displayed in Fig. 2b this ratio is r = 8 , therefore for Vsd/ŴS = 20 the repeated sequences of the beats 
with the periods π4 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
4  appearing in the current jNσ (t) should be observed. For non-integer 

ratio r the resulting beating pattern is more complicated with the different successive periods. Figure 2b displays 
that for Vsd/ŴS = 20 the post-quench current jNσ (t) indeed exhibits the beats mainly with period TB = π/V12 
superimposed with the faster oscillations, whose frequency is equal to Vsd . The steady limit current obtained for 
Vsd/ŴS = 2 is larger than for Vsd/ŴS = 1.5 because of the broader transport window involving all the in-gap 
bound states. We also notice that jSσ (t) substantially differs from jNσ (t) , especially for the large bias Vsd . We 
assign this to the fact that DQD sandwiched between the external leads wash out small fluctuations of the current 
jSσ (t) , enforcing the final damped oscillations with period 4π/ŴS.

Figure 3 shows the beating structure in the time-dependent current jNσ (t) after abrupt application of the 
bias voltage. These beats clearly depend on the interdot coupling V12 via TB = π/V12 . The beating structure is 
superimposed with oscillations whose frequency is also sensitive to the bias voltage. By measuring the period 
of such beating oscillations one could thus practically evaluate the inter-dot coupling V12 = π/TB . For a real-
istic value ŴS ∼ 200µeV  , and assuming V12/ŴS = 0.5 , 1 and 2 the beating period would be TB ∼ 21 , 10 and 5 
picoseconds, respectively. This time-scale is currently attainable experimentally. We have also performed similar 

(8)r = ω1 + ω2

|ω1 − ω2|
= 4V12

ŴS
.

0.0

0.5

n
2σ

a
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Figure 2.  Transient and post-quench dynamics. (a) The time-dependent charge n2σ and transient currents jSσ , 
jNσ obtained for V12/ŴS = 0.5 , 4, assuming the initially empty quantum dots. (b) The post-quench currents jSσ 
and jNσ for V12/ŴS = 2 after an abrupt biasing by the source-drain voltage Vsd at t = 60 . Calculations have been 
done for U = 0 , εiσ = 0 , ŴN/ŴS = 0.2.
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calculations including the electron correlations (within the mean-field approximation assuming εiσ = −U/2 ) 
and found, to our surprise, that all conclusions concerning the frequencies and the beating patterns remain valid.

Quench of energy levels. Let us now consider the dynamics induced by a sequence of quantum quenches 
imposed on the energy levels εiσ . The first quench εiσ → εiσ + Vg is performed at t1 = 60 , safely after N-DQD-
S heterostructure achieves its stationary configuration. Later on, at time t2 = 120 , we rapidly change the energy 
levels back to their initial values εiσ + Vg → εiσ . Such step-like change (reminiscent of the pump-and-probe 
techniques) could be practically driven by the external gate potential applied to DQDs.

For understanding the dynamics of our setup it is helpful to inspect the stationary fillings of both quantum 
dots for various interdot couplings V12 . Figure 4 shows the occupancy of QD2 (the neighbor of the normal lead) 
with respect to the energy level ε2σ , assuming ε1σ = ε2σ so that occupancies of both dots are nearly identical. 
We recognize three plateau regions, corresponding to niσ ≈ 1 , 0.5 and 0, respectively. We also notice, that a 
width of the half-filling region strongly depends on the inter-dot coupling V12 . The stationary occupancy n2σ 
changes from the nearly complete filling to half-filling or from the half-filled case to nearly empty QDs occur 
in a vicinity of εiσ ≈ ±V12 where the in-gap bound states coincide with the chemical potential µN = µS (here 
Vsd = 0 ). Our numerical results obtained for various V12 and Vg indicate that the most prominent changes of the 
time-dependent observables occur for such quenches when the final value of the energy levels εiσ coincide with 
the changeovers of niσ (t = ∞) illustrated in Fig. 4. We have also checked that postquench evolution for different 
interdot couplings V12 preserves the same universal properties, provided that the final value εiσ corresponds to 
the tilted part of niσ (t = ∞) curve.
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Figure 3.  Post-quench beating patterns. The Andreev current jNσ (t) induced by abrupt biasing at t = 60 for 
several values of the interdot coupling V12 and Vsd (in units of ŴS ), as indicated. We used the model parameters 
U = 0 , εiσ = 0 , ŴN/ŴS = 0.2.
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Figure 4.  Charge occupancy. The stationary limit (t = ∞) of the QD2 occupancy as a function of the energy 
level ε2σ = ε1σ determined for several interdot couplings V12 . The dashed line is calculated within the mean-
field approximation for U = 1 . Other parameters: Vsd = 0 , ŴN = 0.1 , ŴS = 1.
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Figure 5 shows the time-dependent n2σ (t) , jNσ (t) , and jSσ (t) after lifting the DQD energy levels, at t = 60 , 
and their return to initial values, at t = 120 , obtained for the strong interdot coupling, V12/ŴS = 4 . For t ≤ 60 
the considered N-DQD-S system is practically in its stationary state with the half-filled QDs and negligible 
currents jNσ (t) , jSσ (t) . More specifically, we have chosen Vg/ŴS = 3.2 , 3.8, 4, and 5, respectively. Such values 
of Vg correspond to the stationary occupancies equal to ∼ 0.48 , ∼ 0.4 , ∼ 0.25 and ∼ 0.015 , respectively. Let us 
consider the postquench evolution corresponding to Vg/ŴS = 3.2 , when the quantum dot level εiσ coincides with 
the middle plateau (Fig. 4). The initial occupancy of QD2 is 0.5 and its stationary value after the first quench (at 
t = 60 ) changes to ∼ 0.48 , therefore n2σ (t) exhibits only very small oscillations. Similarly, the charge currents 
jNσ and jSσ are negligible (see the upper curves in Fig. 5 for t < 120 ). After the second quench (at t = 120 ) the 
occupancy n2σ ∼ 0.5 , albeit promptly after the quench we observe some transient phenomena with the beating 
structure (see the upper curve in Fig. 5 for t > 120 ). This beating structure is more evident for the larger gate 
potentials Vg/ŴS = 3.8 and 4 (see Fig. 5). We observe oscillations with the period T = π/V12 , giving rise to 
the beating structure with another period 2π/ŴS . Upon increasing the gate potential to Vg/ŴS = 5 the time-
depenence of n2σ after the first quench substantially changes in comparison with the previous cases. Instead of 
the damped oscillations we now observe an exponential decay, down to nearly zero. Evolution after the second 
quench is also different in comparison to the previous ones. We now observe the oscillations of n2σ and both 
currents with the period T = 2π/ŴS without any beating structure. Concerning the time-dependent occupancies 
and currents calculated for V12/ŴS ≥ 1 , they preserve the qualitative properties discussed above. For the smaller 
interdot couplings V12 (for instance V12/ŴS = 0.5 ) the evolution after the first quench preserves all properties 
characterized for stronger V12 , but after the second quench we no longer observe the beating patterns, so that 
only oscillations with the period 4π/ŴS are present.

We have also performed calculations for the interacting system, assuming U/ŴS = 1 . The stationary limit 
occupancy of QD2 is shown by the dashed line in Fig. 4. We can notice that the characteristic points, where the 
totally filled dot changes to the half-filling and another one where the half-filled dot changes to the empty con-
figuration, are shifted in comparison to the noninteracting case. This effect is caused by rescaling of the in-gap 
states energies. In analogy to our considerations of uncorrelated system we have imposed such variations of the 
quantum dot levels by the gate potential Vg which coincided with these characteristic points of niσ (t = ∞) . It 
turned out that postquench evolution revealed the same qualitative features in the time-dependent occupancy 
n2σ (t) and the charge currents as for U = 0 . For brevity, we hence skip such results.

Periodically driven energy levels. We now discuss dynamical response of the N-DQD-S heterostructure 
driven by a periodic driving of the energy levels εiσ (t) = A sin(ωt) which can be practically achieved by shin-
ing an infrared field on the quantum dots. We assume that amplitude A and frequency ω of the oscillations are 
identical in both QDs.

Figure 6 presents the time-dependent current jSσ (t) obtained for ω/ŴS = 0.1 and several values of the ampli-
tude A. The left (a) panel refers to the uncorrelated case, U = 0 , and the right (b) panel to U/ŴS = 1 , respectively. 
As a guide to eye we also display the transient current obtained for the static energy levels εiσ = 0 (top panel in 
Fig. 5a) with the characteristic damped oscillations whose period is equal to 4π/ŴS . Such current vanishes in 
the asymptotic limit t → ∞ (here Vsd = 0 ) and similar features, but with different profiles of the quantum oscil-
lations, are observable for small amplitudes of the periodic driving as well. They are displayed for V12/ŴS = 4 
in Fig. 6a. We notice that indeed the time-dependent currents asymptotically vanish for A/ŴS ≤ 3.5 . This situ-
ation occurs whenever the amplitude A does not exceed the energies of subgap quasiparticles. Such behavior 
can be contrasted with the larger amplitude driving (for instance A/ŴS = 4 ) when the current jSσ (t) is forced 
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Figure 5.  Dynamics imposed by quench of energy levels. The time-dependent occupancy n2σ (t) and the 
currents jNσ (t) , jSσ (t) driven by the step-like variation of the energy levels εiσ → εiσ + Vg , at t = 60 , and 
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to flow back and forth all over the time. Periodicity is this behavior is a bit subtle and will be analyzed in more 
detail underneath.

Figure 6b shows the current jSσ (t) of the correlated system (Coulomb potential U1 = U2 = U  is expressed 
in units of ŴS ) determined for V12/ŴS = 3 , A/ŴS = 3 , and Vsd = 0 . We have chosen such parameters to enforce 
the nonvanishing current, up to the asymptotic limit t → ∞ . The correlation effects are here quite evident. 
Upon increasing U the magnitude of oscillating current jSσ (t) is gradually suppressed. Such effect can be partly 
assigned to shifting of the subgap quasiparticles to the higher energies and partly to ongoing transfer of the 
spectral weights (this behavior is also discussed in next subsection). In presence of the finite source-drain voltage 
Vsd the time-dependent phenomena become even more complicated. Its seems, however, that under such highly 
non-equilibrium conditions the correlation effects become less important.

Finally we briefly investigate the transient currents imposed by different profiles of the periodically driven 
energy levels εiσ (t) = εiσ (t + T) as depicted by the dashed lines in Fig. 7. For all cases we have assumed the same 
amplitudes and frequencies. As the reference, the upper panel shows the case of the sinusoidally driven energy 
level. It appears that abrupt (step-like) variations of QDs energy levels are followed by the damped oscillations 
of transient current jSσ (t) after each change of εiσ . Life-time of the resulting damped oscillations is shorter or 
comparable to the period of driving. For more smooth variation of εiσ we can notice gradual suppression of the 
induced oscillations (see the second panel from the top of Fig. 7).

Andreev conductance averaged over driving period. To gain more precise information about the 
role of amplitude A and frequency ω of the oscillating QDs energy levels we study here the charge currents aver-
aged over a period T = 2π/ω of the driving field. Our main objective is to analyze the spectrum of subgap qua-
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Figure 6.  Amplitude effect of periodic driving. The current jSσ induced by the oscillating energy levels 
εiσ (t) = A sin(ωt) . Panel (a) presents the results obtained in uncorrelated system for V12/ŴS = 4 and several 
amplitudes A. Panel (b) shows the mean-field results determined for V12/ŴS = 3 , A/ŴS = 3 and several values 
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The dashed lines illustrate profile of the oscillating energy levels (not in scale).
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siparticles visible in nonequilibrium transport properties of the N-DQD-S nanostructure. For specific analysis 
we focus on the Andreev current �jNσ (t)�t0 = 1

T

∫ t0+T
t0

jNσ (t)dt induced by the source-drain voltage Vsd and, in 
analogy to the preceding section, assuming the periodically driven energy levels εiσ (t) = A sin(ωt) . From the 
differential conductance GNσ (Vsd) = d

dVsd
�jNσ (t)�t0 one can infer quasienergies of the in-gap bound  states57.

Initially, at t = 0 , the oscillating quantum dot levels εiσ (t) are imposed simultaneously with the bias voltage 
µN − µS = Vsd , assuming both QDs to be empty. We choose the reference time t0 at which the transient effects 
become negligible. This choice can be quite arbitrary, because safely after forming our N-DQD-S heterostructure 
the time-dependent current oscillates with the same period T as enforced on the energy levels (c.f. Figs. 6, 7). 
Below we discuss the differential conductance GNσ (Vsd) obtained numerically for a few representative sets of 
the model parameters.

Figure 8 presents the averaged Andreev conductance obtained for two values of the interdot coupling V12 and 
several amplitudes A, as indicated. Panels (a–d) display the characteristic features originating from the photon-
assisted tunneling. We notice that besides the main quasiparticle peaks (for ŴN ≪ ŴS ) appearing at 

± 1
2

(

√

4V2
12 + Ŵ2

S/4± ŴS/2

)

 there emerge additional side-peaks originating from the stimulated emission/

absorption of the photon quanta. Their intensity (spectral weight) and avoided-crossing behavior are sensitive 
to the frequency and amplitude of a microwave field. The main quasiparticle peaks are replicated at multiples of 
ω and they can be interpreted as higher order harmonics of the initial bound states.

Basic aspects of the photon-assisted tunneling through the quantum dots sandwiched between the normal 
electrodes have been extensively studied in  literature58–60, predicting the main resonance peaks and their n-th 
side-bands modulated by the squared Bessel functions of the first kind J2n(A/ω) . As regards the specific photon-
assisted tunneling in the superconducting junctions, it has been observed that the differential conductance G(Vsd) 
in situations with the single quantum dots can be expressed by G(Vsd) =

∑

n J
2
n(kA/ω)G

(0)(Vsd + nω
k ) , where 

G(0)(Vsd) corresponds to the conductivity without microwave radiation and k denotes the number of electrons 
transferred in an elementary tunneling  process47,48. For our N-DQD-S nanostrocture we notice that the main 
resonant peaks and their side-bands are weighted by the squared Bessel function J20

(

2A
ω

)

 . The main resonance 
peaks and side-bands disappear at such frequencies ω for which the Bessel function vanishes. Figure 8d shows 
such points for ω/ŴS ∼ 3.3 , 1.45, 0.92, corresponding to the first, second and third zeros of J0(2A/ω) . For some 
given amplitude A the frequency ω at which the main quasiparticle peaks and their higher harmonics disappear 
is independent of the interdot coupling V12 (Fig. 8c,d).
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Figure 8.  Frequency dependent conductance. The averaged Andreev conductance GNσ (Vsd) in units of 2e2/h 
as a function of the frequency ω and source-drain voltage Vsd obtained for several amplitudes A and interdot 
couplings V12 (in units of ŴS ), as indicated. We used the model parameters U = 0 , ŴN/ŴS = 0.1.
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Figure 9.  Amplitude dependent conductance. Variation of the averaged conductance GNσ (Vsd) in units of 
2e2/h against the amplitude A of the oscillating levels and source-drain voltage Vsd obtained for several interdot 
couplings V12 and frequencies ω (in units of ŴS ), as indicated. Calculations are done for U = 0 and ŴN/ŴS = 0.1.
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Let us now consider variation of the averaged Andreev conductance GNσ with respect to ( Vsd ,A ) for a few 
values of the interdot coupling V12 (Fig. 9). In absence of the microwave field, A = 0 , there exist four peaks in 
the differential conductance corresponding to two pairs of in-gap bound states. Upon increasing a power of the 
microwave field (for larger amplitude A) the main quasiparticle peaks loose some part their intensities (spectral 
weights) at expense of their new higher-order replicas. By varying the amplitude A such replicas appear in the 
averaged conductance at ±ω , ±2ω , and so on around the main peaks. We can also notice that their spectral 
weight undergoes substantial redistribution. In particular, at certain values of the amplitude A the spectral weight 
of individual harmonics vanishes and then reappears.

To check influence of the inter-dot coupling V12 on the averaged Andreev conductance we present in Fig. 10 
the results obtained for ω/ŴS = 1 and two amplitudes A/ŴS = 1 and 2. In the first case the peaks, appearing 
around ±nω , gradually split into the lower and upper branches with the increasing coupling V12 . Yet, they never 
cross each other because of the quantum mechanical  interference61. For the larger amplitude, A/ŴS = 2 , we 
clearly notice such avoided-crossing tendency, where each harmonic consists of two nearby located peaks. This 
is an example of the n-fold fine structure driven in the harmonics, whenever the specific constraint A/ω = n is 
encountered.

Finally, in Fig. 11we present the averaged conductance GNσ (Vsd) of the interacting system obtained for 
V12/ŴS = 2 , A/ŴS = 2 , ω/ŴS = 2.5 , where panels form top to bottom refer to U/ŴS = 0 , 0.5, 1, and 1.5, 
respectively. The particle-to-hole scattering mechanism (contributing to the subgap Andreev current) implies 
the fully symmetric conductance GNσ (−Vsd) = GNσ (Vsd) . In the uncorelated system (top panel) the main 
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Figure 10.  Dependence on interdot coupling. The averaged Andreev conductance GNσ (Vsd) in units of 2e2/h 
as a function of the interdot coupling V12 and source-drain voltage Vsd (in units of ŴS ) obtained for U = 0 , 
ω/ŴS = 1 , ŴN/ŴS = 0.1 , assuming A/ŴS = 1 (left panel) and A/ŴS = 2 (right panel).

0.0

0.2

G
[2
e2 h
]

U = 0.0

0.0

0.2
U = 0.5

0.0

0.2

U = 1.0

−3 −2 −1 0 1 2 3
Vsd[ΓS/e]

0.0

0.2
U = 1.5

Figure 11.  Correlation effects. The averaged conductance GNσ (Vsd) in units of 2e2/h versus the source-drain 
voltage Vsd obtained within mean-field approximation for several values of U (as indicated), assuming A = 2 , 
V12 = 2 , ω = 2.5 , ŴN = 0.1 and ŴS = 1.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11138  | https://doi.org/10.1038/s41598-021-90080-2

www.nature.com/scientificreports/

the presently chosen parameters the second- and higher-order harmonics become hardly visible because of their 
very small spectral weights (see Figs. 8b and 11). Upon increasing the Coulomb potential U the main quasipar-
ticle peaks only slightly change their positions. Major influence of the correlation effects is manifested through 
noticeable redistribution of the spectral weights, both between the harmonics and between their fine sub-struc-
ture. More detailed analysis of the photon-stimulated Andreev transport of the strongly correlated N-DQD-S 
system would require some sophisticated (nonperturbative) techniques, and such study is beyond the scope of 
the present work.

In addition to the numerical computations of the averaged current directly from the equations of motion, 
we have also developed the auxiliary procedure based on machine learning algorithm which reliably yields the 
Andreev conductance for an arbitrary set of the model parameters (see the last subsection of “Methods” section).

Discussion
We have studied the double quantum dot coupled between the superconducting and normal leads, addressing 
its dynamical response to (i) abrupt application of the bias voltage, (ii) sudden change of the energy levels, and 
(iii) their periodic driving. These effects can be routinely triggered either by dc or ac external potentials. We 
have analyzed the time-dependent charge flow between the external reservoirs and the quantum dots, reveal-
ing an oscillatory behavior (analogous to the Rabi-type mechanism involving pairs of the in-gap quasiparticle 
states induced by the superconducting proximity effect) with a damping caused by the relaxation processes on 
a continuum spectrum of the normal lead.

Inspecting the time-dependent profiles of various physical observables we have found the signatures of such 
frequency components which coincide with the subgap quasiparticle energies. For the quantum quench imposed 
by the source-drain voltage and by the gate potential the dynamics of proximitized double quantum dot reveals 
superposition of the fast and slow oscillatory modes, giving rise to the beating patters. These features are well 
observable over quite long time interval, �t ∼ 10�/ŴN , in contrast to much faster transient phenomena realized 
in the single quantum dot (N-QD-S)  heterostructures54,62.

In the case of periodically driven energy levels we have found more complex time-dependent behavior. 
Response of the N-DQD-S heterostructure depends both on the frequency ω and amplitude A of the periodically 
varying levels. We have illustrated these phenomena in absence (Figs. 6, 7) and in presence of the bias voltage 
(Figs. 8, 9, 10). We have predicted that amplitude (related to the power of driving force) has crucial effect on acti-
vating the higher-order harmonics of in-gap quasiparticle sates, as evidenced for the unbiased (Fig. 6) and biased 
(Fig. 9) heterostructures. The frequency, on the other hand, is manifested by replicas of the main quasiparticle 
peaks. Similar effects have been recently observed experimentally in the Josephson-type junctions, comprising 
the single quantum  dot47,48. In our case the proximitized double quantum dot is characterized by a sequence of 
the photon-assisted enhancements in the differential conductance with an additional fine-structure appearing in 
the harmonics due to interference effects. Upon varying the frequency (Fig. 8) or the interdot coupling (Fig. 10) 
the neighboring harmonics never cross each other because of their quantum mechanical interference, which is 
feasible also in multi-terminal superconducting  junctions61.

Our considerations could be verified experimentally by means of the subgap tunneling spectroscopy using 
the carbon nanotubes, semiconducting nanowires or other lithographically constructed quantum dots embedded 
between the superconducting and metallic electrodes. Another realization would be possible using the scanning 
microscope technique, where the conducting tip can probe the dimerized molecules deposited on supercon-
ducting substrates. The characteristic time-scales determined in this work might be important for designing 
logical operations with use of the superconducting  qubits8. In future studies it would be worthwhile to perform 
more systematic consideration of the correlation effects and address the dynamics of topologically nontrivial 
superconducting nanostructures.

Methods
Eigenvalues and eigenfunctions of the proximitized DQD. The Hilbert space of the DQD proxim-
itized to superconducting lead is spanned by 16 vectors. In the occupancy representation the matrix Hamilto-
nian has a block structure, consisting of 6  subspaces41. Two 4-dimensional subspaces contain states with odd 
number of electrons |QD2,QD1� ⇒ |0,↑� , | ↑, 0� , | ↑↓,↑� , | ↑,↑↓� and |0,↓� , | ↓, 0� , | ↑↓,↓� , | ↓,↑↓� , respec-
tively. The next two states | ↑,↑� , | ↓,↓� are decoupled from each other. The remaining 6-dimensional subspace 
contains the states with even number of electrons, |0, 0� , |0,↑↓� , | ↑↓, 0� , | ↑↓,↑↓� , | ↑,↓� and | ↓,↑� , respectively. 
Diagonalizing the effective matrix Hamiltonian, one obtains for εiσ = 0 the following set of eigenvalues εi and 
eigenfunctions |φi�.

i εi |φi�

1/2 ±ε ai(|0,↑� ∓ | ↑↓,↑�)+ bi(| ↑, 0� ± | ↑,↑↓�)
3/4 ±ε ∓ ŴS/2 ai(|0,↑� ± | ↑↓,↑�)+ bi(| ↑, 0� ∓ | ↑,↑↓�)
5/6 ±ε ai(|0,↓� ∓ | ↑↓,↓�)+ bi(| ↓, 0� ± | ↓,↑↓�)
7/8 ±ε ∓ ŴS/2 ai(|0,↓� ± | ↑↓,↓�)+ bi(| ↓, 0� ∓ | ↓,↑↓�)
9 0 | ↑,↑�
10 0 | ↓,↓�

11 0
√
2√

4V2
12+Ŵ2

S
/4

(

V12(|0, 0� + | ↑↓,↑↓�)− ŴS

4
(| ↑,↓� − | ↓,↑�)

)

12 0 1√
2
(| ↑,↓� + | ↓,↑�)
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i εi |φi�

13/14 ±ŴS/2
1
2
(|0, 0� − | ↑↓,↑↓� ± |0,↑↓� ∓ | ↑↓, 0�)

15/16 ±
√

4V2
12 + Ŵ2

S
/4

ŴS

4
√

4V2
12+Ŵ2

S
/4
(|0, 0� + | ↑↓,↑↓�)± 1

2
(|0,↑↓� + | ↑↓, 0�)+ V12√

4V2
12+Ŵ2

S
/4
(| ↑,↓� − | ↓,↑�)

where ε = 1
2

(

√

4V2
12 + Ŵ2

S/4+ ŴS/2

)

 , ai = 1√
2

V12√
V2
12+ε2i

 and bi = 1√
2

εi√
V2
12+ε2i

.

Equations of motion. Here, we explicitly present the set of differential equations needed for determination 
of the time-dependent occupancy niσ (t) = �ĉ†iσ (t)ĉiσ (t)� and other functions coupled to it (for U=0). Using the 
exact formula

and applying the wide band limit approximation we derive the following set of equations

where α = +(−) , β = exp(−i(t − t1)Vsd) , t1 denotes the time at which the bias voltage Vsd is applied and 
〈. . . 〉 stands for the quantum statistical averaging. At this level there appear the new correlation functions 
�Âiσ (t)B̂kσ (0)� , where Â ( ̂B ) corresponds to the creation or annihilation operator of electron in the quantum 
dots (the normal lead). These functions can be determined from the the following equations of motion

where �n̂kσ (0)� =
[

1+ exp ((εNkσ − µN )/kBT)
]−1 is the Fermi distribution function for the normal lead 

electrons.

(9)ĉNkσ (t) = ĉNkσ (0) exp

(

−i

∫ t

0
dt′εNkσ (t

′)

)

− i

∫ t

0
dt′ĉ2σ (t

′)VNk exp

(

−i

∫ t

t′
dτεNkσ (τ )

)

(10)
dn1σ (t)

dt
=2Im(V12�ĉ†1σ (t)ĉ2σ (t)� −

ŴS

2
�ĉ1−σ (t)ĉ1σ (t)�),

(11)
dn2σ (t)

dt
=2Im[−V12�ĉ†1σ (t)ĉ2σ (t)� −

iŴN

2
n2σ (t)+

∑

k

VNk exp(−iεNk t)�ĉ†2σ (t)ĉNkσ (0)�β],

(12)

d�ĉ1σ (t)ĉ2−σ (t)�
dt

=
[

−i(ε1σ + ε2−σ )−
ŴN

2

]

�ĉ1σ (t)ĉ2−σ (t)� − iV12

(
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)

+ αi
ŴS

2
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(13)
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=− i
(
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)
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[
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(
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)

β ,

(15)
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=iε1σ �ĉ†1σ (t)ĉNkσ (0)� + iV12�ĉ†2σ (t)ĉNkσ (0)� + αi
ŴS

2
�ĉ1−σ (t)ĉNkσ (0)�,

(17)
d�ĉ1σ (t)ĉNk−σ (0)�

dt
=− iε1σ �ĉ1σ (t)ĉNk−σ (0)� − iV12�ĉ2σ (t)ĉNk−σ (0)� − αi

ŴS

2
�ĉ†1−σ (t)ĉNk−σ (0)�,

(18)

d�ĉ†2σ (t)ĉNkσ (0)�
dt

=
(

iε2σ − ŴN

2

)

�ĉ†2σ (t)ĉNkσ (0)� + iV12�ĉ†1σ (t)ĉNkσ (0)� + iVNke
iεNk t�n̂kσ (0)�β−1,

(19)
d�ĉ2σ (t)ĉNk−σ (0)�

dt
=
(

−iε2σ − ŴN

2

)

�ĉ2σ (t)ĉNk−σ (0)� − iV12�ĉ1σ (t)ĉNk−σ (0)�,
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We have solved numerically these coupled differential equations (10–19) subject to the specific initial condi-
tions. For convenience, we have assumed that at t = 0 both external reservoirs were isolated from the quantum 
dots. In next steps, we have calculated iteratively the time-dependent observables using the Runge Kutta algo-
rithm with sufficiently dense equidistant temporal points t → t + δt → · · · → t + Nδt ≡ tf .

Machine learning approach. Results presented in the main part of this paper have been obtained by 
solving the differential equations derived for N-DQD-S heterostructure. The computational procedure has been 
rather straightforward (see the preceding section), but required quite a lot of time and resources. For instance to 
produce the conduction maps (Figs. 8, 9, 10) with 150× 150 points resolution it takes approximately one week 
performing multiprocessing calculations on CPU 2x Xeon E5-2660 2.2GHz 16 cores/32 threads. This problem 
motivated us to construct a machine learning model for our system.

To train our neural network we have used the collected set of data of 76 different conductance maps (with 
different resolutions), giving us 971760 conductance data points. Subsequently, we have linearly interpolated 
every single map to doubly increase a number of the data points, finally giving us 3887040 data points. For this 
purpose we have used the open-source software for machine learning—Tensorflow with application program-
ming interface—Keras.

This neural network has a character of the densely connected type, with 4 input parameters ( V12,ω,Vsd,A) 
describing noninteracting N-DQD-S setup and 1 single neuron on the output, specifying the averaged Andreev 
conductance GNσ . The neural network is composed of 4 hidden layers consisting of 2048, 1024, 512, 256 neurons, 
respectively. Every hidden layer has a dropout of 1% neurons (which helps to avoid over-fitting our model) and, as 
an activation function, we have used sigmoid function. One can notice that this neural network is large, because 
of non-linearity in the system. To train our neural network we have chosen batch = 1024 and epoch = 600 , giving 
us the fidelity coefficient R2 = 0.987 . Fig. 12 compares the calculated GNσ with respect to the value predicted by 
our neural network. Predictive strength of the machine learning algorithm is illustrated in Fig. 13, which shows 
the conductance maps obtained from the direct calculation (panel a) and by the neural network (panel b) for such 
model parameters which were not used during the training process. This neural network model of N-DQD-S 
heterostructure is available at the following https:// www. dropb ox. com/ sh/ 0hzs9 im3d3 bf0jr/ AADRr 3kltw 2mOdC 
Ch8te doIWa? dl=0www.dropbox.com/sh/0hzs9im3d3bf0jr/AADRr3kltw2mOdCCh8tedoIWa?dl=0 webpage.

Figure 12.  Neural network data. (a) Comparison of the differential conductance predicted by the neural 
network versus its value determined by the microscopic calculations. The red line y = x is a guide to eye. (b) 
The conductance map generated by the neural network, reproducing the results presented in Fig. 9a.

Figure 13.  Machine learning results. The conductance map obtained from the microscopic numerical 
calculations (a) and generated by the neural network (b) for V12 = 1.7 , ω = 2.5 . The map shown in panel a has 
not been used for learning the neural network.

https://www.dropbox.com/sh/0hzs9im3d3bf0jr/AADRr3kltw2mOdCCh8tedoIWa?dl=0
https://www.dropbox.com/sh/0hzs9im3d3bf0jr/AADRr3kltw2mOdCCh8tedoIWa?dl=0
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