
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11447  | https://doi.org/10.1038/s41598-021-89859-0

www.nature.com/scientificreports

Alterations in lipid profile 
upon uterine fibroids  
and its recurrence
Narine M. Tonoyan1, Vitaliy V. Chagovets1, Natalia L. Starodubtseva1,3, Alisa O. Tokareva1,2, 
Konstantin Chingin4, Irena F. Kozachenko1, Leyla V. Adamyan1 & Vladimir E. Frankevich1*

Uterine fibroids (UF) is the most common (about 70% cases) type of gynecological disease, with the 
recurrence rate varying from 11 to 40%. Because UF has no distinct symptomatology and is often 
asymptomatic, the specific and sensitive diagnosis of UF as well as the assessment for the probability 
of UF recurrence pose considerable challenge. The aim of this study was to characterize alterations in 
the lipid profile of tissues associated with the first-time diagnosed UF and recurrent uterine fibroids 
(RUF) and to explore the potential of mass spectrometry (MS) lipidomics analysis of blood plasma 
samples for the sensitive and specific determination of UF and RUF with low invasiveness of analysis. 
MS analysis of lipid levels in the myometrium tissues, fibroids tissues and blood plasma samples was 
carried out on 66 patients, including 35 patients with first-time diagnosed UF and 31 patients with 
RUF. The control group consisted of 15 patients who underwent surgical treatment for the intrauterine 
septum. Fibroids and myometrium tissue samples were analyzed using direct MS approach. Blood 
plasma samples were analyzed using high performance liquid chromatography hyphened with mass 
spectrometry (HPLC/MS). MS data were processed by discriminant analysis with projection into 
latent structures (OPLS-DA). Significant differences were found between the first-time UF, RUF and 
control group in the levels of lipids involved in the metabolism of glycerophospholipids, sphingolipids, 
lipids with an ether bond, triglycerides and fatty acids. Significant differences between the control 
group and the groups with UF and RUF were found in the blood plasma levels of cholesterol esters, 
triacylglycerols, (lyso) phosphatidylcholines and sphingomyelins. Significant differences between the 
UF and RUF groups were found in the blood plasma levels of cholesterol esters, phosphotidylcholines, 
sphingomyelins and triacylglycerols. Diagnostic models based on the selected differential lipids 
using logistic regression showed sensitivity and specificity of 88% and 86% for the diagnosis of first-
time UF and 95% and 79% for RUF, accordingly. This study confirms the involvement of lipids in the 
pathogenesis of uterine fibroids. A diagnostically significant panel of differential lipid species has 
been identified for the diagnosis of UF and RUF by low-invasive blood plasma analysis. The developed 
diagnostic models demonstrated high potential for clinical use and further research in this direction.

Uterine fibroids (UF), also referred to as myomas, is the most common (about 70% cases) type of gynecological 
disease1–6. 25% of UF patients of reproductive age undergo surgery1–3. UF has no distinct symptomatology and is 
often asymptomatic, which makes it difficult to diagnose1,2. The common complaints of patients with UF include 
painful and heavy menstruation, abnormal uterine bleeding, pain in the lower abdomen, infertility, miscarriage, 
impaired function of adjacent organs, dyspareunia, etc.7–9.

The pathogenesis of UF remains unknown. The roles of genetic mutations10,11, hormonal disorders (estro-
gen-progesterone imbalance), neoangiogenesis12, and growth factors13 have been reported14. Risk factors of UF 
include early menarche, late reproductive age, obesity, high parity or nulliparity, menopause, smoking, combined 
oral contraceptives, inflammatory processes1,6,12,15–17.

For the UF patients who are planning pregnancy, myomectomy remains the main treatment. However, the 
recurrence of UF is possible after organ-preserving treatment. The recurrence rate of UF varies from 11 to 40%. 
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A second surgery is necessary in 1.3–27% of cases18. UF belongs to diseases with a genetic predisposition19. A 
family history of UF was shown to increase the risk of UF recurrence19,20. Risk factors for UF recurrence include 
the presence of more than 3 fibroids, age from 30 to 40 years, rapid tumor growth before surgery, as well as certain 
histological types of UF21. Surgery can trigger the development of new myomatous nodes, because damage to the 
myometrium activates the expression of mitogenic and angiogenic growth factors. High level of Ki-67 (Ki-67), 
progesterone receptor (PgR) and vascular endothelial growth factor (VEGF) in the myometrium and fibroids 
are pathogenetic factors of UF recurrence22–24.

Currently, there is a lack of specific (laboratory, instrumental) criteria for the prediction of UF recurrence. 
Reliable prediction of UF recurrence would help the practicing physician to determine the required amount of 
surgical treatment, minimize risks of repeated surgical interventions, and increase the effectiveness of organ-
preserving treatment25.

The search of new UF biomarkers is mainly done by metabolomics and proteomics approaches, because these 
approaches allow determination of the molecular composition for any biological sample with high accuracy26. 
Shotgun lipidomics based on electrospray ionization mass spectrometry (ESI–MS) allows deep molecular profil-
ing of a sample without significant losses of chemical information27,28. The high diagnostic potential of lipidom-
ics has been shown in many areas of medicine, particularly in oncology: lung, thyroid gland, breast, stomach, 
pancreas, colorectal, liver, kidney, prostate, ovarian, and endometrium cancer29–52. MS studies of lipid profiles 
in tissues and blood plasma have revealed new promising biomarkers of endometriosis (benign gynecologi-
cal disorder)27,28,37,40,47,48,52. To date there are no sufficient metabolomics data for uterine fibroids, as only one 
study by Heinonen H. R. group was conducted in tissues53. Heinonen et al. found that homocarnosine level was 
reduced in all fibroid subtypes studied; sphingolipids, phosphatidylserines, vitamin A and C levels were reduced 
in MED12 mutated fibroids53. A significant decrease in the level of lipids in the tumor tissue may lead to a small 
size of subtype MED 12 UF53,54. A comparative MS study of lipid profiles of blood plasma, tissues of fibroids 
and myometrium may reveal new molecular markers for the diagnosis and prediction of the course of UF, in 
particular, access the risk of UF recurrence.

This study aimed at evaluating the potential of the lipid profiling of blood plasma for the low-invasive diag-
nosis of fibroids recurrence, which is important to choose adequate surgical treatment as well as to improve the 
efficiency of reconstructive plastic surgeries.

Materials and methods
Study design.  The study of fibroids and myometrium tissues included 35 women with uterine fibroids (UF) 
diagnosed for the first time and 31 patients diagnosed with recurrent uterine fibroids (RUF).

For the group of first-time diagnosed UF, patients with the absence of anamnestic risk factors for recurrence 
were selected (a small number of nodes—1–2 nodes, the absence of a familial form of UF).

Also, during the observation period after surgical treatment (3.5–4 years), patients from this group were 
not diagnosed with a relapse. A control group with a matched age for a comparative analysis of blood plasma 
included 15 patients operated for infertility and for the intrauterine septum. Patients from the control group had 
no UF, both according to ultrasound and laparoscopy data. All patients (n = 81) were examined in the depart-
ment of Operative Gynecology of National Medical Reseach Center for Obstetrics, Gynecology and Perinatology 
named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation. All patients signed 
an informed consent to participate in the study, approved by the Ethics Committee of National Medical Reseach 
Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov. We confirm that all 
methods were performed in accordance with the relevant guidelines and regulations.

Inclusion criteria for the UF and RUF groups were: reproductive age (18–45 years), uterine fibroids, organ-
preserving surgery, lack of hormone therapy for 6 months or more before surgery. Exclusion criteria were: sys-
temic autoimmune diseases, severe somatic pathology, cancer, inflammatory processes, concomitant gynecologi-
cal pathology. All patients underwent organ-preserving treatment with endoscopic access over the first phase of 
their menstrual cycle. The indications for surgical treatment were heavy menstruation leading to anemia, severe 
pain syndrome, lack of effect from previous conservative therapy, and infertility.

Sample collection.  Myometrial and fibroids samples were collected during surgery. Samples of myomatous 
nodes were obtained from the largest node from the central part. Tissue samples were placed in a sterile cryovials 
(Corning), transported in liquid nitrogen to a Biobank, and stored in a freezer at the temperature of − 80 °C until 
analysis. Blood sampling was performed on an empty stomach on the eve of surgery. Blood was collected in a 
sterile vacuum tube with EDTA-sodium and centrifuged for 10 min at 2500 rpm to obtain plasma. Plasma was 
stored in sterile cryovials (Corning) in a freezer at − 80 °C until analysis.

Sample preparation for lipidome analysis.  Plasma and tissue lipid extracts were prepared according 
to the modified Folch method27,28,55. Briefly, after homogenization of 50 mg of tissue in liquid nitrogen, 5 μL of 
internal standard and 4 mL of a chloroform–methanol (2:1, v/v) were added, incubated for 10 min, and filtered. 
Then, 800 μL of 1 M NaCl solution in water was added and centrifuged. An organic layer containing lipids was 
collected, vacuum dried, and redissolved in 500 μL 2-propanol-acetonitrile (1:1,v/v) for MS analysis.

For plasma samples, 480 μL and 5 μL of internal standard l of chloroform–methanol (2:1,v/v) was added 
to 40 μL of a plasma. The mixture was sonicated for 10 min. Then, 150 μL of H2O was added. The mixture was 
centrifuged for 5 min at 15,000 rpm at ambient temperature. An organic layer was collected, vacuum dried and 
then redissolved in 200 μL 2-propanol-acetonitrile (1:1, v/v) for MS analysis.

Equal amounts of all samples were pooled as a QC sample for MS system conditioning and quality control.
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Mass spectrometry analysis of lipid extracts.  The molecular composition of tissue lipid extracts was 
determined using electrospray ionization mass spectrometry (ESI–MS) on a Maxis Impact qTOF mass spec-
trometer (Bruker Daltonics, Bremen, Germany). Mass spectra were obtained in both positive and negative ion 
detection modes in the m/z range of 100–1800 with the following settings: 4.1 kV capillary voltage in positive ion 
mode (3.0 kV in negative ion mode), spray gas pressure 0.7 bar, drying gas flow rate 6 L/min, the temperature 
of the drying gas 200 °C27,28.

The molecular composition of plasma lipid fraction was determined by HPLC–MS using a Dionex UltiMate 
3000 liquid chromatograph (Thermo Scientific, Germany) connected to a Maxis Impact qTOF mass analyzer 
with an ESI ion source (Bruker Daltonics, Germany). Lipids were separated by reverse phase chromatography 
on a Zorbax C18 column (150 × 2.1 mm, 5 μm, Agilent, USA) with a linear gradient of 30% to 90% eluent B 
(acetonitrile/2-propanol/water, 90:8:2, v/v/v, with 0.1% formic acid and 10 mM ammonium formate) in 20 min. 
Acetonitrile/water (60:40, v/v) with of 0.1% formic acid and 10 mM ammonium formate was used as eluent A. 
The elution flow rate was 40 μL/min. The volume of the injected sample was 3 μL. Mass spectra were obtained in 
the positive ion mode over the mass range m/z 400–1000 with resolution of 50,000 and the following ion source 
settings: capillary voltage 4.1 kV, spray gas pressure 0.7 bar, drying gas flow rate 6 L/min, the temperature of the 
drying gas is 200 °C. Quality control samples were injected randomly between the samples and used to evaluate 
the quality of our experiments.

Tandem MS analysis (MS/MS) was done using data dependent analysis mode. Five the most abundant peaks 
were chosen after full MS scan and subjected to MS/MS analysis (CID) with 35 eV collision energy, 3 Da isola-
tion window and mass exclusion time of 1 min.

Statistical analysis.  Lipids from myometrium and fibroids tissues were identified with in-lab created R 
code (the RStudio version was 1.1.463 and the R language version was 3.5.2) by exact mass within 10 ppm mass 
accuracy using the theoretical computer-generated database of mass lipids for a given ion, class, total length of 
fatty acid residues and characteristic tandem mass spectra (MS/MS). Blood plasma lipids were identified using 
the Lipid Match R-script56 for the exact mass within 10 ppm mass accuracy57 and for the tandem mass spectra 
(MS/MS).

Statistical significance of lipid level changes between UF and RUF in myometrium and fibroids and between 
control and UF, control and RUF, UF and RUF in plasma was studied by a non-parametric two-way Mann–Whit-
ney U-test (p < 0.05). To determine the metabolic pathways enriched in uterine fibroids, lipid, with significant 
differences in tissue and plasma, were analyzed by the online resource Metaboanalyst 4.0 (https://​www.​metab​
oanal​yst.​ca/) using hypergeometric test methods and KEGG library for Homo Sapience.

The classification models for control and UF, control and RUF, UF and RUF were built using the discriminant 
analysis method with orthogonal projection on latent structures (OPLS-DA) for lipids with a significant differ-
ence in levels. Quality of the PLS-DA model was estimated by R2 and Q2 values. Q2 was calculated by sevenfold 
leave-one-out cross-validation (LOOCV). Potential lipid markers included lipids with the greatest importance 
of the independent variable for projection (VIP) values according to the OPLS-DA model (VIP > 1). The selected 
lipids were used for creation diagnostic models based on logistic regression with the formula y =

1

1+e−(βo+β×It )
 , 

where y is variable response with values 0 in cases of control group and 1 in cases of myoma, βo is free coefficient, 
β is vector of coefficients, and I is the vector of marker’s intensity. Sensitivity and specificity of the models were 
evaluated by leave-one-out cross-validation58–60.

Results and discussion
Clinical data.  The study included 81 women of reproductive age and Caucasian race divided into three 
groups. The first group included 35 women with uterine fibroids (UF) diagnosed for the first time. The second 
group included 31 patients diagnosed with recurrent uterine fibroids (RUF). The third control group included 
15 patients operated for infertility and for the intrauterine septum.

The patients included in the study were of reproductive age (more than 80% were 36–45 years old). The 
average age of patients with UF 37.6 ± 5.5 years, and patients with RUF—39.8 ± 5.9 years (Table 1). The clinical 
diagnosis of patients was done on the basis of an objective examination, ultrasound data and finally verified 
according to the data of histological examination (Fig. 1S). All patients underwent organ-preserving treatment 
with endoscopic access over the first phase of their menstrual cycle.

We discovered that the first myomectomy was performed in the age from 36 to 41 years and the myomec-
tomy caused by RUF was performed in the age from 42 to 45 years. Significant (p < 0.039) excess of BMI was 
observed in patients with RUF. Pain syndrome and problems with the onset and bearing of pregnancy were most 
pronounced in the RUF group. Patients from the UF group complained of infertility with an average duration of 
5.6 ± 4.4 years. In the RUF group, infertility occurred in 31.9% of cases with an average duration of 7 ± 4.5 years.

Diabetes and uterine fibroids are significantly more frequent in the closest relatives (p < 0.05) for UF and RUF 
groups compared to control group. The data obtained confirm the presence of a family predisposition of UF. The 
frequency of detection of submucous (MM 9.8%, PMM 22.7%), and interstitial-submucous (MM 11.2%, PMM 
22.7%) fibroids (type 0, 1, 2, FIGO) during ultrasound examination is higher for RUF group compared to UF 
group. Similar data were obtained by assessing the intraoperative localization of nodes. This observation can 
be explained by the presence of hormonally active tissue near the endometrium and the result of the previous 
operation (reduction of myometrial tissue and growth of fibroids towards the uterine cavity).

For RUF, a long duration of surgical treatment was observed. This indicates the complexity of the repeated 
organ-preserving surgery, considerable intraoperative blood loss and more frequently used reinfusion of eryth-
rocytes. In the RUF group, a greater number of myomatous nodes were removed (MM—1 ± 1 nodes, RUF—5 ± 5 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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nodes, p < 0.5). However, the size of the removed nodes prevailed in the UF group (UF—8.2 ± 4.3, RUF—6.5 ± 3.8, 
p < 0.5).

Surgical interventions were performed in 2017–2018. No recurrences were detected in the group of first-
time diagnosed UF for 3.5–4 years. The patient’s data is monitored (including ultrasound control 2 times a year) 
in National Medical Reseach Center for Obstetrics, Gynecology and Perinatology named after Academician 
V.I. Kulakov. The percentage of recurrence in the group of RUF was 15.8%, after 12 months and 31.2% after  
24 months.

During the follow-up period after myomectomy over 12–18 months, pregnancy occurred in 9.7% of cases 
in the group of first recurrence (second-time diagnosed UF) and in 34.2% of cases in the group of first-time 
diagnosed UF.

In parallel with tissue profiling, morphological analysis (including immunohistochemical examination of 
myoma and myometrium tissues) was also performed. It was found that the expression of VEGF is higher in 
tumor tissue compared to myometrium samples from patients with MM and PMM. The Ki-67 level is higher in 
myomatous nodes in patients with PMM (p = 0.031), which may reflect the proliferative potential of the tumor 
most susceptible to recurrence. The expression of ER and PgR (p = 0.012) is higher in the tissue of myomatous 
nodes in patients with PMM, which reflects the potential of tumor growth. Thus, for the selection of first-time 
diagnosed UF into the group, we also focused on the low expression of the above markers.

Uterine myometrium and fibroids lipidomics (ESI–MS/MS).  The total of 296 lipid species was iden-
tified in the tissue of the myometrium and fibroids. Out of the 296 identified lipid species, 66 lipid species 
showed statistically significant abundance variation between the diagnosed UF and its recurrence in the tissues 
of the fibroids and 39 lipid species showed statistically significant abundance variation between the diagnosed 
UF and its relapse in the tissues of the myometrium (Tables S1, S2). Level of all significant different ceramides, 
sphingomyelins, fatty acid, phosphatidylethanolamines and phosphatidic acids increased in tissue in RUF group 
compared to UF. In addition, level of larger part of significantly different phosphatidylcholines and triacylglyc-
erol TG 48:4 increased. Level of all significantly different phosphatidylserines, phosphatidylcholines PC 32:3 
and PC 46:0 and larger part of triacylglycerol decreased in recurrence fibroids. Thus, the greatest alterations in 
the lipid composition during fibroids recurrence were observed in the tumor tissue. The level of 20 lipid spe-
cies changed significantly both in the myometrium and in the myomatous nodes during the disease recurrence 
(Fig. 1). For 19 out of these 20 species the increase in expression was found.

Enrichment of the linoleic acid, glycerophospholipids, ether lipids, sphingolipids metabolism was shown for 
benign tumor tissue during recurrence of UF (Fig. 2S). Differential lipid species that are statistically significant 
for both myometrium and fibroids were found to be mainly involved in the metabolism of glycerophospholipids 
and sphingolipids (Fig. 2). This indicates the similarity of metabolic processes for myometrium and fibroids dur-
ing recurrence of fibroids. In contrast, linoleic acid metabolism undergoes changes only in UF cells. Differences 
in the metabolism of linoleic acid in UF cells compared with myometrial cells, as well as a changes in the fatty 
acid profile of the cells were previously noted by Islam and Castellucci61.

In this study, plasmalogens (PC-O and PE-O) were significantly (p < 0.05) elevated in myometrium and fibroid 
tissue in recurrent form of uterine myoma. Ether-phospholipids and their metabolites are involved in protein 
kinase C (PKC) signalling cascades62.

We observed that phosphotidyl acid PA 44:5 was significantly higher in both miometrium and fibroid tissue 
in RUF group. This is the first evidence that PA is involved in the pathophysiology of UF. PA is a phospholipid 
that consists of a glycerol backbone with two fatty acids and one phosphate group attached, which is a central 

Table 1.   Clinical and demographical data for UF and RUF patients.

First-time diagnosed uterine fibroids 
(n = 35) Recurrent uterine fibroids (n = 31) p-value

Age, years 37.6 ± 5.5 39.8 ± 5.9 > 0.5

Body mass index 24 ± 5.0 25 ± 4.0 < 0.5

Menarche, years 12.9 ± 1.0 12.8 ± 1.3 > 0.5

Menstrual cycle length, days 27.8 ± 2.4 27.6 ± 3.1 > 0.5

Duration of menstruation, days 5.4 ± 1.2 5.3 ± 1.4 > 0.5

Number of pregnancies 1.3 ± 1.8 1.3 ± 1.5 > 0.5

Infertility complaints, % 21.3 31.9 < 0.5

Uterine fibroids in close relatives, % 49.2 56.45 < 0.05

Duration of surgery, min 94.6 ± 39.4 122.7 ± 61.4 < 0.001

Blood loss, mL 234.7 299.2 < 0.001

Duration of infertility, years 5.6 ± 4.4 7 ± 4.5 < 0.05

Size of the main node, cm 8.2 ± 4.3 6.5 ± 3.8 < 0.5

Number of removed nodes 1 ± 1 1 ± 1 < 0.5

Submucous fibroids (type 1, 2, FIGO), % 9.8 22.7 < 0.5

Interstitial-submucous fibroids (type 1,2, 
FIGO), % 11.2 22.7 < 0.5
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Figure 1.   Relative intensity of marker lipids (p < 0.05) in the mass spectrum of (A) myometrium and (B) 
uterine fibroids. Orange color corresponds to the first-time diagnosed UF. Yellow color corresponds to RUF. 
The diagram shows Q1 − 1.5 × IQR, Q1, Me, Q3, Q3 + 1.5 × IQR. Black dots correspond to outliers. Cer 
ceramides, FA fatty acids, PC-O plasmalogens, PA phosphotidyl acids, PE phosphotidylethanolamines, PS 
phosphotidylserines, TG triacylglycerides.

Figure 2.   Diagram of metabolic pathways for lipid species with statistically significant abundance variation 
common for benign tumor and myometrium during recurrence of fibroids.
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intermediate in the synthesis and storage of membrane lipids63. PA has been involved in various cellular signal-
ing pathways, including cell growth, proliferation, cell motility, and the production of reactive oxygen species63. 
PA has been shown to have anti-apoptotic effects63. Also, PA has been identified as a mitogenic activator of the 
mammalian target of rapamycin signaling pathway to promote cell proliferation and generate survival signals64 
This might contribute to active proliferative capacity of UF. Moreover, PA is related to cell motility65,66, which 
may promote migration and invasion of UF cells.

Sphingomyelins were abundant in recurrent uterine fibroids, promoting cell survival in response to apoptotic 
stimuli67 Hydrolysis of sphingomyelins results in ceramides release. We found that the level of ceramides (Cer) 
was also increased in myometrium and fibroid tissue upon RUF. Moreover, Cers are known to be signaling 
molecules related to inflammation and apoptosis68.

The level of phospatidylcholines upon RUF changed in both directions: the level of six PCs (PC 34:0, PC 
34:1, PC 36:1, PC 36:2, PC 36:4, PC 38:2) was significantly elevated, and the level of three PCs (PC 32:3, PC 
46:0, PC 48:5) was decreased. PC is known to be one of the major sources of polyunsaturated fatty acids (FA), 
which serve as the precursors of eicosanoids and have numerous biological activities69 The level of FAs was also 
increased upon RUF. PCs contribute to both proliferative growth and programmed cell death70. The synthesis 
of PC is enhanced in response to FA and FA-derived substrates, which is frequently observed in cancer cells70.

Phosphatidylserines (PS 38:3 and PS 40:3) were significantly decreased in fibroids of RUF group. This result 
is consistent with the results of the study by Heinonen et al.53. The exposure of PS to the cell surface shows an 
apoptotic signal for phagocytes71. Lower PS levels may be due to reduced UF apoptotic cells in RUF cases.

Thus, RUF is associated with elevated tissue levels of sphingomyelins, ether-phospholipids, phosphotidyl 
acids, sphingomyelins, ceramides, which might contribute to the suppression of apoptosis, promotion of cell 
proliferation and affect lipid-associated signaling pathways.

Blood plasma lipidomics in recurrent uterine fibroids (HPLC–MS/MS).  The total of 267 lipid spe-
cies was identified in blood plasma samples. The lipid levels were tested by pairwise Mann–Whitney U-test: 
“control group vs. first-time diagnosed fibroids”, “control group vs. recurrent fibroids” and “first-time diagnosed 
fibroids vs. recurrent fibroids”. Statistically significant differences were found for 43 lipid species in the first case 
(control vs. first-time UF), 64 in the second case (control vs. RUF) and 87 for the third case (first-time UF vs. 
RUF). OPLS-DA models were constructed to classify patients (Fig. 3).

For the OPLS-DA models distinguishing between control group and UF group (Fig. 3A) and between control 
group and RUF group (Fig. 3B), 70% and 67% of data were included (R2Y). The expected classification accuracy 
for new samples (Q2Y) was 63% and 60%, accordingly. The values of R2Y > 50% and Q2Y > 40% suggest that there 
are significant changes in the lipid profile of blood plasma upon UF. For the OPLS-DA model distinguishing 

Figure 3.   OPLS-DA score plots of plasma lipidomic data (blue dots correspond to control group, red dots 
correspond to the UF group, and green dots correspond to RUF): (A) Control group vs. first-time diagnosed UF. 
(B) Control group vs. RUF. (C) First-time diagnosed UF vs. RUF.
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between UF and RUF groups, parameters R2Y and Q2Y were equal to 61% and 47%, respectively (Table 2). Thus, 
our data indicate that the recurrence of fibroids is accompanied by significant changes in lipid metabolism in 
the whole body.

The largest contribution (VIP > 1) to the differentiation between the control group and the UF group was 
provided by phosphotidylcholines and sphingomyelins. Three lipid species, including PC 16:0_20:3, PC 18:0_20:3 
and PC 18:0_18:1, were significantly decreased in the blood plasma of UF patients compared to control group 
(Figs. S3, S4).

Diagnostic models based on the selected lipid species using logistic regression (Tables 3, 4) show sensitivity 
and specificity of 88% and 86% for the diagnosis of first-time UF and 95% and 79% for the diagnosis of RUF. 
These results indicate the potential suitability of the lipid profiling of blood plasma for the low-invasive diagnosis 
of uterine fibroids.

Lipid species identified as potentially significant in blood plasma for the differentiation between first-time 
UF and RUF include cholesterol esters, phosphotidylcholines, sphingomyelins and triglycerides (Table 2, Fig. 4).

High triglyceride levels may indirectly indicate the role of obesity in the development of UF and RUF. Obesity 
is a chronic disease of major public health concern. Earlier studies indicated several mechanisms that may pro-
mote the development of UFs in pre-menopausal women with excessive body fat. Firstly, high level of estrogens 
from body fat is partially responsible for UFs cells proliferation. Secondly, decrease in sex hormone binding 
globulin hepatic synthesis raises the level of active estrogens in blood. Finally, obesity is associated with significant 
systemic inflammation resulting in excessive reactive oxygen production72,73.

Table 2.   The parameters of OPLS-DA models. CE cholesterol esters, LPC lysophosphatidylcholines, PC 
phosphatidylcholines, SM sphingomyelins, TG triglycerides.

Lipids with VIP > 1 R2X R2Y Q2Y

Control group vs first-time diagnosed UF LPC 18:2, PC 16:0_20:3, PC 18:0_18:1, PC 18:0_20:3, SM d18:1/22:0, SM d18:1/22:1, SM d18:1/24:0, TG 
18:0_18:1_18:1 0.49 0.70 0.63

Control group vs RUF PC 16:0_22:6, PC 16:0_18:2, PC 16:0_20:3, PC 18:0_20:3, PC 18:0_18:1, SM d12:0/14:1, SM d18:1/24:1, SM 
d18:2/24:1 0.36 0.67 0.60

First-time diagnosed UF vs RUF
CE 18:2, CE 20:4, PC 16:0_22:6, PC 18:0_18:2, SM d12:0/14:1, SM d18:1/22:0, SM d18:1/22:1, SM d18:1/24:0, 
SM d18:1/24:1, SM d18:2/16:0, SM d18:2/24:1, TG 14:1_18:1_18:2, TG 16:0_16:1_18:2, TG 16:0_18:1_18:2, TG 
16:1_18:0_18:1, TG 16:1_18:0_18:3, TG 18:1_18:2_18:3

0.32 0.61 0.47

Table 3.   Coefficients for logistic regression of diagnostic model “control group/first-time diagnosed UF”.

β CI β Z stat p

Free coefficient 3.49E1 1.84E1 to 6.07E1

LPC 18:2  − 6.46E−6  − 2.22E−5 to 7.94E−6  − 0.87 0.38

PC 16:0_20:3  − 5.72E−6  − 2.02E−5 to 6.64E−6  − 0.88 0.38

PC 18:0_18:1  − 1.65E−6  − 2.11E−5 to 1.57E−5  − 0.18 0.85

PC 18:0_20:3  − 1.83E−5  − 7.98E−5 to − 1.43E−5  − 1.95 0.05

SM d18:1/22:0  − 4.23E−5  − 7.98E−5 to − 1.43E−5  − 2.63 0.01

SM d18:1/22:1  − 2.78E−5  − 6.16E−5 to − 6.22E−6  − 1.97 0.05

SM d18:1/24:0  − 9.91E−6  − 3.79E−5 to 1.36E−5  − 0.79 0.43

TG 16:0_16:1_18:1  − 3.22E−6  − 1.57E−5 to 7.93E−6  − 0.57 0.57

Table 4.   Coefficients for the logistic regression of diagnostic model “control group/RUF group”.

β CI β Z stat p

Free coefficient  − 1.24E1  − 2.33E1 to − 4.82E0

PC 16:0_22:6 2.09E−6 4.36E−7 to 4.10E−6 2.28 0.02

PC 16:0_18:2 2.74E−6 1.08E−6 to 6.0E−6 2.32 0.02

PC 16:0_20:3  − 1.21E−6  − 9.00E−6 to 4.16E−6  − 0.39 0.70

PC 18:0_20:3 8.17E−6  − 4.36E−6 to 2.30E−5 1.21 0.23

SM d12:0/14:1 5.32E−6 2.17E−6 to 1.03E−5 2.64 0.01

SM d18:1/24:1  − 5.74E−6  − 1.75E−5 to 5.08E−6  − 1.02 0.31

SM d18:2/24:1 2.87E−5 2.14E−6 to 6.03E−5 1.99 0.05

PC 18:0_18:1  − 1.61E−5  − 3.07E−5 to − 3.74E−6  − 2.39 0.02
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Several sphingomyelins (SM d12:0/14:1, SM d18:1/22:0, SM d18:1/22:1, SM d18:1/24:0, SM d18:1/24:1, SM 
d18:2/16:0, SM d18:2/24:1), were observed at higher concentrations in the plasma of RUF patients. Sphingomy-
elins are key components of the sphingomyelin cycle signal transduction pathway. Some metabolites of the sphin-
gomyelin cycle, including ceramide and sphingosine, have been previously reported to induce apoptosis, while 
sphingosine-1-phosphate (S-1P) has been reported to promote cell survival in response to apoptotic stimuli67. 
Partial physiological consequences of this process could be the suppression of apoptosis in RUF patients on the 
cellular level (uterine fibroids), as well on systemic level (plasma)”.

The choice of treatment, including the degree of surgical treatment, depends upon the patient’s desire regard-
ing the reproductive function. The revealed lipid panels may indicate a high risk of recurrence of the disease and, 
accordingly, the need for repeated surgical intervention. The patient would have to be informed about this, with 
additional reference to the anamnestic data. Moreover, the developed mathematical models make it possible 
to inform the patient whether or not the implementation of the reproductive function would be needed right 
after surgical treatment, without delay. Note that this is the first study to characterize the lipid profile of blood 
plasma in patients with UF and RUF. However, it is necessary to mention that the number of patients in this 
study was relatively small. Larger number of tissue samples should be analyzed to confirm the results obtained 
in this pilot study and to introduce the obtained panels into practical health care. The groups studied were not 
divided into genetic subtypes. The study of different genetic subtypes could be important to better understand the 
pathogenesis of UF, explaining the processes of development and recurrence of UF and tumor growth rates53,74. 
To identify a clinically meaningful biomarker of fibroid recurrence, this should be detected in fibroids removed 
from a patient that later on shows fibroid recurrence. Unfortunately, in this study we could not conduct such an 
experiment due to the lack of material from the same patients in our biobank. UF recurrence can occur within 
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Figure 4.   Relative intensity of marker plasma lipids in the OPLS-DA model classifying UF and RUF groups. 
Orange color corresponds to first-time diagnosed UF, and yellow color corresponds to the RUF. The diagram 
shows Q1 − 1.5 × IQR, Q1, Me, Q3, Q3 + 1.5 × IQR. Black dots correspond to outliers.
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many years, which makes sample collection from RUF patients very difficult. Here, we conducted our prognostic 
study, which showed the presence of significant biomarkers of fibroid recurrence. The recruitment of patients 
for a more complete study is underway to conduct a complete study and compare the biomarkers with those 
discussed in this study.

Conclusions
Mass spectrometry metabolic profiling of blood plasma and/or endometrium before surgical treatment will 
increase the efficiency of the operation, reduce the risk of recurrence and improve reproductive outcomes.

The results of our comparative study of lipid profiles in blood plasma, UF tissues and myometrium tissues 
suggest new potential molecular markers for the prediction of UF recurrence. The greatest changes in the lipid 
composition associated with the UF recurrence were observed in the UF tumor tissue. The level of 20 lipid species 
showed significant changes both in the myometrium and in the myomatous nodes during the UF recurrence. 
For 19 out of the 20 differential lipid species the increase in expression was found. In fibroids and myometrium 
samples, alterations in the level of lipids related to the metabolism of glycerophospholipids and sphingolipids 
were prominent. In fibroids tissues, linoleic acid metabolism was also notably altered. A number of phospholipids, 
sphingomyelins, cholesterol esters and triglycerides displayed significantly different levels in blood plasma of 
women with UF, RUF and the control group. Diagnostic models based on the selected lipids using logistic regres-
sion show sensitivity and specificity of 88% and 86% for the diagnosis of first-time UF and 95% and 79% for RUF.

These results indicate the potential of the lipid profiling of blood plasma for the low-invasive diagnosis of 
fibroids. Determination of significant molecular alterations in the tissues of fibroids will make it possible to give 
recommendations regarding further treatment, rehabilitation and reproductive function correction. Further 
study of molecular processes in the myometrium and in the fibroids as well as the determination of the ratio 
of proliferation and apoptosis processes will enhance our mechanistic understanding of UF and its recurrence.

Received: 12 January 2021; Accepted: 30 April 2021

References
	 1.	 Genazzani, A. D., Chierchia, E., Despini, G. & Prati, A. Medical treatment of myomas. Front. Gynecol. Endocrinol. 3, 141–149 

(2016).
	 2.	 Al-Hendy, A., Myers, E. R. & Stewart, E. Uterine fibroids: Burden and unmet medical need. Semin. Reprod. Med. 35, 473–480 

(2017).
	 3.	 Donnez, J., Donnez, O. & Dolmans, M. M. With the advent of selective progesterone receptor modulators, what is the place of 

myoma surgery in current practice?. Fertil. Steril. 102, 640–648 (2014).
	 4.	 American Association of Gynecologic Laparoscopists (AAGL). AAGL practice report: Practice guidelines for the diagnosis and 

management of submucous leiomyomas. J. Minim. Invasive Gynecol. 19, 152–171 (2012).
	 5.	 Vilos, G. A. et al. The management of uterine leiomyomas. J. Obstet. Gynaecol. Can. 37, 157–178 (2015).
	 6.	 Stewart, E. A., Cookson, C. L., Gandolfo, R. A. & Schulze-Rath, R. Epidemiology of uterine fibroids: A systematic review. BJOG 

Int. J. Obstet. Gynaecol. 124, 1501–1512 (2017).
	 7.	 Pérez-López, F. R. et al. EMAS position statement: Management of uterine fibroids. Maturitas 79, 106–116 (2014).
	 8.	 De La Cruz, M. S. & Buchanan, E. M. Uterine fibroids: Diagnosis and treatment. Am. Fam. Phys. 95, 100 (2017).
	 9.	 Mas, A. et al. Updated approaches for management of uterine fibroids. Int. J. Womens Health 9, 607–617 (2017).
	10.	 Mäkinen, N. et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 

334, 252–255 (2011).
	11.	 Markowski, D. N. et al. HMGA2 and p14Arf: Major roles in cellular senescence of fibroids and therapeutic implications. Anticancer 

Res. 31, 753–761 (2011).
	12.	 Tal, R. & Segars, J. H. The role of angiogenic factors in fibroid pathogenesis: Potential implications for future therapy. Hum. Reprod. 

Update 20, 194–216 (2014).
	13.	 Ren, Y. et al. Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from 

leiomyoma. Fertil. Steril. 96, 1015–1020 (2011).
	14.	 Torres-de la Roche, L. A. et al. Pathobiology of myomatosis uteri: The underlying knowledge to support our clinical practice. Arch. 

Gynecol. Obstet. 296, 701–707 (2017).
	15.	 Plewka, D., Morek, M., Bogunia, E., Waloszek, J. & Plewka, A. Expression of VEGF isoforms and their receptors in uterine myomas. 

Ginekol. Pol. 87, 166–177 (2016).
	16.	 Baird, D. D., Dunson, D. B., Hill, M. C., Cousins, D. & Schectman, J. M. High cumulative incidence of uterine leiomyoma in black 

and white women: Ultrasound evidence. Am. J. Obstet. Gynecol. 188, 100–107 (2003).
	17.	 Chiaffarino, F. et al. Alcohol consumption and risk of uterine myoma: A systematic review and meta analysis. PLoS ONE 12, 

e0188355 (2017).
	18.	 Rothmund, R. et al. Clinical and pathological characteristics, pathological reevaluation and recurrence patterns of cellular leio-

myomas: A retrospective study in 76 patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 171, 358–361 (2013).
	19.	 Rafnar, T. et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-

related traits. Nat. Commun. 9, 1–9 (2018).
	20.	 Commandeur, A. E., Styer, A. K. & Teixeira, J. M. Epidemiological and genetic clues for molecular mechanisms involved in uterine 

leiomyoma development and growth. Hum. Reprod. Update 21, 593–615 (2015).
	21.	 Nishiyama, S. et al. High recurrence rate of uterine fibroids on transvaginal ultrasound after abdominal myomectomy in Japanese 

women. Gynecol. Obstet. Investig. 61, 155–159 (2006).
	22.	 Filho, W. M. N. E. et al. Evaluation of KI-67 expression in uterine leiomyoma and in healthy myometrium: A pilot study. Rev. Assoc. 

Med. Bras. 65, 1459–1463 (2019).
	23.	 Zhang, D. & Liu, E. Expression and clinical significance of VEGF, miR-18a and MCM7 in uterus myoma tissues. J. Hebei Med. 

Univ. 38, 1034 (2018).
	24.	 Pascual Botia, C., Camarasa, S. C., Raga Baixauli, F. & Sanchez, A. C. Uterine fibroids review: Understanding their origins to better 

understand their future treatments. J. Tumor Res. https://​doi.​org/​10.​35248/​2684-​1258.​17.3.​130 (2017).
	25.	 Gracia, M. & Carmona, F. Uterine myomas: Clinical impact and pathophysiological bases. Eur. J. Obstet. Gynecol. Reprod. Biol. 

https://​doi.​org/​10.​1016/j.​ejogrb.​2020.​01.​043 (2020).

https://doi.org/10.35248/2684-1258.17.3.130
https://doi.org/10.1016/j.ejogrb.2020.01.043


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11447  | https://doi.org/10.1038/s41598-021-89859-0

www.nature.com/scientificreports/

	26.	 Rochat, B. From targeted quantification to untargeted metabolomics: Why LC-high-resolution-MS will become a key instrument 
in clinical labs. Trends Anal. Chem. 84, 151–164 (2016).

	27.	 Chagovets, V. et al. A comparison of tissue spray and lipid extract direct injection electrospray ionization mass spectrometry for 
the differentiation of eutopic and ectopic endometrial tissues. J. Am. Soc. Mass Spectrom. 29, 323–330 (2018).

	28.	 Chagovets, V. V. et al. Endometriosis foci differentiation by rapid lipid profiling using tissue spray ionization and high resolution 
mass spectrometry. Sci. Rep. 7, 1–10 (2017).

	29.	 Cífková, E. et al. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using 
HILIC-HPLC/ESI-MS and multivariate data analysis. Anal. Bioanal. Chem. 407, 991–1002 (2015).

	30.	 Jarmusch, A. K. et al. Differential Lipid profiles of normal human brain matter and gliomas by positive and negative mode desorp-
tion electrospray ionization—Mass spectrometry imaging. PLoS ONE 11, e0163180 (2016).

	31.	 Jiang, Y. et al. Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules 3, 435–448 (2013).
	32.	 Kang, S. et al. Alteration in lipid and protein profiles of ovarian cancer similarity to breast cancer. Int. J. Gynecol. Cancer 21, 

1566–1572 (2011).
	33.	 Ishikawa, S. et al. Increased expression of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid papillary cancer. PLoS ONE 

7, e48873 (2012).
	34.	 Tokareva, A. O. et al. Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data. J. Mass Spectrom. 55, 1 

(2020).
	35.	 Sans, M. et al. Metabolic markers and statistical prediction of serous ovarian cancer aggressiveness by ambient ionization mass 

spectrometry imaging. Cancer Res. 77, 2903–2913 (2017).
	36.	 Kim, I. C. et al. Lipid profiles for HER2-positive breast cancer. Anticancer Res. 33, 2467–2472 (2013).
	37.	 Chagovets, V. et al. Relative quantitation of phosphatidylcholines with interfered masses of protonated and sodiated molecules by 

tandem and Fourier-transform ion cyclotron resonance mass spectrometry. Eur. J. Mass Spectrom. 25, 259–264 (2019).
	38.	 Kwon, S. Y. et al. Lipid MALDI MS profiles of gastric cancer. Open Proteomics J. 7, 1–4 (2014).
	39.	 Zhao, X. et al. Lipidomic profiling links the fanconi anemia pathway to glycosphingolipid metabolism in head and neck cancer 

cells. Clin. Cancer Res. 24, 2700–2709 (2018).
	40.	 Chagovets, V. et al. Peculiarities of data interpretation upon direct tissue analysis by Fourier transform ion cyclotron resonance 

mass spectrometry. Eur. J. Mass Spectrom. 22, 123–126 (2016).
	41.	 Kononikhin, A. et al. A novel direct spray-from-tissue ionization method for mass spectrometric analysis of human brain tumors. 

Anal. Bioanal. Chem. 407, 7797–7805 (2015).
	42.	 Kim, I. C. et al. Erratum: Low C24-OH and C22-OH sulfatides in human renal cell carcinoma (Journal of Mass Spectrometry 

(2014) 49 (409–416)). J. Mass Spectrom. 51, 182 (2016).
	43.	 Morita, Y. et al. Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression. 

J. Hepatol. 59, 292–299 (2013).
	44.	 Chagovets, V. V. et al. Validation of breast cancer margins by tissue spray mass spectrometry. Int. J. Mol. Sci. 21, 1–11 (2020).
	45.	 Altadill, T. et al. Metabolomic and lipidomic profiling identifies the role of the RNA editing pathway in endometrial carcinogenesis. 

Sci. Rep. 7, 1–13 (2017).
	46.	 Wei, Y. et al. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma. Sci. Rep. 

5, 1–7 (2015).
	47.	 Starodubtseva, N. et al. Identification of potential endometriosis biomarkers in peritoneal fluid and blood plasma via shotgun 

lipidomics. Clin. Mass Spectrom. 13, 21–26 (2019).
	48.	 Li, J. et al. Discovery of phosphatidic acid, phosphatidylcholine, and phosphatidylserine as biomarkers for early diagnosis of 

endometriosis. Front. Physiol. 9, 1–7 (2018).
	49.	 Lee, G. K. et al. Lipid MALDI profile classifies non-small cell lung cancers according to the histologic type. Lung Cancer 76, 197–203 

(2012).
	50.	 Sukhikh, G. et al. Combination of low-temperature electrosurgical unit and extractive electrospray ionization mass spectrometry 

for molecular profiling and classification of tissues. Molecules 24, e2957 (2019).
	51.	 Porcari, A. M. et al. Molecular signatures of high-grade cervical lesions. Front. Oncol. https://​doi.​org/​10.​3389/​fonc.​2018.​00099 

(2018).
	52.	 Adamyan, L. V. et al. Direct mass spectrometry differentiation of ectopic and eutopic endometrium in patients with endometriosis. 

J. Minim. Invasive Gynecol. 25, 426–433 (2018).
	53.	 Heinonen, H. R. et al. Global metabolomic profiling of uterine leiomyomas. Br. J. Cancer 117, 1855–1864 (2017).
	54.	 Heinonen, H. R. et al. Multiple clinical characteristics separate MED12-mutation-positive and -negative uterine leiomyomas. Sci. 

Rep. 7, 1–7 (2017).
	55.	 Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. 

J. Biol. Chem. 226, 497–509 (1957).
	56.	 Koelmel, J. P. et al. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem 

mass spectrometry data. BMC Bioinform. 18, 1–11 (2017).
	57.	 Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, 527–532 (2007).
	58.	 Vabalas, A., Gowen, E., Poliakoff, E. & Casson, A. J. Machine learning algorithm validation with a limited sample size. PLoS ONE 

14, 1–20 (2019).
	59.	 Li, J. et al. Distinct plasma lipids profiles of recurrent ovarian cancer by liquid chromatography-mass spectrometry. Oncotarget 8, 

46834–46845 (2017).
	60.	 Gorden, D. L. et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic. J. Lipid Res. 56, 722–736 (2015).
	61.	 Islam, M. S. et al. Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells. 

J. Cell. Physiol. 233, 7143–7156 (2018).
	62.	 Nagan, N. & Zoeller, R. A. Plasmalogens: Biosynthesis and functions. Prog. Lipid Res. 40, 199–229 (2001).
	63.	 Wang, X., Devaiah, S. P., Zhang, W. & Welti, R. Signaling functions of phosphatidic acid. Prog. Lipid Res. 45, 250–278 (2006).
	64.	 Chen, J. Novel regulatory mechanisms of mTOR signaling. In Current Topics in Microbiology and Immunology (eds Ahmed, R. et 

al.) (Springer, Berlin, 2004).
	65.	 O’Luanaigh, N. et al. Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane 

ruffling in cultured. Mol. Biol. Cell 13, 3730–3746 (2002).
	66.	 Su, W., Chardin, P., Yamazaki, M., Kanaho, Y. & Du, G. RhoA-mediated phospholipase D1 signaling is not required for the forma-

tion of stress fibers and focal adhesions. Cell. Signal. 18, 469–478 (2006).
	67.	 Cuvillier, O. Sphingosine in apoptosis signaling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1585, 153–162 (2002).
	68.	 Arana, L., Gangoiti, P., Ouro, A., Trueba, M. & Gómez-Muñoz, A. Ceramide and ceramide 1-phosphate in health and disease. 

Lipids Health Dis. 9, 1–12 (2010).
	69.	 van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. 

Biochim. Biophys. Acta Biomembr. 1859, 1558–1572 (2017).
	70.	 Ridgway, N. D. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit. Rev. Biochem. Mol. 

Biol. 48, 20–38 (2013).
	71.	 Segawa, K. & Nagata, S. An apoptotic ‘Eat Me’ signal: Phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).

https://doi.org/10.3389/fonc.2018.00099


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11447  | https://doi.org/10.1038/s41598-021-89859-0

www.nature.com/scientificreports/

	72.	 Maggio, M. et al. Sex hormones binding globulin levels across the adult lifespan in women—The role of body mass index and 
fasting insulin. J. Endocrinol. Investig. 31, 597–601 (2008).

	73.	 Soave, I. & Marci, R. From obesity to uterine fibroids: An intricate network. Curr. Med. Res. Opin. 34, 1877–1879 (2018).
	74.	 Mäkinen, N. et al. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur. J. Hum. Genet. 21, 1300–1303 

(2013).

Acknowledgements
This work was financially supported by the RFBR Grant No. 19-315-90073 (study design and HPLC/MS analysis), 
RFBR and National Natural Science Foundation of China according to the research project No 19-515-55021 
(lipids identification and statistical analysis), NSFC (Nos. 81961138016, 21765001) and Department of Science 
and Technology of Jiangxi Province (No. 20192AEI91006). The authors are grateful to the laboratory for the 
collection and storage of biological material (Biobank) for providing tissue samples.

Author contributions
Research idea, N.T. and V.F., supervision – V.F. and L.A., writing—original draft, N.T., N.S., V.C., and I.K.; project 
administration, V.F. and L.A.; methodology, A.T., V.C. and V.F.; experiments, V.C, K.C. and N.T.; software and 
data processing, V.C., A.T., and N.S.; writing—review and editing, L.A., V.C, and K.C.; samples collection, N.T. 
and I.K. All authors have read and agreed to the published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​89859-0.

Correspondence and requests for materials should be addressed to V.E.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-89859-0
https://doi.org/10.1038/s41598-021-89859-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Alterations in lipid profile upon uterine fibroids and its recurrence
	Materials and methods
	Study design. 
	Sample collection. 
	Sample preparation for lipidome analysis. 
	Mass spectrometry analysis of lipid extracts. 
	Statistical analysis. 

	Results and discussion
	Clinical data. 
	Uterine myometrium and fibroids lipidomics (ESI–MSMS). 
	Blood plasma lipidomics in recurrent uterine fibroids (HPLC–MSMS). 

	Conclusions
	References
	Acknowledgements


