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Expression of CCL2/CCR2 signaling 
proteins in breast carcinoma 
cells is associated with invasive 
progression
Wei Bin Fang1,5, Diana Sofia Acevedo1,5, Curtis Smart1, Brandon Zinda1, Nadia Alissa1, 
Kyle Warren1, Garth Fraga1, Li‑Ching Huang2, Yu Shyr2, Wei Li3, Lu Xie3, Vincent Staggs4, 
Yan Hong1, Fariba Behbod1 & Nikki Cheng1*

Ductal carcinoma in situ (DCIS) is the most common type of pre‑invasive breast cancer diagnosed in 
women. Because the majority of DCIS cases are unlikely to progress to invasive breast cancer, many 
women are over‑treated for DCIS. By understanding the molecular basis of early stage breast cancer 
progression, we may identify better prognostic factors and design treatments tailored specifically 
to the predicted outcome of DCIS. Chemokines are small soluble molecules with complex roles in 
inflammation and cancer progression. Previously, we demonstrated that CCL2/CCR2 chemokine 
signaling in breast cancer cell lines regulated growth and invasion through p42/44MAPK and SMAD3 
dependent mechanisms. Here, we sought to determine the clinical and functional relevance of 
CCL2/CCR2 signaling proteins to DCIS progression. Through immunostaining analysis of DCIS and 
IDC tissues, we show that expression of CCL2, CCR2, phospho‑SMAD3 and phospho‑p42/44MAPK 
correlate with IDC. Using PDX models and an immortalized hDCIS.01 breast epithelial cell line, we 
show that breast epithelial cells with high CCR2 and high CCL2 levels form invasive breast lesions 
that express phospho‑SMAD3 and phospho‑p42/44MAPK. These studies demonstrate that increased 
CCL2/CCR2 signaling in breast tissues is associated with DCIS progression, and could be a signature to 
predict the likelihood of DCIS progression to IDC.

Ductal carcinoma in situ (DCIS) is the most common type of pre-invasive breast cancer, with approximately 
60,000 cases diagnosed in women in the US every year. DCIS lesions are the precursor of invasive ductal carci-
noma (IDC), and are characterized by the growth of neoplastic cells within the lumen of breast ducts. Currently, 
DCIS patients receive a standard treatment regimen involving a combination of radiation therapy and surgery, 
and in some cases, adjuvant anti-hormonal  therapy1,2. Since most DCIS cases are unlikely to progress to invasive 
breast cancer, many women are over-treated for DCIS and experience a significant reduction in quality of life. 
Conversely, up to 20% of patients treated for DCIS experience disease recurrence, often accompanied by invasive 
breast cancer, indicating that current treatment strategies are not sufficient for a subset of DCIS  cases1,2. There are 
few approaches to evaluate the prognosis of DCIS. Small or low-grade DCIS lesions, which are considered low 
risk, may still become  invasive3–5. Expression of proliferation and hormone related genes are associated with DCIS 
recurrence, but not with development of invasive breast  cancer6,7. Relative to invasive breast cancer, biomarkers 
in DCIS have been understudied. By understanding the molecular basis of early stage breast cancer progression, 
we may identify better prognostic factors and design treatments more tailored to the outcome of DCIS.

Chemokines are soluble proteins (8 kda) with complex roles in inflammation and cancer progression. They 
form molecular gradients to mediate homing and activity of immune cells during inflammation. Chemokines 
signal to G protein coupled receptors to promote release of inflammatory mediators, cell proliferation, adhesion 
and migration. Chemokines and their receptors are subdivided into C–C, CXC, CXC3C or XC classes, depending 
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on the composition of a conserved amino acid motif involved in ligand/receptor  binding8,9. The C–C class of 
chemokines are important for homing and activity of T cells and macrophages. C–C Ligand 2 (CCL2) and its 
primary receptor CCR2 are particularly important for regulating macrophage recruitment during wound heal-
ing and  infection10. CCL2 is overexpressed in various cancers including glioma, prostate and breast  cancers11–14. 
In invasive breast cancer, CCL2 expression in the stroma correlates with disease  recurrence13,14. Knockdown or 
antibody neutralization of CCL2 in breast xenograft models inhibits infiltration of CCR2+ macrophages and 
reduces tumor growth and  metastasis13,15,16. These studies indicate an important role for CCL2 expression in 
late stage cancers.

Recent studies have implicated a role for CCL2 and CCR2 in progression of early stage breast cancers. For 
one, CCR2 expression in breast cancer cell lines correlates with their invasive  potential17. Additionally, in vitro 
studies have demonstrated that CCL2/CCR2 mediated p42/44MAPK and SMAD3 pathways in breast cancer 
cells are important in growth, survival, migration and  invasion17,18. In a mouse mammary intraductal injection 
(MIND) model that mimics DCIS formation in patients, the functional role of CCR2 has been explored in two 
human breast cancer cell lines: SUM225, a lowly invasive cell line, and the highly invasive DCIS.com. Stable 
overexpression of CCR2 in SUM225 breast cancer cells enhances progression of DCIS lesions to invasion. Con-
versely, CCR2 shRNA knockdown or ablation by CRISPR knockout in DCIS.com breast cancer cells inhibits 
the number of invasive lesions, limiting DCIS  progression18. These studies demonstrate that CCR2 expression is 
important in DCIS progression and identify CCL2/CCR2 as a regulator of SMAD3 and p42/44MAPK signaling 
in breast cancer cells. However, these studies have mainly involved transformed cell lines and have not addressed 
the physiologic or clinical relevance of CCL2/CCR2 signaling to DCIS progression. Addressing these questions 
would provide an important justification to further develop the CCL2/CCR2 pathway as a predictive signature 
and in approaches to prevent invasive breast cancer.

Here, we determined the physiologic and clinical relevance of CCL2/CCR2 signaling proteins to DCIS pro-
gression using a combination of patient tissues, PDX models and immortalized breast epithelial cells. Through 
immunostaining analysis of DCIS, IDC and normal tissues, we showed that expression of CCL2, CCR2, phospho-
SMAD3 and phospho-p42/44MAPK correlated with IDC. Using PDX models and an immortalized hDCIS.01 
breast epithelial cell line, we demonstrated that breast epithelial cells with high CCR2 and high CCL2 levels 
form invasive breast lesions that express phospho-SMAD3 and phospho-p42/44MAPK. Overall, these studies 
demonstrate that increased CCL2/CCR2 signaling in breast cancer cells is a physiologically and potentially clini-
cally relevant signature in DCIS progression.

Material and methods
Ethical approval. All experiments involving human tissues were approved and performed under guidelines 
and regulations by the ethics review board at the University of Kansas Medical Center (KUMC). The tissues col-
lected for tissue microarrays were categorized as Exempt. Tissue samples were de-identified by the Biospecimen 
Core Repository Facility (BCRF) prior to distribution. Written informed consent for tissue collection for immu-
nostaining studies was obtained by the BCRF, which has IRB approval. For specimens used for in vivo injections, 
written informed consent to participate in this research was obtained under an IRB approved protocol. Medical 
records were used in compliance with KUMC regulations, aligned with the World Medical Association Declara-
tion of Helsinki.

Animal experiments were performed at KUMC under an approved institutional animal care and use com-
mittee protocol. Animals were cared for in accordance with the Association for Assessment and Accreditation 
of Laboratory Animal Care. The study was carried out in compliance with the ARRIVE guidelines.

Cell isolation/culture. Research samples were collected from patients undergoing image guided core needle 
biopsy or surgical excision, after collection of diagnostic specimens. Primary cells were processed for mammary 
intraductal injection as described  previously19. h.DCIS.01 breast epithelial cells were cultured as  described20. To 
enrich for CCR2+ cells, hDCIS.01 cells were detached from plates using Accutase (Millipore, cat no.SCR005). 
5 million cells were incubated with 500 μl Protein A beads (Thermo Scientific, cat no. 100552311) conjugated 
to CCR2 antibody (R&D Systems, cat no. MAB150) at 4 °C for 30 min. Cells bound to beads were washed with 
PBS and cultured in 10 cm dishes. Clones were isolated using cloning discs and amplified. SUM225 cells stably 
overexpressing CCR2 (CCR2-H) were generated and cultured as previously  described18. Cells were maintained 
at most 3 months at a time. Cells were tested for mycoplasma by MycoAlert (Lonza cat no. LT07-118).

Mouse Mammary intra‑ductal (MIND) injection. Non-obese Diabetic Severe Combined Immunode-
ficient interleukin receptor-γ2 null mice (NOD-SCID IL-2rγ−/−), 8–10 weeks old were purchased from Jackson 
Laboratories. MIND injections were performed using procedures described  previously21. For CCL2 delivery, 
dosage was based on previous  studies22, and were optimized for the mammary gland through pilot studies. 
90 day release pellets containing 500 ng recombinant human CCL2 were custom made from Innovative Research 
of America. An incision was made to expose the #4–5 and #9–10 mammary glands. A placebo control or CCL2 
pellet was implanted into each of the inguinal mammary fat pads after injection of cells. The skin flaps were 
closed using gut absorbable suture. Mice were monitored twice a week and euthanized 22 weeks post-injection. 
Depending on available cells, 4 mice were injected each with case nos. IC-041717-1 and IC-031317. Two mice 
were injected with case no. IC-022316.

Tissue microarrays (TMA). Biomarker studies were conducted using REMARK  criteria23. TMAs contain-
ing DCIS core sections (n = 19 cases) were obtained from US Biomax (cat no.BB08015). TMAs were generated by 
the BCRF at the University of Kansas Medical Center (KUMC). These TMAs included: DCIS (n = 53 cases) with 
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matching normal adjacent breast tissues (n = 25), independent IDC cases (n = 74 cases) with matching normal 
adjacent breast tissues (n = 61 cases). Table 1 summarizes de-identified patient information on tissues obtained 
from the BCRF. TMAs were arrayed in duplicate, with core sections of 1.5 mm in diameter, 5 microns thickness. 
DCIS was graded according to Van Nuys Prognostic Index (VNPI). Cases of IDC were evaluated according to 
Scarff-Bloom and Richardson (SBR) grading system. Samples were collected prior to treatment between 2007 
and 2012, with 3–5 years follow-up. Seven deaths were reported in the IDC cohort, a number insufficient for 
statistical analysis. Based on St Gallen’s  criteria24, luminal A breast cancers were defined as ER+ and/or PR+, 
HER2−, < 20% Ki67. Luminal B breast cancers were defined as ER and/or PR+, HER2+ or HER2−, ≥ 20% Ki67. 
HER2+ were characterized by ER−, PR− and HER2+. Triple negative breast cancers were identified as ER−, 
PR− and HER2−.

Flow cytometry. Cells were immunostained with CCR2 antibodies as previously  described17. Briefly, cells 
were incubated with anti-CCR2-PE (Biolegend, cat no. 357205) for 1 h, and analyzed using a LSRII Flow cytom-
eter. Expression was normalized to unstained controls.

Immunohistochemistry. Tissues were processed into paraffin and immunostained as previously 
 described25. Slides were incubated overnight with antibodies to: CCL2 (Santa Cruz Biotechnology cat no. 1304) 
for DAB staining, CCL2 (Biolegend cat no. 502602) for immunofluorescence (IF) staining, CCR2 (Santa Cruz 
Biotechnology cat no. sc7395), phospho-SMAD3 s423/s425 (Cell Signaling Technology cat. no. 9520), phospho-
p42/44MAPK Thr202/Thr204 (Cell Signaling Technology cat no. 4376), or PCNA (Biolegend cat no. 307902).

For DAB staining, CCL2 expression was detected by anti-goat biotinylated antibodies (Vector Laboratories 
cat no.BA5000). CCR2, phospho-p42/44MAPK and phospho-SMAD3 proteins were detected by anti-rabbit-
biotinylated antibodies (Vector Laboratories, cat no. BA1000). Slides were incubated with streptavidin peroxidase 
(Vector Laboratories cat no. PK-4000), visualized with 3,3′-Diaminobenzidine substrate (DAB) (Vector Labo-
ratories cat no. SK-4100), counterstained with Harris’s hematoxylin and mounted with Cytoseal (Richard-Allen 
Scientific cat no. 8310-16).

For IF, slides were incubated with anti-rabbit-IgG-Dylight-488 (ThermoFisher cat no.35552) to detect α-sma, 
CCR2, phospho-SMAD3 or phospho-p42/44MAPK, anti-mouse IgG-AlexaFluor-647 (ThermoFisher cat no. 
A28181) to detect CK5/CK19, anti-mouse IgG-Dylight-488 (ThermoFisher cat no. 35502) to detect PCNA or 
anti-mouse-biotinylated followed by streptavidin-AlexaFluor-568 (Invitrogen cat no. S11226) to detect CCL2. 
Sections were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) and mounted with 1:1 PBS/glycerol. 
5 images were captured using an EVOS FL Auto Imaging System (Invitrogen).

Specificity of anti-CCL2 was demonstrated  previously25. Specificities of CCR2, phospho-SMAD3 and phos-
pho-p42/44MAPK antibodies were demonstrated through competition assays with peptides added at a tenfold 
excess to primary antibodies (Supplementary Fig. S1): CCR2 peptides (Novus Biologicals cat no. NBP1-48337PE), 
Phospho-P42/44MAPK peptides (Cell Signaling Technology cat no. 1150s), Phospho-SMAD3 peptides (Abcam 
cat no. ab135224). Species specificity was controlled for using MMTV-PyVmT mouse mammary tumor samples 
generated  previously26.

Image quantitation by software. Biomarker expression was quantified using methods described 
 previously14. Briefly, images were imported into Adobe Photoshop. DAB or fluorochrome staining was selected, 
copied and saved as a separate file. The images were opened in Image J, and subject to particle analysis. Positive 
immunostaining was expressed as particle area values of arbitrary unit and normalized to total hematoxylin or 
DAPI staining.

Table 1.  Clinical features for DCIS and IDC patient samples from the Biospecimen Core Repository Facility. 
Percent of total are shown with actual number of cases in parentheses. a 25% percentile, bmedian, c75th 
percentile are shown for Estrogen Receptor (ER) and Progesterone Receptor (PR).

Factor DCIS (n = 53) IDC (n = 74)

Race

Black 8% 5%

White 62% 91%

Asian/other 30% 4%

Median age 52 55

ER 4.6a 65.3b  98c 90a  99b  100c

PR 0a 27.5b 86.5c 1.5a  85b  100c

HER2

0 27% 51%

1 42% 44%

2 12% 0%

3 19% 5%

Median Ki67 6 5
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Manual scoring. DCIS and IDC samples were immunostained for CCL2 and phospho-p42/44MAPK and 
provided to a clinical pathologist for blinded numerical scoring. CCL2 and phospho-p42/44MAPK levels were 
scored as negative/weak (1), moderate (2) or strong (3). Two–three serial sections from MIND model samples 
were scored for invasion in a blinded fashion. Non-invasive (1), indicated no to low invasion, characterized by 
intact myoepithelium and confinement of epithelial cells within the duct. Invasive (2), indicated 20% or more 
disappearance of the myoepithelium and/or 1 or more epithelial cells contacting the periductal stroma.

3D cell culture. 3D cultures were established and analyzed as previously  described27. Cells were treated 
with/without 100 ng/ml human recombinant CCL2 (Peprotech cat no. 300-04) or 20 nM INCB3284 (Cayman 
Chemical cat no. 11963) in growth media containing 2.5% Matrigel. Images were captured at day 4 for hDCIS.01 
cells and day 8 for SUM225 cells at 10× magnification, 4 fields/well using an EVOS FL Auto Imaging system. 
Spheroid size was quantified using Image J software.

Immunoblot analysis. Immunoblot analysis was performed as previously  described27. Cells were treated 
with/without 100  ng/ml CCL2 and/or 20  nM INCB3284 for up to 30  min. Nitrocellulose membranes were 
probed with antibodies to: SMAD3 (Cell Signaling Technology, cat no. 9523), phospho-SMAD3 (Ser-423/425, 
cat no. 9520, Cell Signaling Technology), phospho-p42/44MAPK (Thr202/Tyr204, Cell Signaling Technology, 
cat no. 4376), p42/44MAPK (Cell Signaling Technology, cat no. 9102), or β-ACTIN (Sigma, cat no. A5441). 
Chemiluminescence was captured using the UVP Imaging System.

Statistical analysis. Sample sizes were determined using PS Power and Sample Size Ver3.0. Minimum 
sample size was determined to be 64 cases of DCIS and IDC to yield meaningful data with 80% power with 
alpha = 0.05. Patient sample populations did not fit a normal distribution and were uneven due to two factors. 
Information on prognostic factors was not available for US Biomax samples. Some sections did not adhere to 
slides during staining, affecting sample size. Therefore, protein expression values and their relationships to clini-
cal data were analyzed using non-parametric methods.

Statistical analysis was performed using GraphPad Prism and SAS software. For data exhibiting non-normal 
distribution, Mann–Whitney Wilcoxon test was used to compare two independent sample populations. Wilcoxon 
Signed Rank Test was used to compare two dependent sample populations. For more than two groups, Kruskal 
Wallis Test with Dunn’s post-hoc comparison was used. Associations with continuous variables were analyzed 
using Spearman correlation test. For data exhibiting normal distributions, Two Tailed t-test or One-Way ANOVA 
with Bonferroni post-hoc comparison was used. Associations with invasion were analyzed using Chi-Square 
test. Incidence of tumor formation was analyzed using Kaplan Meier curve and Log-Rank (Mantel-Cox) test. 
Statistical significance was determined by p < 0.05. n.s = not significant.

Results
Increased expression of CCL2/CCR2 signaling proteins in DCIS and IDC. To determine the clinical 
relevance of CCL2/CCR2 signaling protein expression in breast cancer, we performed immunohistochemistry 
staining on patient samples of DCIS, IDC and normal adjacent tissues for detection of CCL2, CCR2, phospho-
SMAD3 and phospho-42/44MAPK proteins. While DAB staining is typically scored manually, we chose to quan-
tify staining using Image J  software14 because continual values were produced, which enabled more thorough 
statistical evaluation over manual scoring. Image J values corresponded closely to manual scoring of staining 
intensity (Supplementary Fig. S2A,B), indicating this software approach was just as reliable as manual scoring.

Expression levels of CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK were analyzed in DCIS, IDC 
and matching normal adjacent tissues. Increased CCL2 and phospho-p42/44MAPK expression were detected 
in DCIS compared to normal tissues. CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK expression 
were increased in IDC tissues compared to normal breast tissues. Higher levels of CCR2 and phospho-SMAD3 
expression were observed in IDC compared to DCIS tissues (Fig. 1A–D). Overall, some CCL2/CCR2 signaling 
proteins were elevated in DCIS, and an even greater number of CCL2/CCR2 proteins were overexpressed in IDC.

Next, we evaluated associations of CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK with com-
monly used prognostic factors. No associations were identified between CCL2/CCR2 signaling proteins and age, 
Ki67 or histologic grade (Supplementary Table S1, Supplementary Fig. S3A–D). Expression of CCL2 inversely 
correlated with nuclear grade in IDC tissues (Supplementary Fig. S4A–D). In summary, there are few associa-
tions of CCL2/CCR2 signaling proteins to known prognostic factors.

We examined associations of CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK with molecular 
subtype including: luminal A and B, HER2+ and triple negative breast cancers, which were identified using 
clinical guidelines on ER, PR, HER2 and Ki67/PCNA  expression28–30. The only association detected was a sig-
nificant increase in phospho-SMAD3 expression in luminal A breast cancers compared to HER2+ breast cancers 
(Supplementary Fig. S5A–D). Overall, there was little association between CCL2/CCR2 signaling proteins and 
breast cancer subtype.

Increased CCL2/CCR2 signaling in breast epithelial cells enhances formation of invasive 
lesions in PDX models. One limitation to analyzing biomarker expression in DCIS and IDC tissues was 
that these tissues came from different patients, preventing us from drawing predictive conclusions. While col-
lecting cohorts of pure DCIS tissues with follow-up information on recurrence and survival is valuable, this 
process is labor intensive and takes many years. To follow the natural progression of DCIS, we used PDX mouse 
models. In previous studies, cells from patient derived DCIS cases formed breast lesions in the MIND model, 
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which retained their original expression of cytokeratin, ER, PR and  HER219. Therefore, the MIND model repre-
sents a physiologically relevant approach to follow the progression of lesions expressing varying levels of CCR2.

Figure 1.  Expression of CCL2/CCR2 related signaling proteins are elevated in DCIS and further upregulated 
in IDC patient tissues. TMAs containing DCIS (n = 72), IDC (n = 74) or normal adjacent breast tissues to DCIS 
(NA DCIS) (n = 25) or to IDC (NA IDC) (n = 61) were immunostained with antibodies to: (A) CCL2, (B) CCR2, 
(C) phospho-SMAD3 or (D) phospho-p42/44MAPK. Scale bar = 200 microns. Immunostaining was quantified 
by Image J. Whisker box plots are shown. Whiskers indicate min and max values. Box indicates upper and 
lower quartile range. Line indicates median. Statistical analysis for DCIS vs. IDC was performed using Mann–
Whitney–Wilcoxon Test. Statistical analyses for NA DCIS vs. DCIS and NA IDC vs. IDC were performed using 
Wilcoxon Signed Rank Test. Statistical significance analysis was determined by p < 0.05. ns not significant. Scale 
bar = 200 microns.
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To determine the functional relevance of CCL2 levels and CCR2 expression to DCIS progression, patient 
derived breast epithelial cells were isolated from DCIS tissues (Table 2) and injected via MIND model into 
NOD-SCID mice for up to 22 weeks. Mammary tissues were harvested and analyzed for changes in CCL2/CCR2 
signaling and DCIS progression by IF. Human breast lesions were identified by expression of human CK5/CK19. 
The myoepithelium surrounding the breast duct was identified through α-sma expression. Invasive lesions were 
characterized by loss of α-sma+ myoepithelium and presence of CK5/19+ cells in the peri-ductal stroma. Cell 
proliferation was assessed by PCNA staining of CK5/19+ cells. Expression of CCL2/CCR2 signaling proteins 
were examined in CK5+/19+ lesions.

We examined the significance of CCR2 expression in breast lesions. Breast lesions showing higher CCR2 
expression (IC-031317 and IC-022316) did not show significant differences in growth and invasion of breast 
lesions compared to those with relatively low CCR2 expression (IC-041717-1) (Fig. 2A–C, Supplementary 
Fig. S6A–C). Furthermore, CCR2 expression alone was not associated with changes in phospho-SMAD3 or 
phospho-p42/44MAPK expression in breast lesions. These data indicated that CCR2 expression alone or auto-
crine CCL2/CCR2 signaling in primary breast lesions did not affect growth and invasion.

Previous studies showed that CCL2 significantly stimulated CCR2 signaling in breast cancer  cells27. Therefore, 
we hypothesized that CCL2 delivery would enhance DCIS progression to lesions with high CCR2 expression. 
While murine CCL2 may cross-react with human chemokine  receptors31, the levels of CCL2 from murine mam-
mary  tissue25 may not be sufficient to induce CCR2 signaling in human breast epithelial cells. Therefore, we 
determined the effects of exogenous human CCL2 on formation of patient derived breast lesions by orthotopically 
implanting slow release pellets. CCL2 delivery was associated with a significant increase in the growth and inva-
sion of IC-031317 and IC-022316 breast lesions, which had high CCR2 expression (Fig. 2A–C, Supplementary 
Fig. S6A–C). Growth and invasion of these lesions were associated with increased expression of phospho-SMAD3 
and phospho-p42/44MAPK expression (Fig. 2A–E, Supplementary Fig. S6A–E). CCL2 treatment of IC-041717-1 
lesions did not affect growth, invasion or expression of phospho-SMAD3 and phospho-p42/44MAPK (Fig. 2A–E, 
Supplementary Fig. S6A–E). CCL2 levels were elevated in mammary tissues implanted with CCL2 pellets over 
placebo treatment (Supplementary Fig. S7). Overall, DCIS cases IC-031317 and IC-022316, which showed higher 
CCR2 expression, formed more invasive breast lesions with CCL2 treatment, compared to IC-041717-1, which 
showed low CCR2 expression.

CCR2+ hDCIS.01 cells form more invasive breast lesions in vivo. Because CCR2 is expressed in a 
subset of breast epithelial cells, we sought to further determine the functional relevance of this subset to DCIS 
progression using hDCIS.01 cells, an immortalized cell line derived from primary hyperplastic breast epithelial 
 cells20. CCR2+ cells were magnetically sorted from the h.DCIS.01 cell line and expanded in culture for 4 weeks, 
before analysis by flow cytometry. Compared to parental cells, CCR2 expression remained higher in CCR2+ 
cells, indicating that CCR2+ cells were stable (Fig. 3A).

To examine the functional relevance of CCR2+ subsets, we injected these cells into the mammary ducts of 
NOD-SCID and palpated for formation of breast lesions over time. Cells enriched for CCR2 expression formed 
breast lesions at earlier times, compared to control parental cells (Fig. 3B). Histological analysis showed that 
CCR2+ lesions were larger in size and had a more reactive stroma compared to parental lesions (Fig. 3C). Lesions 
enriched for CCR2+ displayed higher levels of PCNA compared to parental lesions and normal tissue (Fig. 3D). 
Additionally, tissues enriched for CCR2+ displayed a significantly higher percentage of invasive lesions compared 
to parental (Fig. 3E). These data indicated that the CCR2+ breast carcinoma cells were associated with increased 
proliferation and formation of invasive breast carcinomas.

We then examined expression of CCL2/CCR2 signaling proteins in hDCIS.01 breast lesions. Parental lesions 
showed higher expression of CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK proteins compared 
to normal adjacent tissues. CCR2+ lesions displayed even higher expression of CCL2, phospho-SMAD3 and 
phospho-p42/44MAPK proteins compared to parental and normal adjacent tissues (Fig. 4A–D). Delivery of 
CCL2 did not further accelerate lesion formation of CCR2+ cells injected in the mammary ducts of mice (Supple-
mentary Fig. S8). Overall, these data indicated that ductal carcinomas with high CCR2 expression were associated 
with increased invasiveness and increased expression of CCL2, phospho-SMAD3 and phospho-p42/44MAPK.

To determine the feasibility of targeting CCR2 on breast cancer cell growth, we used a 3D culture approach, 
useful for modeling drug  efficacy32,33. We examined the effects of a CCR2 antagonist INCB3284, which inhibits 
binding to CCL2 (IC50 = 3.7 nM)34. Compared to parental hDCIS.01 cells, CCR2+ cells showed increased growth 
of spheroids, which was further enhanced with CCL2 treatment. Treatment with 20 nM INCB3284 in 3D cul-
tures inhibited CCL2-mediated growth of CCR2+ hDCIS.01 spheroids by approximately 50% (Supplementary 

Table 2.  Profile of de-identified patient samples used in mammary intraductal injection studies. Patient 
diagnosis, ER, PR, HER2 data were provided in pathology reports. IC-041717-1 and IC-031317 were obtained 
by needle core biopsy. IC-022316 were obtained through surgical biopsy. NA information not available.

Patient sample Diagnosis

Biomarker

ER PR HER2

IC-041717-1 DCIS low grade + 100% + 40% NA

IC-031317 DCIS high grade, comedo/solid + 5% − NA

IC-022316 DCIS intermediate grade, micropapillary/sold + 99% + 68% +
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Figure 2.  CCL2-mediated progression of patient derived breast xenografts is associated with increased CCR2, phospho-SMAD3 
and phospho-p42/44MAPK expression. N = 4 mice (8 mammary fat pads total) were injected each with DCIS cells from patients 
IC-041717-1 and IC-031317. N = 2 mice (4 mammary fats total) were injected with DCIS cells from patient IC-022316. Mice were 
treated with placebo or recombinant CCL2 for up to 22 weeks. Primary breast xenografts were co-immunofluoresence stained for 
CK5/CK19 (red) with (A) α-sma, (B) PCNA, (C) CCR2, (D) phospho-SMAD3 (green) or E. phospho-p42/44MAPK (red). Sections 
were counter stained with DAPI. Representative images are shown for case no. IC-031317 with CK5/CK19 overlay with α-sma, PCNA 
or CCR2, and DAPI overlay with phospho-SMAD3 or phospho-p42/44MAPK expression. Blue arrows point to invasive carcinoma 
cells, characterized by absence of α-sma staining and presence of cancer cells in the peri-ductal stroma. White arrows point to positive 
PCNA staining. Scale bar = 200 microns. Sample size of mammary lesions per group are shown below the last graph. Invasiveness 
was scored for lesions co-stained for α-sma/CK5/19. Expression was quantified by Image J. Stacked bar graph is shown is shown for 
percentage of invasive and non-invasive lesions (A). Whisker box plots are shown for (B–E). Whiskers indicate min and max values. 
Box indicates upper and lower quartile range. Line indicates median. Statistical analysis was performed using Chi Square Test (A) or 
Two tailed T-test (B–E). Statistical significance analysis was determined by p < 0.05. ns not significant.
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Fig. S9A). INCB3284 treatment also inhibited CCL2-mediated spheroid growth of CCR2-H SUM225 cells, sup-
porting the effects of CCR2 inhibition (Supplementary Fig. S9B). INCB3284 treatment inhibited CCL2-induced 
phosphorylation of SMAD3 and p42/44MAPK and decreased the overall protein levels of p42/44MAPK in both 
cell lines (Supplementary Fig. S9C,D; full-length blots shown in Supplementary Figs. S10 and S11). Overall, 
these studies demonstrate that CCR2 antagonists impair CCL2/CCR2 mediated growth and signaling of breast 
cancer cells in vitro.

Figure 3.  CCR2+ hDCIS.01 breast cancer cells show increased formation of invasive mammary lesions. (A) 
hDCIS.01 cells were magnetically sorted for CCR2 expression (CCR2+), and analyzed by flow cytometry for 
CCR2 expression 4 weeks post-enrichment. (B) Parental or CCR2+ cells were injected into the mammary ducts 
of NOD-SCID mice. Mice were palpated for tumor formation twice weekly. Tumor formation was plotted as a 
function of percent tumor free over time. Parental n = 14, CCR2+ n = 12. (C) H&E stain of mammary lesions 
from matching CCR2+ lesions and parental control harvested 75 days post-injection. (D) Cell proliferation 
was analyzed by PCNA immunostaining, normalized to hematoxylin staining. Whisker box plots are shown. 
Whiskers indicate min and max values. Box indicates upper and lower quartile range. Line indicates median. (E) 
Invasiveness was scored for lesions co-stained for α-sma/CK5/19. Statistical analysis was performed using Log 
Rank (Mantel-Cox) Test (B), One Way ANOVA with Bonferroni post-hoc comparison (D) or Chi Square test 
(E). Statistical significance was determined by p < 0.05. Scale bar = 200 microns.
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Discussion
Previous studies have demonstrated that increased CCL2/CCR2 mediated activation of p42/44MAPK and 
SMAD3 signaling regulates growth, survival, migration and invasion of transformed breast cancer cell  lines17,18. 
Through analysis of patient derived breast tissues and mouse models of DCIS, we showed that expression of 
CCL2, CCR2, phospho-SMAD3 and phospho-p42/44MAPK proteins were associated with invasive breast ductal 
carcinomas. Overall, these studies enhance our understanding of the underlying molecular basis of DCIS pro-
gression, and could lead to new approaches to predict DCIS progression, and therefore influence the course of 
treatment for DCIS patients.

In studies of patient tissues, DCIS and IDC were distinguished from normal breast by showing increased 
CCL2 and phospho-p42/44MAPK expression. IDC tissues were distinguished from DCIS by showing higher 
expression of CCR2 and phospho-SMAD3. These data indicated that expression of CCL2/CCR2 signaling pro-
teins correlated with DCIS progression to IDC. In the MIND model, CCL2 treatment of patient derived breast 
lesions (IC-041717-1) enhanced phospho-p42/44MAPK expression but did not affect cell proliferation or inva-
sion. These lesions still expressed CCR2 but at lower levels compared to IC-031317 and IC-022316 primary 
lesions. These data suggested that increased CCL2/CCR2 mediated p42/44MAPK signaling were not sufficient 

Figure 4.  hDCIS.01 xenografts enriched for CCR2 expression show increased CCL2, phospho-SMAD3 and 
phospho-p42/44MAPK expression. hDCIS.01 xenografts were immunostained for expression of: (A) CCL2, 
(B) CCR2, (C) phospho-SMAD3 or (D) phospho-p42/44MAPK. Normal adjacent tissues were from parental 
lesions. Normal adjacent n = 12, parental n = 14, CCR2+ n = 12. Expression was quantified by Image J. Statistical 
analysis was performed using One Way ANOVA with Bonferroni post-hoc comparison. Whisker box plots are 
shown. Whiskers indicate min and max values. Box indicates upper and lower quartile range. Line indicates 
median. Statistical significance was determined by p < 0.05. Scale bar = 200 microns.
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to promote DCIS progression, but required additional pathways to increase growth and invasion. Previous stud-
ies have shown that SMAD3 regulates mammary tumor growth, invasion and metastasis in mouse  models35,36. 
Furthermore, SMAD3 cooperation with p42/44MAPK was found to be important in CCL2/CCR2 mediated 
breast cancer cell survival and  motility17. Here, phospho-SMAD3 expression was associated with increased 
CCL2 and CCR2 levels, and increased growth and invasion of patient derived lesions (IC-031317, IC-022316) 
and hDCIS.01 breast lesions in mice. These data suggested that increased CCR2 expression in breast epithelial 
cells could amplify the effects of CCL2 signaling and activate additional downstream signaling pathways such 
as SMAD3 to enhance formation of invasive breast lesions.

PDX models allowed us to follow DCIS progression in a physiologically relevant manner. These studies were 
complemented by the hDCIS.01 MIND model, which enabled us to examine the contribution of endogenous 
CCR2 expression to DCIS progression. We noted some consistent trends between both models. In the hDCIS.01 
and primary DCIS cases examined in the MIND models, CCR2 expression was associated with increased growth 
and invasion of breast lesions and increased phospho-p42/44MAPK and phospho-SMAD3 expression. Interest-
ingly, CCL2 delivery to CCR2 highly expressing primary xenografts enhanced formation of invasive lesions. This 
was not true of CCL2 delivery to CCR2+ hDCIS.01 xenografts. One reason for these differences may be because 
CCL2 levels were not yet saturated in the patient derived models, enabling CCR2 to respond to external CCL2 
treatment. Since CCL2 was higher in CCR2+ h.DCIS.01 lesions, these lesions may have been less dependent on 
exogenous CCL2 than primary cells. Overall, these data demonstrated an important association between CCL2 
levels and epithelial CCR2 expression to DCIS progression.

There were some phenotypic differences between the primary and hDCIS.01 MIND lesions. Primary DCIS 
lesions tended to be smaller than hDCIS.01 lesions. These differences may be because primary human breast 
epithelial cells required more nutrients than immortalized breast epithelial cells to grow. These nutrients may not 
have been provided by the murine microenvironment. Molecular differences in the murine and human breast 
microenvironment could have affected growth and invasion of human breast epithelial cells established within 
the breast duct. For example, estrogen levels are significantly lower in mice compared to  humans37, and estrogen 
regulates expression of IL8 (CXCL8), a human specific cytokine with oncogenic effects in the  breast38,39. Murine 
specific growth factors expressed by stromal cells such as EGF bind with lower affinity to human  receptors40,41. 
Future studies could assess the role of CCL2/CCR2 signaling on DCIS progression in humanized  mice42.

Several questions remain regarding CCL2/CCR2 signaling in DCIS progression. The molecular mechanisms 
through which CCL2/CCR2 signaling regulates DCIS progression remain poorly understood. Ongoing studies 
in the laboratory indicate that CCL2/CCR2 regulates DCIS progression by mediating changes in metabolism in 
breast epithelial cells. Animal studies are currently in progress to investigate these possibilities in part by examin-
ing the effects of targeting CCR2 on DCIS progression in multiple breast cancer models.

We acknowledge some limitations to these studies. For one, patient DCIS samples were not matched to IDC 
cases. Additionally, a small number of patient DCIS cases were examined in the MIND model. These aspects 
prevented us from drawing conclusions about the predictive nature of the proposed CCL2/CCR2 signaling 
protein signature to DCIS progression. Future studies would include following DCIS progression in the MIND 
model using a larger number of PDX samples. It would also be important to examine expression of CCL2/CCR2 
chemokine signaling proteins in a retrospective cohort of DCIS with outcome data, and prospective cohort of 
patient DCIS with follow-up studies on outcome. This distinction in protein expression between could prove 
predictive in stratifying DCIS patients into low and high risk for progression to IDC. If the CCL2/CCR2 multi-
protein signature were found to be predictive, DCIS patients absent for this protein signature would face a lower 
risk of progression and could potentially undergo fewer harsh treatments. Patients positive for this signature 
might face a higher risk of progression, and therefore would be treated using strategies more tailored to the 
patient.

CCR2 is currently a therapeutic target of interest, with promising results in clinical trials of CCR2 pharma-
cologic inhibitors in the treatment of pancreatic cancer and  diabetes43–46. Currently, in selecting candidates for 
CCR2 targeting, tissues are screened for the presence of CCR2+ immune cells. Here, we show that epithelial 
overexpression of CCR2 is biologically significant and could be a criterion used to select candidates for CCR2 
targeting. Targeting the CCL2/CCR2 pathway in combination with existing treatment strategies could be effec-
tive in preventing or treating IDC, thereby improving patient survival.
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