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An SIR‑type epidemiological model 
that integrates social distancing 
as a dynamic law based on point 
prevalence and socio‑behavioral 
factors
Maritza Cabrera1,3,5, Fernando Córdova‑Lepe2,5, Juan Pablo Gutiérrez‑Jara1,3,5* & Katia Vogt‑
Geisse4,5*

Modeling human behavior within mathematical models of infectious diseases is a key component 
to understand and control disease spread. We present a mathematical compartmental model of 
Susceptible–Infectious–Removed to compare the infected curves given by four different functional 
forms describing the transmission rate. These depend on the distance that individuals keep on average 
to others in their daily lives. We assume that this distance varies according to the balance between two 
opposite thrives: the self‑protecting reaction of individuals upon the presence of disease to increase 
social distancing and their necessity to return to a culturally dependent natural social distance that 
occurs in the absence of disease. We present simulations to compare results for different society types 
on point prevalence, the peak size of a first epidemic outbreak and the time of occurrence of that peak, 
for four different transmission rate functional forms and parameters of interest related to distancing 
behavior, such as: the reaction velocity of a society to change social distance during an epidemic. We 
observe the vulnerability to disease spread of close contact societies, and also show that certain social 
distancing behavior may provoke a small peak of a first epidemic outbreak, but at the expense of it 
occurring early after the epidemic onset, observing differences in this regard between society types. 
We also discuss the appearance of temporal oscillations of the four different transmission rates, their 
differences, and how this oscillatory behavior is impacted through social distancing; breaking the 
unimodality of the actives‑curve produced by the classical SIR‑model.

Epidemics and pandemics are a thread for public health. More pandemic situations such as the current pandemic 
caused by the viral disease COVID-19 may come in the future. Such a pandemic can cause a devastating public 
health, social and economic impact across the world. In a pandemic situation governments may be forced to 
impose and promote restrictive measures to control disease spread. The approach different societies take may 
vary according to cultural, political and economic realities of each  country1. Restrictive measures may eventually 
have to be relaxed due to the economic and social impact that these can provoke, especially in poorer  societies2, 
while finding a balance between health and economic factors, and trusting on companies and individuals to 
implement and maintain protective  measures3. Social distancing is one of the main recommended individual 
protective measures during pandemic situations caused by directly transmitted  diseases4. Social distancing has 
been shown to be an effective measure for controlling disease burden for instance during the SARS epidemic 
of 2003 in Hong  Kong1, or during the current COVID-19  pandemic5, 6. Epidemic situations force individuals to 
develop a change in their social behavior. For instance, there is evidence that the appearance of new behaviors 
could be conditioned by fears, worries and anxiety among individuals, which recently has been measured by 
the use of The Fear of COVID-19 Scale7. Hence, in such situations, societies are forced to make cultural changes 
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that strengthen the awareness for public health. These cultural changes if maintained, could help prevent the 
dissemination of infectious diseases and future  epidemics8.

We focus on studying through a mathematical model the epidemiological effects of keeping a certain social 
distance when encounters are not to be avoided during an epidemic outbreak of a directly transmitted disease. 
Mathematical modeling of human behavior is an essential tool to guide control strategies, impulsed for instance 
to prevent infection in risk  groups8, 9. To incorporate in mathematical epidemiological models variables or 
parameters that describe social behavior is an important  challenge10. With our model, we seek to: first, compare 
disease dynamics for different types of societies under different distance dependent transmission rate functional 
forms; second, understand and describe how the dynamics of the social distance—depending on the observed 
point prevalence—affects the transmission rates and disease dynamics; third, identify epidemiological and social/
cultural factors relevant for disease mitigation.

Methodological aspects
There exists an extensive number of mathematical models that explain, characterize and project the evolution of 
different infectious diseases that affect  humans11–15. In addition to present a compartmental model that classi-
cally describes disease dynamics, we incorporate social distancing as a dependent variable following a dynamic 
law based on point prevalence and socio-behavioral factors. Theories of human behavior state that there exist 
environmental factors (e.g., climate, demographic growth, location) and psycho-social aspects (e.g., degree of 
aggregation, economic prosperity, culture) that influence the distance that individuals maintain from each other 
in their daily  lives8, 16–18. Additionally, human groups define cultural norms that can be classified into the fol-
lowing  types19: (i) Contact cultures, which relate through close personal distance emphasizing physical contact; 
(ii) non-contact cultures, in which individuals keep further distance from each other, avoiding physical contact. 
For instance, contact cultures are found in Southern Europe, Latin America and the Arab countries, while non-
contact cultures are found in North America, North of Europe and Asia.

When modeling a disease, it would be best to have a clear understanding about how interactions between 
people occur, for then recognize social patterns. There are social studies that provide information on social 
distancing, in particular on the average distance between susceptible and infectious individuals, which is very 
useful to understand disease  spread20. There are methods based on statistics that determine the distance distribu-
tion using the number of infectious events associated to all possible susceptible-infectious  cases20. Other studies 
state that the probability of infection between susceptible and infectious decreases with distance according to a 
formulation of the Power  Law21. In general, we assume that an average behavior– connected to social and cultural 
characteristics of a population– offers, up to a certain level useful information to answer questions at popula-
tion level, in terms of ecological and epidemiological  nature22. There are also studies in the literature related to 
social distancing, which incorporate the effect on disease dynamics of frequency-duration of physical contact 
and distances that exist between households in social  settings23, 24. In the aforementioned  study24, the recorded 
data are social distances of 1,821 individuals living in Southern China, aggregated in different environments, 
such as: age and rural or urban conditions. As a result, the study reveals that distance is inversely proportional 
to the probability of infection. In addition, it was shown that social contacts and their duration decrease with 
chronological age. Those results provide contact patterns that are consistent with similar research studies con-
ducted in European  countries19. For technical simplicity and lack of more accurate information, in this study 
we assume a uniformly distributed distancing behavior, in populations aggregated by culture. In other words, 
we assume that all individuals with the same cultural background follow the same social distancing behavior; 
as we describe in the next section.

There exist several articles that study the spread of infectious diseases related to human behavior through 
mathematical models. One of the first generalizations of the Kermack-McKendrick deterministic epidemic 
 model25 in that respect was given by Capasso and Serio in  197826, where they present the force of infection in 
an SIR (Susceptible–Infected–Removed) compartmental type model of differential equations as a function g(I), 
which saturates for large levels of infectives in the population, changing the transmission rate of the classical SIR 
model from constant to non-constant. After a study that these authors conducted about the cholera epidemic in 
Bari, Italy, they wanted to reflect—with the saturation of the force of infection—the psychological effect in the 
population that leads to adopt more self-protective measures when the number of infected individuals is high. 
Also,  in27, a non-linear force of infection including a saturation function represents the influence of human 
behavioral change in a cholera model due to health education, hygiene and sanitation practices.  In28, an SIR 
model with exponential saturation of the force of infection of the form β(I) = µ(1− e−aI ) is presented, with 
the intent to capture disease dynamics as an outbreak progresses and behaviors change, where for instance the 
parameter a is reduced by mask wearing. There are several other articles incorporating similar non-linear force 
of infection terms  (see28–33 and references therein). Additionally, the article by D’Onofrio et al.34 incorporates 
a non-constant transmission rate β(M) that depends not only on the current number of infectives but also 
on M, representing an information index that summarizes the current and past history of disease prevalence. 
Their results show that social behavioral change may trigger oscillations in the infectious population. On the 
other hand, Pedro et al.35 extend an SIR type model incorporating the effect of social support for school and 
workplace closure on disease dynamics, and study socio-economic conditions for a second COVID-19 wave. 
In the aforementioned study, the authors define a transmission rate that captures the impact of closure through 
a function of time. This function is governed by a dynamic law explained by Imitation  Dynamics36 to describe 
population-level support for closure. The article  in9 also uses Imitation Dynamics to present the competing 
dynamics between a resident pathogenic strain and a mutant strain with higher virulence. That article studies a 
population in which individuals learn and develop a behavior to protect each other. Other dynamic mathematical 
models have included behavior by dividing the population into different risk groups, and this way studying the 
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epidemiological effects based on social distancing while including individuals’ risk perception, awareness, fear, 
cooperation or activity  level37–46. Specifically, a model that quantifies the epidemiological impact of the size of 
groups of individuals who do or do not follow responsible behavior can be seen  in43. The study shows how the 
Basic Reproduction Number (an epidemiological threshold that generally determines disease  dynamics47) and 
disease prevalence changes according to each responsible individual. It also discusses the necessity of quantify-
ing the effect that distance between individuals has on disease transmission. On the other hand, the article  in40 
studies media induced social distancing in an SIR type model including an extra social distancing compartment, 
whose influx rate is influenced by media; and the authors  in39 present a compartmental model that stratifies the 
population not only by disease status but also by disease awareness status.

Also, there exists evidence for the changing temporal behavior of disease transmission in epidemic or pan-
demic  settings28, 48–55, which justifies extending an SIR type model by incorporating a non-constant transmission 
rate. In particular, there are articles—some as a result of the high demand in understanding COVID-19—that 
fit mathematical models in order to represent the decrease in the transmission  rate27, 28, 31, 49. For instance, the 
article  in49 includes a time varying exponential decay log function for the transmission rate, to capture this way 
the early decreasing shape of the transmission rate of COVID-19 thought to be due to enforced lockdowns and 
disease mitigation interventions.

We consider a deterministic mathematical model based on ordinary differential equations that divide the 
human population into Susceptible–Infectious–Removed (SIR)56, and extend it including a non-constant trans-
mission rate. The transmission rate of a disease depends on the effective contact rate of individuals, which 
depends on individual distancing behavior, and determines the occurrence of  infection10. The novelty of the 
model we present is to assume that the transmission rate is represented by different functional forms that depend 
inversely on a dynamic distance that individuals keep from each other. The dynamics of this distance depends 
on the point prevalence of the disease and the resistance to change, which comes from the necessity people feel 
to return to their natural social distance. We make two assumptions regarding the average distance between 
individuals: (a) in the absence of disease, individuals tend to maintain a certain average distance from each other, 
which we will call natural-distance, and (b) in the presence of disease, individuals respond by increasing their 
social distance according to the appreciation of point prevalence levels, and hence the natural-distance becomes 
a dynamic distance that we will call interaction-distance. We first compare epidemic curves, and the size and 
timing of the first appearing epidemic peak, for society types that differ according to social distancing behavior 
related to assumptions (a) and (b). We study the disease dynamics of these societies for different transmission 
rate functional forms that are interaction-distance dependent, and for different parameter values appearing in 
these transmission rates. Then, we discuss the temporal dynamics of the four transmission rate functions, how 
their shape is explained through social distancing behavior and their added practical significance to the classical 
SIR model when modeling the propagation of infectious diseases.

Cultural distance as risk factor for disease transmission
In the field of semiotic, the discipline that studies the organization of space in terms of linguistic communication 
is called  Proxemic18. In the present work, we will take few elements of this area, in particular related to the types 
of space that surround the human body—their limits and use–, which could help us characterize distancing 
behavior in different cultural settings, essential for disease transmission.

Generally speaking, a person defines his or her distance range or degree of physical contact according to 
the social interconnection she/he experiences with the counterpart (e.g., family, friends, colleagues or strange). 
Some studies also point out that personal differences such as: personality, age, gender, social conditions, etc., 
are crucial for a person to decide his or her personal distance  boundaries8, 17, 18, 57. Nevertheless, the main fac-
tor that determines the distance that individuals keep from each other is cultural  related18, which is associated 
with the geographical region the population is located. As mentioned before, we consider an average distancing 
behavior assumed equal for all individuals within the same cultural background. Thereby, different average 
distancing behaviors might affect differently the transmission rate of the disease, leading to cultural changes in 
disease dynamics.

The term Proxemic is conceptualized by the notion of personal space when referred to the form by which 
human beings physically interact with each other, either with peers or  objects18. In this respect, physical distance 
is correlated with the social closeness that individuals keep from each other, being characterized in the following 
way: (i) intimate, (ii) personal, (iii) social and public. Specifically, to each social relationship type corresponds a 
personal space, which is configured by concentric bubbles, of radius: (i) from 0 to 0.45 (m) for intimate distance 
; (ii) from 0.45 to 1.2 (m) for personal distance ; (iii) more than 3.5 (m) for social distance. Latin communi-
ties for instance tend to interact socially keeping less distance compared to Anglo-American societies. Indeed, 
the work  in58, titled Proxemics and Tactility in Latin America states that there exist different ways of proxemic 
communication between individuals belonging to different Latin American countries and even between gender 
encounters (man-man; man-woman; or woman-woman). The aforementioned study revealed that the encoun-
ter between gender, together with the country of origin are determinant factors that affect the average distance 
individuals keep from each other. It was performed through a multivariate analysis of variance to determine if 
gender and culture have an effect on human-distances with pairs using groups of individuals from Costa Rica, 
Panama and Colombia respectively. As a result, it was proven that Costa Rica interacts significantly closer than 
the rest of the countries located on the south and the mean distance for female pairs is significantly smaller than 
other gender’s encounters.

A global study in the field of Cross Cultural Psychology revealed a comparative interpersonal distancing 
world wide, using a large data set of 8,943 participants from 42  countries19. According to those authors, Southern 
European, Latin American and Arabian countries are considered closer cultures with notable physical contact 
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behaviors; whilst North America, Northern Europe and Asian countries prefer more distant encounters and 
non contact behaviors. As a result, a list of global comparative social  distances19, comprised by countries with 
small, medium and large social distancing allowed among peers is shown in Table 1. It shows the average natural 
social distance given by the culture of each country. In the Americas, the frequency of physical contacts and their 
distances decrease progressively as we move from North America to South America. Therefore, it is impossible 
to determine a common universal contact index for all  cultures18. We include this cultural difference using a 
specific base parameter that is interpreted as the distance that individuals would keep to each other culturally in 
the absence of the disease. This is the parameter we refer to as natural-distance.

Distance‑contagion model
We consider a Susceptible–Infectious–Removed (SIR) type model with recovery and transmission rates given 
respectively by γ and β(D) . The latter, is assumed to be dependent on the average dynamic distance that individu-
als usually keep from each other, which we denote D and call interaction-distance. The functional form that β(D) 
takes will be introduced in the next section. We assume in our model, that the dynamic for D depends on the 
level of infectious and that in the absence of disease the interaction -distance returns to its natural equilibrium 
D∗ , which represents the natural-distance of the society. We also suppose no demographic change, no immigra-
tion, and a constant total population size N = S + I + R . The system of differential equations that determines 
the dynamic is:

with positive initial conditions S(0) = S0 , I(0) = I0 , R(0) = R0 , D(0) = D0 . The rate �1 ≥ 0 [1/time] measures the 
rate of resistance, per distant unit, to change distancing behavior. It measures how fast individuals return to their 
natural-distance D∗ , or in other words, the rate at which individuals return to natural distance habits, given by 
their culture. �2 ≥ 0 [distance/time] determines the reaction-velocity by which change occurs according to how 
people perceive point prevalence levels. Observe that if �1 = 0 there is no resistance and D increases ( D′ > 0 ) 
proportional to point prevalence: D increases steeply if people react fast (large �2 ) and increases slightly if they 
react slow (small �2 ); on the contrary, if �1 >> 0 individuals tend to return to their natural-distance D∗ fast, so 
there is a large resistance to change their natural way of living. Also, if �2 = 0 , the population does not react to 
point prevalence levels and hence the distance decreases and tends to the equilibrium D∗ , as long as D0 > D∗ ; 
if on the contrary �2 >> 0 , the population is very perceptive and reacts quickly to change, even when point 
prevalence levels may be low.

Observe that, when solving the last equation from the system in Eq. (1), we obtain

which is a function such that if D0 = D∗ (i.e. society follows its natural distancing behavior when the first infec-
tious person appears), then 0 ≤ D(t)− D∗ < �2/�1.

Moreover, its asymptotic behavior ( t → ∞ ) is as follows

(1)











S′ = − β(D) S (I/N)

I ′ = + β(D) S (I/N)− γ I

R′ = + γ I

D′ = − �1 (D − D∗)+ �2 (I/N),

(2)D(t) = D∗ + (D0 − D∗)e
−�1t +

�2

N

∫

t

0
I(s)e−�1(t−s)

ds,

(3)lim
t→∞

D(t) = D∗ +
�2

N
lim
t→∞

J (t), with J (t) =

∫

t

0
I(s)e−�1(t−s)

ds.

Table 1.  Average social natural-distances measured in meters (m) for different countries of origin. 
(Information was obtained from the article by Sorokowska et al.19).

Type of social natural-distance Distance interval (m) Country of origin

Small [0; 1)

Italy–Argentina–Bulgaria–Greece

Ukraine–Russia–Slovakia–Austria

Serbia–Peru–Spain

Medium [1; 1.2]

USA–Germany–Indonesia–Estonia

England–Poland–Canada–Norway

China–Brazil–Nigeria–South Korea

India–Switzerland–Kenya–Portugal

Czech Republic–Malaysia–Iran

Pakistan–Croatia–Mexico–Ghana

Hong Kong

Large (1.2;∞)
Uganda–Hungary–Saudi Arabia

Romania–Turkey
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Since in Eq. (1), the S → I → R flow is uni-directional, we have I(+∞) = 0 . Hence, given ǫ > 0 , there exists 
τ > 0 such that 0 ≤ I(s) < ε for s > τ . Therefore, J (t) in Eq. (3) is bounded by J (τ )+ ε[1− e−�1(t−τ)]/�1 
and by making t → ∞ we conclude that D(+∞) = D∗ exponentially, see Fig. 6b, such that the interaction-
distance converges to the constant natural-distance of the society. Notice that once expressing I/N in terms of 
D, we obtain for S that S′/S = −β(D){D′ + �1(D − D∗)}/�2 , which when integrating over [0, t] provides the 
following expression

We denote S∞ the value of S for infinite time, and obtain

where �D := D − D∗ . As is to be expected, the epidemics will end with more susceptibles if: the reaction 
velocity ( �2 ) is large, the resistance ( �1 ) and/or the natural-distance (D∗) is small. Additionally, if β(·) is given 
by Eq. (8) (shown in the next section), with ν = 1 , we have that S∞ = S0 / exp {(�1/�2)β∗D∗L(∞)} , with 
L(τ ) = τ − D∗

∫

[0,τ ]{1/D(u)}du , an increasing function.
Many factors determine change in behavior, and in particular the dynamics of the interaction-distance between 

individuals. It may be difficult to quantify parameters related to those changes, such as the rate of resistance to 
change ( �1 ), or the reaction-velocity to change ( �2 ). But, assumptions could be made on how on average the 
population thinks. In general, there are different types of behavioral changes, as described  in16, such as: definite or 
momentary; local or global; uni-causal or multi-causal; group influenced or individual; superficial or profound. 
When a change in habits occurs, it is generally difficult to maintain over time and according to the authors  in16, 
maintaining it depends on cultural re-education initiatives.

Distance dependent transmission rate and the basic reproduction number ( R
0
)

In this section, we will describe how the transmission rate β(·) varies with social distance D. We assume a base 
line transmission rate β∗ > 0 and a scaling distance D̄∗ , such that β(D̄∗) = β∗ . In what follows, we will present 
four functional forms.

β1(D) , was inspired on β2(D) below, and found  in59. On one hand, it similarly decreases in a convex form, but 
keeping its own structural geometry and qualitative differences.

β2(D) , was introduced  in59 using a Maximum Likelihood estimation for the Blue Tongue virus serotype 8 epi-
demic with a data set from Netherlands and Germany and β3(D) described in Eqn. (8) was obtained through 
a parameter estimation of the transmission rate with data from Belgium based on distances between farms. In 
both cases D, represents the inter farm distance; β∗ the initial rate of transmission or base line transmission, 
and D̄∗ a scaling  distance59. Meanwhile ν is a parameter that measures the decrease in the infectious rate with 
distance at farm  level60.

The form for β4(D) was introduced  in57 in the context of social mixing patterns in rural and urban areas of 
Southern China aimed to quantify the human interactions targeted for better understanding on the transmis-
sion of respiratory infectious diseases. In this study, the contact duration was assigned as an integer number 
multiplied by the number of individuals following an exponential distribution to each contact event.

Notice that the functional forms given in Eqs.  (6)–(9), are decreasing, convex functions such that 
lim

D→∞
βi(D) = 0 for i ∈ {1, 2, 3, 4} ; but for small values of D they differ in the following way: β1(0+) = 2νβ∗ , 

β2(0
+) = 2β∗ , β4(0+) = eβ∗ and β3(0+) = ∞.

In what follows of this article, we are going to consider that the scaling distance D̄∗ is an average of the dis-
tance types D_* from Table 1 and hence is fixed at D̄∗ = 1.05 . This way, we can observe: for societies that are 
experiencing medium interaction-distance D = 1.05 , the transmission rate is the base line transmission rate β∗ ; 
for societies with interaction-distance D < 1.05 the transmission rate is larger than β∗ ; and, for societies with 
interaction-distance D > 1.05 , the transmission rate is smaller than β∗.

Figure 1 shows the transmission curves of the four functional forms from Eqs. (6)–(9): β1(D) (black), β2(D) 
(red), β3(D) (blue) and β4(D) (purple), with scaling distance D̄∗ = 1.05 . It can be seen that for D = D̄∗ = 1.05 , 

(4)ln

(

S0

S(t)

)

=
1

�2

∫

D(t)

D∗

β(u) du+
�1

�2

∫

t

0
β(D(u)) {D(u)− D∗}du.

(5)S∞ = S0 / exp

{

�1

�2

∫ ∞

0
β(�D(u)+ D∗)�D(u) du

}

,

(6)β1(D) = β∗

[

2D̄∗

D̄∗ + D

]ν

, ν > 0.

(7)β2(D) = β∗

[

2D̄ν
∗

D̄ν
∗ + Dν

]

, ν > 0.

(8)β3(D) = β∗

[

D̄∗

D

]ν

, ν > 0.

(9)β4(D) = β∗ exp

[

1−

(

D

D̄∗

)ν]

, ν > 0.
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βi(D̄∗) = β∗ for i = {1, 2, 3, 4} , which is the base line constant transmission rate. This means that once the 
interaction-distance D is close to D̄∗ = 1.05 , all transmission rates are similar and close to β∗ . On the con-
trary, if the interaction-distance reaches the type small, medium or large (see Table 1), the transmission rates 
differ from each other accordingly. Observe that before D̄∗ = 1.05 , the order of the transmission rates is 
β2(D) < β1(D) < β4(D) < β3(D) and afterwards it changes to β4(D) < β3(D) < β2(D) < β1(D).

Figure 2 shows β3(D) for the scaling distance D̄∗ = 1.05 and for different values of ν . From the picture it can 
be appreciated that for societies experiencing an interaction-distance D less than D̄∗ = 1.05 , the transmission 
rate increases with increasing ν , and, on the contrary, that for societies with interaction-distance D greater than 
D̄∗ = 1.05 , the transmission rate decreases with increasing ν.

The basic reproduction number, R0 , is an important threshold quantity that generally determines the course 
of an epidemic and the corresponding dynamics of the system describing it, such that usually an epidemic peak 
occurs if R0 > 1 , and on the other hand, the disease is not able to invade the population if R0 < 147. Linearizing 
the system in Eq. (1) around the disease free state and considering D_0=D_*, βi(·) reduces to βi(D∗) , i = 1, 2, 3, 4 , 
and using a similar approach as  in61 we obtain the known form for R0 for an SIR model without demography—
whose value depends on the natural-distance D∗ for each society type from Table 1–, which is

(10)R0 =
βi(D∗)

γ
, i = 1, 2, 3, 4.

0 1 2 3 4
D

0

0.5

1

1.5

2

i (
D

)

1

2

3

4

*

D
*

_

Figure 1.  The different transmission rate functional forms βi(D) , i = 1, 2, 3, 4 are pictured. The scaling distance 
was taken to be D̄∗ = 1.05 for all transmission rates, which was considered to be an average of the distance 
types D_* from Table 1. The other parameters were chosen to be β∗ = 0.5 and ν = 1.5.

0 1 2 3 4
D

0

0.5

1

1.5

2

3 (
D

)

=0.5
=1.0
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*
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_

Figure 2.  The transmission rate functional form for β3(D) is pictured. The scaling distance was taken to be 
D̄∗ = 1.05 for all transmission rates, which was considered to be an average of the distance types D_* from 
Table 1. The base line transmission rate was chosen to be β∗ = 0.5.
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Numerical results
We present numerical simulations to study disease dynamics for different societies under distinct transmission 
rate functional forms and distance-related parameters. We also show the practical significance of these four 
functional forms according to their dynamics in time and dependency on interaction-distance. The software 
 MATLAB62 was used to create all figures in this section, as well as Figs. 1 and 2 from the previous section.

Disease transmission and dynamics under different natural‑distance ( D∗ ) assumptions. Each 
graph within Figs. 3, 4 and 5 shows the point prevalence curve (I(t)/N) from the system in Eq. (1) with respect 
to time, for the different transmission rate forms as in Eqs. (6)–(9): β1(D) , β2(D) , β3(D) and β4(D) , with scaling 
distance D̄∗ = 1.05 . The colors correspond to the natural-distances D∗ value in the system given in Eq. (1), for 
three different types of societies: (i) small social natural-distance (black, D∗ = 0.75 ), within the range [0, 1) [m]; 
(ii) medium social natural-distance (red, D∗ = 1.05 ), within the range [1, 1.2] [m]; and (iii) large social natural-
distance (blue, D∗ = 1.35 ), within the range (1.2,∞)(m) . We consider ν = 0.5 , ν = 1 and ν = 1.5 in Figs. 3, 
4 and 5 respectively, to account for the effect of the shape of the transmission functions on disease dynamics. 
To study the first impact of an epidemic, the time frame chosen for the mentioned figures shows the peak of a 
first epidemic outbreak, considering that our model may allow for further smaller peaks (see Fig. 9 in the next 
subsection).

Comparing Figs. 3, 4 and 5, we can observe especially for β3(D) and societies of small natural-distance 
type (black) that, the higher ν is the larger is the size of the peak and the sooner does the peak occur (compare 
subfigure (c) in Figs. 3, 4, 5). Also, significant differences in point prevalence levels can be observed between 
societies of different natural-distance types (small, medium or large), especially for β3(D) and large ν values (see 
Figs. 4c, 5c). Figures 4c and 5c show clearly that societies of small natural-distance type (black) show the greatest 
increase in peak size but also the largest shift in the occurrence of the peak when compared to others. In general, 
the smaller the natural-distance type of the society is, the sooner does the peak occur. These culturally driven 

Figure 3.  Point prevalence, I(t)/N, from the system in Eq. (1) with respect to time for each transmission 
functional form and ν = 0.5 . Black, red and blue curves correspond to D∗ = 0.75 (m) , D∗ = 1.05 (m) , and 
D∗ = 1.35 (m) respectively. These correspond to societies of small ([0, 100)), medium ([100, 120]) and large 
( [120,∞) ) natural-distance types respectively (see Table 1). The other parameter values are fixed at β∗ = 0.5 ; 
γ = 0.2 , ν = 0.5 , �1 = 0.03 , �2 = 0.3 . The R0 value for each society are for (a) and (b): R0 = 2.7 (black), 
R0 = 2.5 (red), R0 = 2.3 (blue); (c) and (d): R0 = 3.0 (black), R0 = 2.5 (red), R0 = 2.2 (blue). The initial 
condition D(0) = D∗ was used for each type of society.
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differences are less if we observe the dynamics for β1(D) and β2(D) , especially for small ν values, and are most 
noticeable for β3(D) and β4(D) for large ν values. 

For each type of society, Fig. 6a describes the dynamics of infected individuals (I(t)/N); Fig. 6b,c shows the 
evolution of the interaction-distance D(t) from the system in Eq. (1), kept by individuals though the course of the 
epidemic for a certain distance-related parameter set; and Fig. 6d describes the corresponding temporal dynamics 
of the transmission rate β3(t) = β3(D(t)) from Eq. (8). The interaction-distance D(t) reaches a peak, which occurs 
after the epidemic peak (compare Fig. 6a,c). After attaining the peak, the interaction-distance curves converge 
to their respective culturally determined natural-distance D∗ (see Fig. 6b). Figure 6a shows that the peak of the 
infected curve, as discussed earlier, shifts according to the natural-distance type of the society (determined by 
the value of D∗ ), as do the peaks of the distance curves (see Fig. 6b), in reaction to the disease peak. One can 
also observe from Fig. 6b that the absolute change in interaction-distance is largest for societies of small natural-
distance type (black curve), compared to other types. The transmission rate β3(t) behaves as expected, inversely 
proportional to interaction-distance, being the societies of large natural-distance types the ones with the smallest 
transmission rate as well as the smallest absolute change in transmission (see Fig. 6d).

Figures  7 and 8 depict bar plots that illustrate, respectively, the height of the peak of a first epi-
demic outbreak and its time of occurrence for: (a) each transmission rate βi(D) , i ∈ {1, 2, 3, 4} ; (b) differ-
ent ν values ( ν ∈ {0.5, 1.0, 1.5, 2.0] ); (c) different �2 values ( �2 ∈ {0.2, 0.4, 0.6, 0.8} ); (d) different �1 values 
( �1 ∈ {0.02, 0.04, 0.06, 0.08} ); each for the three different types of social natural-distance (small, medium, large) 
represented by colors (black, red, blue). Figure 7a for instance, shows that β3(D) returns the highest peak com-
pared to the other transmission rate functional forms, for small social natural-distance societies (black), and also 
that the difference in peak size between different societies is biggest for β3(D) and β4(D) . Figure 7b shows that 
for societies of small natural-distance type, the higher the ν value, the higher is the epidemic peak, and that the 
contrary is true for societies of large natural-distance type. Figure 7c depicts that the higher the reaction veloc-
ity to change ( �2 ) is, the lower is the infection peak, especially noticeable for societies of small natural-distance 
types, and Fig. 7d illustrates that for the parameter range chosen, there is little effect on peak size of the rate ( �1 ) 

Figure 4.  Point prevalence, I(t)/N, from the system in Eq. (1) with respect to time for each transmission 
functional form and ν = 1 . Black, red and blue curves correspond to D∗ = 0.75 (m) , D∗ = 1.05 (m) , and 
D∗ = 1.35 (m) respectively. These correspond to societies of small ([0, 100)), medium ([100, 120]) and large 
( [120,∞) ) natural-distance types respectively (see Table 1). The other parameter values were taken to be 
β∗ = 0.5 ; γ = 0.2 , ν = 1 , �1 = 0.03 , �2 = 0.3 . The R0 value for each society are for (a) and (b): R0 = 2.9 
(black), R0 = 2.5 (red), R0 = 2.2 (blue); (c): R0 = 3.5 (black), R0 = 2.5 (red), R0 = 1.9 (blue); (d): R0 = 3.3 
(black), R0 = 2.5 (red), R0 = 1.9 (blue). The initial condition D(0) = D∗ was used for each type of society.
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at which individuals return to their natural-distance D∗ . In general, all four subplots show that the smaller the 
natural-distance type of a society is, the larger is the epidemic peak size.

Additionally, Fig. 8 shows in general that, the smaller the natural-distance type of a society is, the sooner 
occurs the peak. In particular, Fig. 8a depicts that for β3(D) and for societies of small natural-distance type, the 
peak occurs the earliest. On the other hand, in Fig. 8b we observe that, the larger the value for ν is, the sooner 
is the timing of the peak. Figure 8c depicts that the time of the peak does not experience such a great change 
according to �2 compared to the effect on peak size, especially for societies of small natural-distance type; but, for 
societies of large natural-distance type, increasing �2 may have an effect on earlier peak occurrence. So, compar-
ing Fig. 7c with Fig. 8c, especially for societies of medium and large natural-distance type (red, blue), one can 
observe that, the larger �2 , the smaller is the peak but, at the same time, the sooner it occurs. Hence, there is a 
trade off between reduced peak size and early occurrence of the peak. Finally, Fig. 8d illustrates that the greater 
�1 , the later the peak may occur, mainly for societies of medium or large natural-distance types. 

Temporal dynamics of the transmission rates impacted by interaction‑distance (D(t)). Figure 9 
shows the evolution in time of the interaction-distance D(t), the four transmission rates from Eqs. (6)–(9), and 
the point prevalence I(t)/N for different ν values. Since larger ν values account for important differences among 
societies during the initial period of disease propagation (see Figs. 3, 4, and 5) we choose ν ∈ {1.5, 4.5, 7.5, 10.5} 
in the larger range. We describe in Fig. 9 the practical significance of the different transmission rate functional 
forms, their correlation with interaction-distance, and their impact on the curves of infected; in the setting of an 
average society with natural-distance D∗ = 1.05 . We first describe general temporal features common to all four 
transmission rate functions and then point out specific characteristics that make them differ in their practical 
significance for disease modeling.

Upon the arrival of an infectious disease with high morbidity and/or mortality, a decrease of the transmission 
rate during the initial period of disease expansion can be  observed28, 48, 49. We can observe in Fig. 9, that our model 
describes that behavior for the transmission rates βi(t) , i = 1, 2, 3, 4 . Additionally, one of the novelties of our 

Figure 5.  Point prevalence, I(t)/N, from the system in Eq. (1) with respect to time for different transmission 
functional forms and ν = 1.5 . Black, red and blue curves correspond to D∗ = 0.75 (m) , D∗ = 1.05 (m) , and 
D∗ = 1.35 (m) respectively. These correspond to societies of small ([0, 100)), medium ([100, 120]) and large 
( [120,∞) ) natural-distance types respectively (see Table 1). The other parameter values were taken to be 
β∗ = 0.5 ; γ = 0.2 , ν = 1.5 , �1 = 0.03 , �2 = 0.3 . The R0 value for each society are for (a) and (b): R0 = 3.1 
(black), R0 = 2.5 (red), R0 = 2.0 (blue); (c): R0 = 4.1 (black), R0 = 2.5 (red), R0 = 1.7 (blue); (d): R0 = 3.7 
(black), R0 = 2.5 (red), R0 = 1.5 (blue). The initial condition D(0) = D∗ was used for each type of society.
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model is that it explains the decreasing behavior of the transmission rates by a behavioral change in the popula-
tion, represented by social distancing; i.e., it shows that the initial decrease in the transmission rates may be due 
to an increment of the interaction-distance D(t), whose dynamic depends on the increase in active cases and some 
correlated behavioral factor (see the equation for D(t) in Eq. (1)). In fact, just as we have observed previously in 
Fig. 6 for β3(·) , in Fig. 9 we see that for all four transmission rates, during the first 50 days of disease propaga-
tion, the interaction-distance D(t) increases (see Fig. 9a,d,g,j), which produces a reduction in the transmission 
rate during the same time period (see Fig. 9b,e,h,k) and a first epidemic peak in that time frame (see Fig. 9c,f,i,l).

During the course of a pandemic, the change in social distancing behavior affects the rate of efficient contacts 
for disease transmission and, therefore, the transmission rate. The rising or falling of the transmission rate is one 
of the reasons that explains the change in the effective reproduction number—a dynamic measure of the aver-
age number of secondary cases per infected case in a population composted by susceptible and non-susceptible 
individuals—that has been observed during epidemic outbreaks, since this measure is a function of the efficient 
contacts, among  others50–55. Our model, with its different transmission rate functions correlated to distancing 
behavior, gives a range of practical scenarios for the evolution of a changing transmission rate responsible for 
disease propagation. This evolution is characterized by the transmission rate functions given in Eqs. (6)–(9) that 
are defined by ν and their dependency on D(t).

First, we observe how the parameter ν affects the characterization of disease transmission in general. We 
see from Fig. 9 that after the first minimum value of each transmission rate, the rates start increasing, tending 
to return to their initial state β∗ . We observe that the convergence to their initial value happens in a shorter 
time-frame for small ν values than for large ones. Indeed, we can see clearly from Fig. 9b,e,h,k, that for instance 
∀t > 100 , βi(D, ν1)(t) > βi(D, ν2)(t) , for ν1 < ν2 , ∀i = 1, 2, 3, 4 and D > D∗ . We also observe that oscillations 
appear for larger ν values during the recovery phase of the transmission rates, which we will discuss in more 
detail below.

It is important to add to the discussion how the dependency on the interaction-distance D(t) of the different 
transmission rates affect their timely evolution. Observe that the efficiency of D in lowering each transmission 
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Figure 6.  (a) Point prevalence, I(t)/N, from the system in Eq. (1) with respect to time. (b) Distance D(t) kept 
by individuals through the epidemic. (c) Zoomed version of (b). (d) Transmission rate β3(t) = β3(D(t)) from 
Eq. (8). All plots in the figure consider β3(D) as the transmission rate. Black, red and blue curves correspond 
to D∗ = 0.75 (m) , D∗ = 1.05 (m) , and D∗ = 1.35 (m) respectively. These correspond to societies of small 
([0, 100)), medium ([100, 120]) and large ( [120,∞) ) natural-distance types respectively (see Table 1). The other 
parameter values were taken to be β∗ = 0.5 ; γ = 0.2 , ν = 1 , �1 = 0.03 , �2 = 0.3 . The R0 value for each society 
type is: R0 = 3.5 (black), R0 = 2.5 (red), R0 = 1.9 (blue). The initial condition D(0) = D∗ was used for each 
type of society.
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rate differs for different ν values: the larger ν is, the more efficient is an absolute increase/reduction in interaction-
distance in reducing/increasing each transmission rate; e.g., only a small increment in D(t) from t = 0 to t = 50 is 
necessary to achieve a significant reduction in each transmission rate during that time period. As a consequence, 
observe that for large ν values, only a small initial increase in the interaction-distance produces a low first epidemic 
peak. That efficiency of D in reducing each transmission rate is at a cost: a low first epidemic peak in exchange 
for breaking the unimodality of the active-infected-curve produced by the classical SIR model with constant 
transmission rate (one bell-shaped infection curve due to the epidemic growth being limited by the proportion of 
susceptible individuals)63, 64, and hence our model may produce several further epidemic peaks (see Fig. 9c,f,i,l). 
This is a direct consequence of the oscillatory recovery of the transmission rate mentioned before, produced by 
the oscillatory behavior of D(t) in combination with its efficiency in reducing transmission.

Next, we will discuss some specific characteristics of the transmission rate functions. We observe from 
Fig. 9e,h,k differences between the four transmission rates in their oscillations that describe disease dynamics: 
oscillations of β4(·)(in green) for any ν value are ahead of the oscillations of any of the other three transmis-
sion rates, producing earlier epidemic peaks; on the contrary, β1(·) (in black) produces oscillations the latest, 
producing later epidemic peaks; the transmission rate function pairs β1 and β2 , and β3 and β4 generate similar 
dynamic behavior for small ν values, but their behavior drifts apart for increasing ν . Also, we can see in Fig. 9f,i,l 
that peak sizes and time-spans between peaks change according to different transmission rate functions and 
their oscillatory shape.

Discussion and conclusions
To control the spread of a disease causing an epidemic or pandemic, the only effective measure may be to reduce 
the effective contact rate by social distancing. In fact, there is scientific evidence that suggests that the trans-
mission of pathogenic agents occurs with sensitivity to human behavior, in particular to the distance between 
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Figure 7.  Size of the peak of a first epidemic outbreak from the system in Eq. (1) with respect to (a) contagion 
rates βi , i = 1, 2, 3, 4 , (b) measure of decrease of transmission rate with distance ν , (c) reaction velocity to 
change �2 , (d) rate of resistance to change �1 , for different society types: Black, red and blue bars correspond 
to D∗ = 0.75 (m) , D∗ = 1.05 (m) , and D∗ = 1.35 (m) respectively. These correspond to societies of small 
([0, 100)), medium ([100, 120]) and large ( [120,∞) ) natural-distance types respectively (see Table 1). The height 
of each bar represents the size of the peak of the epidemic curve. The other parameter values were taken to be 
β∗ = 0.5 and γ = 0.2 . For (a) �1 = 0.03 , ν = 1.5 , �2 = 0.3 . For (b) we used β3(D) as the transmission rate, 
�1 = 0.03 and �2 = 0.3 . For (c) we also used β3(D) as the transmission rate, �1 = 0.03 and ν = 1.5 . For (d) 
�2 = 0.3 , ν = 1.5 and β3(D) as the transmission rate. The initial condition D(0) = D∗ was used for each type of 
society.
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 individuals24, 65. The importance of social distancing—to keep infectious diseases from spreading and mitigate 
their morbidity and mortality—was revealed in a historic article that studied the data of Pneumonic Plague 
in Manchurian in north-eastern Asia during the years 1910-11 and 1920-2165. That study evidenced an epide-
miological risk for pneumonia for distances between 5 cm to 2 m. This makes it clear that incorporating into 
mathematical models the factor of social distance is important if more precision is needed to sustain and guide 
measures of sanitary  intervention24. Our simple model supports these findings.

The model results describe how the distance that individuals keep from each other varies in time and with 
respect to point prevalence (see Fig. 6). In particular, the simulations illustrate that the first peak in distanc-
ing after the onset of an epidemic (the moment when people keep the largest distance from each other) occurs—
as a reactive reaction—after the first peak of infections happens, varying the time of occurrence according to the 
type of society. We could also observe that societies where people keep a small natural-distance from each other, 
have to change their distancing behavior the most to counteract disease spread (see Fig. 6b).

Our results in Figs. 7 and 8 confirm the importance of social distancing, and show differences in peak size 
and peak time of a first epidemic outbreak for different cultural settings. In particular, our results show clearly 
the vulnerability of societies of small social natural-distance type—in which individuals maintain a distance of 
less than one meter from each other. Such societies could experience a mayor epidemic peak that occurs early 
after the onset of the epidemic. On the other hand, societies in which individuals maintain a distance from each 
other of more than one meter, experience a lower peak that occurs later after the beginning of the epidemic, as 
compared to peak size and time for other types of societies.

Our simulations also show differences in peak size and time for different epidemiological and social distancing 
related parameters for each society type, during a first epidemic outbreak. For instance, the form of the transmis-
sion rate—which is distance dependent—affects greatly size and time of the epidemic peak. Also, parameters 
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Figure 8.  Time of occurrence of the peak of a first epidemic outbreak from the system in Eq. (1) with 
respect to, (a) contagion rates βi , i = 1, 2, 3, 4 , (b) measure of decrease of transmission rate with distance ν , 
(c) reaction velocity to change �2 , (d) rate of resistance to change �1 , for different society types: Black, red and 
blue bars correspond to D∗ = 0.75 (m) , D∗ = 1.05 (m) , and D∗ = 1.35 (m) respectively. These correspond to 
societies of small ([0, 100)), medium ([100, 120]) and large ( [120,∞) ) natural-distance types respectively (see 
Table 1). The height of each bar represents the time of occurrence of the peak of the epidemic curve. The other 
parameter values were taken to be β∗ = 0.5 and γ = 0.2 . For (a) ν = 1.5 , �2 = 0.3 . For (b) we used β3(D) as the 
transmission rate, �1 = 0.03 and �2 = 0.3 . For (c) we also used β3(D) as the transmission rate, �1 = 0.03 and 
ν = 1.5 . For (d) �2 = 0.3 , ν = 1.5 and β3(D) as the transmission rate. The initial condition D(0) = D∗ was used 
for each type of society.
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related to how fast individuals change behavior according to point prevalence levels ( �2 ) and how resistant ( �1 ) 
individuals are to change their natural distance ( D∗ ), may be key for disease dynamics. For instance, in general, 
populations that react quickly to the observed point prevalence experience smaller peaks, which is specially 
pronounced for societies of small natural-distance type (see Fig. 7c); but, for small peak sizes, there is a trade 
off: and the peak may occur sooner, especially for societies of large natural-distance type (see Fig. 8c). Hence, a 
society of large natural-distance type that reacts fast to change when there is disease present, may experience a 
small but early first epidemic peak.

The shape of the infected curve beyond the first epidemic outbreak in a pandemic situation changes from 
country to country, as has been observed for instance during the current COVID-19  pandemic66. In particu-
lar, how close or how high possible further epidemic peaks are varies. Our numerical results show that the 

Figure 9.  Temporal evolution of the interaction-distance D(t) (fist column); the transmission rates 
βi(t) = βi(D(t)) , i = 1, 2, 3, 4 , from Eqs. (6)–(9) (second column); and the point prevalence I(t)/N (third 
column); for ν = 1.5, 4.5, 7.5, 10.5 . The remaining parameter values were taken to be β∗ = 0.5 ; γ = 0.2 , 
�1 = 0.03 , �2 = 0.3 and D∗ = 1.05 = D̄∗ , with R0 = 2.5 . The initial conditions used are S(0) = 0.99999 , 
I(0) = 0.00001 , R(0) = 0 and D(0) = D∗.
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transmission rate functional forms used—since they are able to produce oscillations (see Fig. 9)—give us a 
range of possibilities that may help to describe the qualitative behavior of different infection curve scenarios. 
Additionally, we can explain a possible cause for the changing transmission rates in terms of a tangible variable: 
interaction-distance D(t); that describes the distancing behavior of individuals in time. We can also describe how 
efficient social distancing is in changing disease transmission (using the parameter ν ), which may vary for dif-
ferent populations. This efficiency determines the form of the oscillatory behavior of the transmission rates and 
hence, the appearance of several further peaks; this way breaking the unimodality of the active-infected-curve 
produced by the classical SIR model.

In order to obtain better guidelines from the model, we plan in future work to extend the model including 
more epidemiological classes and an additional structure that further describes human behavior in an epidemic 
situation. For instance, for modeling COVID-19, additional classes for pre-symptomatic, asymptomatic and 
hospitalized individuals may be necessary. We also would like to conduct some sensitivity analysis. For instance, 
to compute the Partial Rank Correlation Coefficient (PRCC) for each parameter and parameter ranges could 
give insight into which parameters affect epidemic peak and peak time the most. We also would like to address, 
which of the four transmission rate functional forms would best fit for instance the COVID-19 epidemic data 
for different types of societies, as well as consider age-group differences, among other factors.

Our model and its results are a first approach for analyzing the effect of initiatives for pandemic preparedness 
under different epidemiological and cultural settings, determined by: (1) the transmission rate of a particular 
disease, which is inversely proportional to distance; (2) the velocity of the population to react to the presence of 
the disease ( �2 ); (3) the resistance that individuals experience to change their natural distance ( �1 ). Indeed, if the 
goal would be to reduce peak size during a first epidemic outbreak and postpone its timing (for instance to gain 
time to implement proper healthcare conditions to treat infected individuals) and the society affected is of small 
social natural-distance type (less than one meter), then, measures that change the society type—by increasing 
the natural distance given by the culture ( D∗ ) to more than one meter—would lower the peak and postpone it. 
Such measures in the short term could be for instance quarantine, and in the long term cultural re-education 
initiatives that change the distancing behavior of the population. Changing the natural-distance that people 
keep from each other- in other words, to change society type- may be more effective for lowering the peak of a 
first epidemic outbreak than not changing society type and instead, finding measures that increase public health 
awareness and improve the velocity of reaction to change ( �2 ) of the society. Indeed, for instance for societies of 
large natural-distance type, to increase the reaction velocity may anticipate the peak, which may not be desired.

Control measures such as quarantine, indeed aim to stop social activities as a way to obtain large social dis-
tancing, and this way increase the natural-distance given by the culture. Without those measures, it is extremely 
difficult to control that our personal space is respected by others, especially in cultures of small natural-distance 
type. Government imposed control measures are not sustainable in the long term, and hence cultural re-edu-
cation initiatives are necessary to get individuals accustomed to change their social behavior. A cultural change 
is necessary. As our results show, in general, societies that show during a first outbreak the smallest peak size, 
occurring late after the onset of the epidemics, are societies where the natural-distance given culturally is large 
(individuals upon encounter maintain a distance larger than 1.2 meters from each other), almost independent 
of the transmission rate form (see Figs. 7a,b and 8a,b).

Even though it is not easy to change habits acquired throughout the years, it is our obligation to make the 
change. We have to insist that public health authorities and their technical advisors, as well as individuals in the 
population, impulse initiatives for cultural re-education to confront epidemics to come. As stated  in16, while 
learning from history, now may be our opportunity to make progress in this direction.
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