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Inferring ecosystem networks 
as information flows
Jie Li1,2 & Matteo Convertino1,2,3,4*

The detection of causal interactions is of great importance when inferring complex ecosystem 
functional and structural networks for basic and applied research. Convergent cross mapping (CCM) 
based on nonlinear state-space reconstruction made substantial progress about network inference 
by measuring how well historical values of one variable can reliably estimate states of other 
variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem 
model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets 
generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature 
system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than 
CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of 
inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and α
-diversity including their characteristic time delays. We propose an optimal threshold on inferred 
interactions that maximize accuracy in predicting fluctuations of effective α-diversity, defined as the 
count of model-inferred interacting species. Overall OIF outperforms all other models in assessing 
predictive causality (also in terms of computational complexity) due to the explicit consideration of 
synchronization, divergence and diversity of events that define model sensitivity, uncertainty and 
complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks 
of complex ecosystems from time-series data in the space-time continuum. The accurate inference 
of species interactions at any biological scale of organization is highly valuable because it allows to 
predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. 
This has practical implications for defining optimal ecosystem management and design, such as fish 
stock prioritization and delineation of marine protected areas based on derived collective multispecies 
assembly. OIF can be applied to any complex system and used for model evaluation and design 
where causality should be considered as non-linear predictability of diverse events of populations or 
communities.

“But truth is ever incoherent”
Astrid Recker.

Ecosystem complexity and predictability. The flourishing development of complexity  science1, 2 has 
shed light on research questions and applications in many interdisciplinary fields, for instance, climate  change3–5, 
 epidemiology6, 7 and ecosystem sciences at multiple  scales8–10. In this burgeoning science, complex network 
models play a central role in the quantitative analysis, synthesis and design (including predictions) of ecosystems 
and their visual representation. This is because functional and structural networks—such as species interac-
tions and ecological corridors—are the core elements of ecosystems defining species organization and ecosystem 
function. When inferring networks, causal  inference11 is one of the fundamental steps for ecosystem reconstruc-
tion and graphical representation by assessing interactions or interdependencies dynamically or across a period 
of time—between biota, environment, and among those—that can be conceptualized as information flows in 
a general  purview12. In a quantitative sense, network inference can performed via causality inference based on 
time series data defining the dynamics of ecosystem components. Causal inference also attracts much attention 
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in some emerging disciplines such as big data science via machine learning since it brings a new set of tools and 
perspectives for some problems in these areas. However, this issue of causal inference is still an extremely chal-
lenging problem due to the intrinsic lack of knowledge or observability of the “true” reality of a system especially 
for highly complex non-linear systems driven by non-linear environmental forcing. Certainly the objective of 
causal inference is defining unknowns; however robust model validation must be performed. In order to make 
causal inference practical and achievable, causality is often replaced with predictability as it is articulated in this 
paper. A plethora of conceptual approaches, frameworks and algorithmic tools including but not limited to Pear-
son’s correlation coefficient (PCC)13, 14, Bayesian networks (BNs) and dynamic Bayesian networks (DBNs)15–19, 
neural networks, graphical Gaussian models (GGMs)20, 21, Wiener–Granger causality (GC)  model22, structural 
equation modeling (SEM)23–28, convergent cross mapping (CCM)29 and information-theoretic  models30–33 for 
instance, to tackle causal interactions and infer complex networks in terms of correlation, predictability and 
probability have been well established; however, most tools are solely tested on low-dimensional systems and 
some are even untested on ecosystems at different levels of complexity or simulated ones. The vast majority of 
these models in ecosystem science (with the exception of CCM and few others such as  PCMCI34) consider only 
the inferred causality between species pairs one at a time without the simultaneous consideration of all species 
pairs for each species that is shaping ecosystem collective behavior mediated by environmental dynamics. The 
ensemble of all species causations is representable as nonlinear dynamical network over the space-time-envi-
ronmental domain considered. It is therefore valuable for science to seek for robust models and explore novel 
methods to identify and quantify the pattern-oriented causality between variables (such as species) and how this 
causality is predictive of target complex system patterns.

Causal interaction inferential models. From granger to convergent cross mapping. For quite a long 
time, correlation has been considered as a heuristic of causal relationship between variables even though George 
 Berkeley35 always suggested that correlation did not necessarily or sufficiently imply causation. Especially for 
ubiquitous nonlinear dynamics, applying linear correlation to infer causation is cursory and risky. Statements 
about causation and correlation actually do not have much to do with each other, particularly when there is no 
a-priori knowledge of the studied ecosystem processes. The conceptualization and identification of “causality” 
was originally introduced by  Wiener36 who propounded that “causality” between two variables can be identified 
by measuring how well one variable facilitates the predictability of the other. In this broader view causality was 
already conceptualized correctly as predictability.

In 1969, Granger formalized Wiener’s  idea36 in terms of autoregression and established the framework of 
Wiener-Granger causality (GC)  model22 that after led to the Nobel prize in economics. Since then, GC approach 
has become a frequently used advance for causation and useful to infer causal interactions between strongly 
coupled variables. According to the concept of GC model, a variable is said to “GC cause” a second variable if 
knowledge of the current value of the first variable helps in predicting that of the second variable. This notion 
of causality was substantially based on the predictability of time series, although strictly speaking Granger 
causality is about conditional independence of variables rather than predictability. The key requirement of GC 
model is separability that is a feature of purely linear and stochastic  systems22, and provides a way to understand 
the system as sum of components rather than as a whole non-linear entity composed by multiple components 
difficult to separate. Separability means that the second variable can be independently and uniquely forecasted 
by the first variable; an assumption that reflects how studied systems are interpreted as linear systems and that 
is certainly not the case of real complex systems. Additionally, states in the past of some variables in dynamical 
systems can be inherited through time, which means that the behavior of dynamical systems has memory. Yet, 
both cause and effect are embedded in a non-separable higher dimension trajectory. Space-time separability 
therefore becomes extremely hard to satisfy in systems that can be described as complex networks where each 
node (variable) influences several nodes or even all nodes in the entire system simultaneously, resulting in a 
non-random propagation of information through the network. In this sense ecosystems can be thought that 
information machines where separability is only possible by fixing thresholds of significance for the patterns to 
investigate. As a consequence, GC model might be problematic while using in nonlinear dynamical systems with 
deterministic settings and weak to moderate interaction. In attempt to solve the causality inference problem in 
complex ecosystems, Sugihara et al.29 developed the convergent cross Mapping (CCM)  model29, and successfully 
applied this model to a coupled non-linear mathematical predator-prey model and a real-world sardine-anchovy-
temperature ecosystem. Later on, Ushio et al.37 applied CCM to a complex fish ecosystems with 15 species after 
removing seasonality from abundance data in order to assess “true” or biological interactions.

In dynamic systems two variables (X and Y for instance) are causally linked if they are generated by one 
system and share a common attractor manifold. It implies that each variable can be used to recover (predict) the 
other one. CCM is the method capable of quantifying this kind of correspondence between two variables. CCM 
does so by measuring the extent to which the states of one variable (considering values rather than probability 
distributions) can be reliably estimated by the other one with time lags. In practice, CCM take values of variables 
X and Y, a time lag embedding is derived from the time series of Y, and the ability to estimate the states of vari-
able X from the time lag embedding quantifies how much signature of X is encoded in the time series of Y. This 
principle was termed as “Cross Mapping”, and it was suggested that the causal effect of X on Y is determined by 
how well Y “cross maps” Sugihara et al.29 noted that CCM had drawbacks, although some of these are disputable. 
For instance for the phenomenon of “generalized synchrony” as a result of exceptionally strong unidirectional 
causation (X strongly “cross maps” Y, but Y does not causes X). In such a case, both directions (X “cross maps” 
Y, Y “cross maps” X) of the causal relationship can be observed from CCM’s results, resulting in a “misleading” 
bidirectional  causality38. This was perceived as a limitation of CCM in distinguishing between bidirectional cau-
sality and strong unidirectional causality because of the synchrony. Misleading is however not a correct definition 
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since we believe any variable has always non-zero interdependencies due to unaccounted factors and chance that 
interactions may appear at least once in the ecosystem considered. Yet, asymmetrical interdependence is a norm 
rather than a numerical artifact. Another key property, and potentially a drawback, of CCM is convergence that 
is stable predictability (rho) after a critical library size defining the minimum information for reliable inference. 
However, datasets are not always long enough especially for real- world applications. Yet, convergence might 
be limited by the finite size of time series data. Lastly, CCM suffers from the high computational complexity 
in terms of model parameters and computation speed. Despite these drawbacks CCM is used in this study as a 
benchmark for evaluating our proposed model.

From information flow to transfer entropy. Most natural and artificial systems composed of a large number 
of interacting elements can be represented as networks. Networks, functional and structural, are the backbone 
of ecosystems. In order to untangle such networks, the primary mission is to identify and quantify causations 
between elements and then to infer the networks for analysis and visualization. These networks are information 
fluxes representing ecosystems via non-linear dynamic interactions. Ecosystems can be identified in terms of net-
work topology as collective dynamics and as a function of macroecological indicators as entropy/energy states. 
Variables in information theory including Shannon entropy, Mutual Information (MI) and Transfer Entropy 
(TE) have been recently used in complex network science to characterize ecosystems at different  scales39. Herein, 
TE coined by Thomas  Schreiber40 is an information-theoretic quantity measuring the asymmetric bidirectional 
information transfer (vs. information flow as in Lizier and  Prokopenko41 when conditional entropies are used to 
exclude indirect pairs of species whose interactions is of second order importance) between two  variables42. In a 
conceptual and practical view, besides GC and CCM, TE can be an appropriate candidate to infer the causality 
between interacting elements in complex ecosystems.

As mentioned above, GC model may be problematic in complex systems due to highly nonlinear dynamics, 
and CCM may not be suitable for distinguishing well bidirectional or strong unidirectional interactions, the 
requirement convergence, the lack of consideration of probability distribution functions (pdfs), and numerical 
sensitivity due to high computational complexity. By contrast, TE, as a non-parametric, model-free informa-
tion-theoretic variable defined from nonlinear dynamics of Markov chain process (mappable as stochastic pdf 
propagation equivalently), it provides a directed measure to detect asymmetric dynamical information transfer 
between two time-varying variables. TE is particularly convenient because, on the contrary of other models 
such as CCM, it is a “first principle” variable defined without assuming any particular functional/process or 
numerical model to identify the interactions in studied  systems43. For this reason, TE is the elementary block 
of complex systems represented as information processing machines where uncertainty or information shapes 
systems’ collective behavior driven by non-linear convolution of intrinsic system’s properties and external noise 
(e.g. biology and environment, respectively). Thus, TE has been considered as an important and powerful tool 
to analyze causal relationships in nonlinear complex  systems44 and numerical methods are just used to calculate 
TE from its analytical form (such as the choice of pdf binning and entropy discretization). It is worth noting that 
for Gaussian random processes TE is equivalent to Granger  causality45 but these are rare processes in nature. The 
vast majority of natural processes are multimodal and non-Gaussian.

Although, in its basic formulation, TE has already been widely used for causality inference, general principles, 
unified frameworks, and models, and further developments based on TE are still lacking. More importantly 
no work hitherto has been done to give systematic validations for TE-based causality inference models with 
mathematically synthetic data, as well as real-world ecosystems, to elucidate how TE behaves dependent on 
dynamics and complexity. Abdul Razak and  Jensen46 made progress on this issue by using classical and amended 
Ising models which are mathematical models of ferromagnetism in statistical mechanics; Duan et al.47 provided 
a theoretical and experimental systemic validation of a TE-based model; and finally  Runge48 explored TE and 
other models with synthetic data. However, these studies are applied to complex systems with a limited number 
of variables or whose dynamics is well defined; yet, they did not validate the model for realistic ecosystems in 
its full complexity, driven also by data fallacies, as seen in nature. Therefore, specific applications of TE-based 
models lack of a rigorous performance assessment that thus remains elusive. On one side low complexity of well-
known ecosystems can validate the inferred pairwise interactions, while highly complex ecosystems can validate 
the whole systemic interaction network predictability on some patterns such as biodiversity indicators over 
time. The former problem deals more with accurate causality between pairs, while the latter deals more with 
ecosystem predictability.

Optimal information flow and predictability. In this study, to overcome limitations of CCM and TE 
inference models estimating species pairs independently of each other, as well as to revise and validate “causal-
ity” in a predictive sense, we propose the Optimal Information Flow (OIF) model based on previously developed 
models by our  group39, 49. Specifically, the proposed OIF model involves four main steps: (1) MI-based optimal 
time delay assessment that maximizes the predictability of variables and focus on extreme or rare  interactions39; 
(2) TE computation considering data probabilistic dynamics; (3) coupled maximization of uncertainty reduction 
and removal of indirect links; and (4) selection of optimal TE threshold for predicting selected patterns (e.g. α
-diversity). The optimal threshold on TE is not necessarily within the scale-free maximum uncertainty reduction 
range (describing ecosystem collective dynamics) because predicted patterns define the patter-specific salient 
TE. Technically, in this paper we offer a different estimation of TE than Li and  Convertino39 (based on JIDT Ker-
nel estimator suitable for power-law distributed  data42), and we explore all TEs (without TE thresholding) with 
the aim of capturing all differences between TEs and CCM interaction matrices and their ability to predict fluc-
tuations in macroecological patterns considering connected species a posteriori. In addition, OIF is improved 
with respect to Li and  Convertino39 by considering its extension over time to reconstruct dynamical informa-
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tion networks, and the time-dependent Markov order (self-memory) of each species. Note that in this paper we 
consider all inferred TEs without any redundancy check and removal of indirect interactions as in Servadio and 
 Convertino49 because we wish to characterize the full interaction matrix without any assumptions on biologi-
cal interactions or methodological criteria of subordinate interactions. This is particularly important when no 
knowledge is available a priori about biological interactions, whether the biomarker used (e.g. abundance) is 
reflective of the interactions of interest (physical, biomass conversion, hormonal interactions, etc.), and when 
indirect weak interactions are quite important (and this is quite common for small organisms, e.g. microbes).

The performance of OIF is assessed by applying it to three prototypical case studies including mathematical 
deterministic and real-world ecosystems. One is a biologically inspired mathematical model that can gener-
ate synthetic two-coupled time-series variables describing dynamics similar to predator-prey  dynamics29. Two 
parameters ( βxy and βyx ) in the equations underlying the model are describing the strength of true interdepend-
ence between two simulated variables and they can be free varied. Other two case studies are real-world ecosys-
tems: the case of externally forced poorly coupled species (sardine-anchovy-temperature system)29 and the one 
of highly complex interacting species (fish community in Maizuru bay)37 (Fig. 1). The well-documented CCM 
method is also used for these three cases and the results from CCM, despite its known drawbacks of convergence, 
strong asymmetrical causality miscalculation, and computational complexity, were somewhat considered as 
benchmark interactions due to the lack of other estimates.

OIF is not perceived as a competitor with other already published models, including GC and CCM, but rather 
it aims at providing an alternative and hopefully more precise assessment to predictive inference in cases not 
completely covered by previous models. Theoretically, leaving aside systematic data issues, OIF is expected to 
give a better performance than other models in interdependence assessment owing to the aforementioned fine 
properties of TE for nonlinear dynamics. Besides, given the relationship between entropy and  diversity50 (specifi-
cally Shannon and Transfer entropy and α - and β-diversity), OIF provides a potential advantage to predict the 
information about macroecological indicators of ecosystems. In consideration of these features, TE causality is 
proposed as non-linear predictability of both population fluctuations of species (in this case abundance fluctua-
tions) and community macroecological indicators, simultaneously.

The fundamental principle about OIF is anchored into the idea of systemic uncertainty reduction (leading 
to maximum predictive accuracy) that is by itself a form of quantitative validation considering aleatoric uncer-
tainty in species variables. Certainly systematic uncertainty (of models and algorithms) and lack of biological 
information are two other important elements to consider for a complete validation, and we tried to address 
those to a certain extent but further studies are required. It should be kept in mind that interactions are always 
specific to a target outcome, e.g. biomass variation, that is likely reflected by the species biomarker as model 
inputs. For this reason we emphasize that the inferred interactions are generally predictive causal relationships 
which maximize predictive accuracy of multivariate time series and not ”absolute” species interactions (for an 
interesting semantics discussion on species interactions see  Nakazawa51).

Results
Two species unidirectional coupling ecosystem. This bio-inspired ecosystem S(βxy = 0 , βyx ) describ-
ing the unidirectional coupling is run for 1000 time steps for reaching stationarity, generating a set of 1000 points 
long time-series dependent on βyx . This means that species X has an increasing effect on Y with the increase of 
βyx , but Y has no effect on X. Both CCM and the proposed OIF model are separately used to quantify the poten-
tial causality between species X and Y. The inferred causality dependent on βyx only (as a physical interaction) is 
shown in Fig. 2A. β , ρ and TE have different units; specifically β and ρ are dimensionless while TE is measured 
in bits or nats (a logarithmic unit of information or entropy). Therefore, any comparison is done considering 
gradients of change when these variables vary together rather than making comparisons between absolute values 
which are meaningless. Figure 2A shows that under the condition of βxy=0, results of “Y to X” (i.e. the estimated 
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Figure 1.  Studied ecosystem complexity. Epitomes of increasing ecosystem complexity are shown from left to 
right where nodes are representing variables (e.g. species or other socio-environmental features). Case 1 shows 
two basic cases: unidirectional and bidirectional interactions where true interaction strength is known because 
embedded into a mathematical model. Case 2 is about environment-mediated interactions with no knowledge 
of ”true” interactions. Case 3 is a multispecies ecosystem with multiple bidirectional interactions with no 
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effect on Y on X) is close to 0 for the OIF model ( TEY→X(βyx) ) that precisely describe the no-effect of Y on X. “X 
to Y” ( TEX→Y (βyx) ) well tracks the increasing strength of the effect of X on Y for increasing values of the physi-
cal interaction βyx embedded into the mathematical model. However, considering results of the CCM model, “Y 
to X” ( ρY→X(βyx) ) presents non obvious (and likely wrong) non-zero values with higher fluctuations compared 
to TEY→X(βyx) especially for lower values of βyx . This erroneous estimates of CCM is likely related to the need of 
CCM for convergence. For CCM, “X to Y” ((ρX→Y (βyx) )) shows an increasing trend for increasing values of βyx 
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Figure 2.  Inferred predictable causality via CCM and TE for embedded true causality. CCM correlation 
coefficient ( ρ , left plots) and Transfer Entropy (TE, right plots) are shown for the bio-inspired mathematical 
model in Eq. (1) representing bidirectional interactions. The mathematical model indicated as S(βxy,βyx ) is 
simplified as a univariate function because βxy is fixed while βyx is free and varying within the range [0, 1]. βxy 
and βyx are establishing true causality while ρ and TE are indicators of predictable causality. Y’s causal effects 
on X is theoretically fixed as a stable value corresponding to each βxy . The greater βxy the stronger Y affects X 
(estimated by ρyx and TEyx in red lines). (A) βxy = 0 means that Y does not affect X and then X dynamics is only 
related to stochastic dynamics due to birth-death process as in the model (Eq. 1). X’s effects on Y depends on 
the value of βyx , theoretically leading to increasing functions ρxy and TExy (blue lines) when βyx increases; (B) 
βxy = 0.2 ; (C) βxy = 0.5 ; and (D) βxy = 0.8.
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and decreasing when βyx is greater than ∼0.5 non-trivially. In consideration of these results for the unidirectional 
coupling ecosystem, the OIF model performs better over CCM in terms of unidirectional causality inference.

Two species bidirectional coupling ecosystem. In this case, the effect between two species is bidirec-
tional. Species X has an effect on species Y and vice versa. The univariate dynamical systems S(0.2/0.5/0.8, βyx ) 
are run for 1000 time steps under the same conditions determined by βxy . Certainly this situation is fictional 
since in real ecosystems the interaction strength is changing when other interacting species change their interac-
tions.Thus, keeping one interaction fixed around one value is a strong unrealistic simplification (analogous of 
one-factor at-a-time sensitivity analyses) but it is a toy model that allows to verify the power of network infer-
ence models. These models generate three sets of 1000 points long time-series dependent of βyx for each fixed 
βxy . OIF and CCM are used to infer “causality” between X and Y—in the form of ρ and TE—and compare that 
against the real embedded interaction βyx and βxy shown in Fig. 2B,C,D. Considering all results of Fig. 2 cor-
responding to fixed βxy s, the correlation coefficient ρ yielded from CCM and TE from OIF are both able to track 
the strength of causal trajectories. However, TE seems to perform better in term of ability to infer fine-scale 
changes in interactions. In particular, considering Fig. 2D (right plot), higher TEyx higher for low βyx makes 
sense because βxy > βyx that means Y has a larger influence on X than vice versa and then Y is able to predict X. 
Additionally, TE does not suffer of convergence problems; specifically, considering Fig. 2A (left plot), higher ρ 
for small βyx is not sensical and that is likely related to convergence problems of CCM.

Considering all results of Fig. 2 corresponding to fixed βxy s, the correlation coefficient ρ yielded from CCM 
and TE from OIF are both able to track the strength of causal trajectories. Ideally, the causality from Y to X is a 
constant since βxy is a fixed value for each case. In this figure, the red curve in the right panel representing the 
OIF-inferred (TE-based) causality from Y to X is higher for greater βxy s, while red curves representing CCM-
inferred ( ρ ) causality in the left panel present higher fluctuations especially for lower βyx . For the causality from 
X to Y determined by βyx in the mathematical model, theoretically speaking, the causality from X to Y should 
monotonously grow when βyx increases from 0 to 1. In Fig. 2, blue curves in the right panel representing the 
OIF-inferred (TE-based) causality from X to Y present monotonously increasing features as a whole with the 
increasing βyx , while those from CCM model ( ρ ) do not and show considerable fluctuations.Therefore, OIF 
outperforms CCM in terms of the ability to infer the fine-scale changes in causality. In particular, considering 
Fig. 2D (right plot), higher TEyx higher for low βyx makes sense because βxy > βyx that means Y has a larger 
influence on X than vice versa and then Y is able to predict X. Additionally, TE does not suffer of convergence 
problems; specifically, considering Fig. 2A (left plot), higher ρ for small βyx is not sensical and that is likely related 
to convergence problems of CCM.

Additionally, ρY→X(βyx) shows higher fluctuations on average especially for the condition of lower βyx s com-
pared to TEY→X(βyx) . When considering the effect of X on Y that is a function of βyx for CCM, ρX→Y reaches 
an extreme value at around βyx = 0.5 and then declines for larger values of βyx . This is not consistent with the 
expected effect of X on Y that should be proportional to βyx embedded into the mathematical model. The ability 
of ρ to reflect the proportional relationship between the effect of X on Y (manifested by βyx ) vanishes for high βxy s 
due to unexpected and somewhat inconspicuous changes in ρX→Y for larger βyx . In simple words, the expected 
increasing trend of ρ is lost for larger βxy that is counterintuitive. On the other side, TEX→Y (βyx) invariably main-
tains an increasing trend for increasing values of βxy . OIF is also performing better than CCM when predicting 
higher average values of TEY→X for increasing values of βxy (red curves in Fig. 2A–D, right plots) as expected by 
the fixed effect in the mathematical model of Y on X. These results suggest that when compared to ρ of CCM, TE 
can track well the causal interactions over βyx with higher performance and without considering the convergence 
requirement of CCM. CCM needs to consider the length of time series that makes ρX→Y (βyx) convergent to a 
stable value, but uncertain for large differences in time-series length of (X,Y) and sensitive to short time series.

In more realistic settings for real ecosystems (and in analogy to global sensitivity analyses) when βxy and 
βyx are both considered as arguments of the two-variable (X,Y) bio-inspired model, the simulated ecosystem 
becomes a truly bivariate system, yet yielding complexity but more interest into the causality inference (Fig. 3). 
The dynamical system S(βxy , βyx ) was generated for 800 time steps under the same conditions mentioned above. 
We generated the datasets that allowed us to study linear and non-linear predictability indicators for infer-
ring the embedded physical interactions. Specifically, we measure undirected linear correlation coefficient 
corrX;Y (βxy ,βyx) , non-linear undirected mutual information MIX;Y (βxy ,βyx) , directed non-linear correlation 
coefficient ρX→Y (βxy ,βyx) and ρY→X(βxy ,βyx) , and non-linear directed transfer entropy TEX→Y (βxy ,βyx) and 
TEY→X(βxy ,βyx) as shown in Fig. 3. These 2D phase-space maps in Fig. 3 show strikingly similar patterns for 
classical linear correlation coefficients, MI, ρ of CCM and TE of OIF which underline the fact that all methods 
are able to infer the interdependence patterns of interacting variables explicitly defined by βxy and βyx . The color 
of phase-space maps is proportional to the inferred interaction between X and Y when the mutual physical inter-
actions are varying according to the mathematical model in Eq. (1). In Fig. 3, even though phase-space maps of 
undirected corrX;Y (βxy ,βyx) and MIX;Y (βxy ,βyx) present similar patterns (in value organization and not value 
range) to those of directed ρ and TE, neither corrX;Y ((βxy ,βyx) and MIX;Y ((βxy ,βyx) provide information about 
the direction of causality. As expected MI shows the opposite pattern of the average TE due to the fact that MI is 
the amount of shared information (or similarity) versus the amount of divergent information (divergence and 
asynchronicity) between X and Y.

In a biological sense TE should be interpreted as the probability of likely uncooperative dynamics (leading 
to or driven by environmental or biological heterogeneity) while MI as the probability of cooperative dynamics 
(leading to or driven by homogeneity). Here we refer to cooperative and uncooperative interactions based on the 
similarity or dissimilarity in pair dynamics manifested by species abundance fluctuations. For instance divergence 
and asynchronicity (that define TE) in pair species dynamics manifest uncooperative interactions. The balance 
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of cooperative and uncooperative interactions can result into net interactions at the ecosystem scale manifesting 
neutral patterns, or net interactions may lead to niche patterns biased toward strong environmental or biological 
 factors52. Certainly, cooperation in a biological sense should be interpreted on a case by case basis. In a broader 

Figure 3.  Phase-space maps of normalized coupling predictive causation via correlation, mutual information, 
CCM and OIF for varying true causal interactions. Both true causal interactions βxy and βyx are free varying 
within the range [0, 1], indicating a bivariate model S(βxy,βyx ) where both species (or variables more generally) 
are interacting with each other with different strength. (A) normalized correlation coefficient, (B) normalized 
mutual information, (C) and (E) normalized CCM correlation coefficient ( ρ ) for interaction directions of 
X → Y  and Y → X , (D) and (F) normalized transfer entropy (TE) from OIF model for interaction directions of 
X → Y  and Y → X.
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uncertainty propagation  perspective49, “cooperation” between variables means that variables contribute similarly 
to the uncertainty propagation, while “competition” means that one variable is predominant over the other in 
terms of magnitude of effects since TE is proportional to the magnitude rather than the frequency of effects. For 
the former case the total entropy of the system is higher than the latter case. Interestingly, correlation corr (β) , ρ 
and TE show similar patterns in both organization and value range (but not in singular values of course), which 
sheds some important conclusions about the similarity and divergence of these methods as well as their capacity 
and limitations in characterizing non-linear systems.

When comparing the phase-space patterns from CCM and OIF (displaying ρ and TE) a more colorful and 
informative pattern is revealed by OIF. This means that TE gives a better gradient when tracking the increasing 
strength of causality for increasing values of βxy and βyx . When comparing the phase-space patterns for the two 
causal directions of “X → Y ′′ and “Y → X ′′ , phase-space maps from CCM are very similar, while those from 
TE present apparent differences in the strength of effects for the two opposite direction of interaction. Therefore, 
OIF is more sensitive to the direction of interaction compared to CCM when detecting directional causality.

These results imply that TE performs better to distinguish directional embedded physical interactions (that 
are dependent on direct interactions β-s, species growth rate rx and ry , and contingent values X(t) and Y(t) 
determining the total interaction as seen in the model of Eq. (1)) in the species causal relationships. It should 
be emphasized how all linear and non-linear interaction indicators are inferring the total interaction and not 
only those exerted by β-s. In a broad uncertainty  purview49 the importance of these three factors ( β-s, r-s and 
X(t)/Y(t)) depends on their values and probability distributions that define the dynamics of the system; dynam-
ics such as defined by the regions identified by patterns in Fig. 3 for the predator-prey system in Eq. (1). In 
principle, the higher the difference between these three interaction factors in the species considered, the higher 
the predictability and sensitivity of OIF. Figure 4 highlights three different dynamics corresponding to the TE 
blue, green and red regions in Fig. 3.

In all dynamical states represented by Fig. 3, species are interacting with different magnitudes and this defines 
distinct network topologies. Three prototypical dynamics are shown in Fig. 4 with colors representative of ρ 
and TE in Fig. 3. The “blue” deterministic dynamics has very high synchronicity and no divergence considering 
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Figure 4.  Dynamics of abundance and predictability for the bidirectional two species ecosystem model. (A) 
plots refer to the species abundance in time for the mathematical model in Eq. 1 for different predictability 
regimes associated to different interaction dynamics from low to high complexity ecosystem associated to low 
and high predictability. Blue, green and red refer to a range of predictable interactions as in Fig. 3: specifically, 
Blue is for ( βyx , βxy)=(0.18, 0.39) (small mutual interaction, and predominant effect of Y on X), Green is for 
(0.64, 0.57) (high mutual interactions, and slightly predominant effect of X on Y), and Red for (0.94, 0.34) (high 
mutual interactions, and predominant effect of X on Y). (B) phase-space plots showing the non-time delayed 
associations between X and Y corresponding to synchronous and homogeneous, mildly asynchronous and 
divergent, and asynchronous and divergent dynamics. The transition from synchronous/small interactions to 
asynchronous/high interaction leads to a transition from modular to nested ecosystem interactions when more 
than one species exist (Fig. 6).
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variable fluctuation range (the gap is deterministic and related to the numerically imposed u = 1 ), as well as no 
linear correlation between non-lagged variables. In perfect synchrony one would have one point in the phase-
space. Thus, absence of correlation does not imply complete decoupling of species but it can be a sign of small 
interactions. The “green” dynamics shows a relatively high synchronicity and medium divergence. In the phase-
space of synchronous values of X and Y a correlation is observed with relatively small fluctuations because the 
divergence is small. Lastly, the “red” dynamics shows a relatively high asynchronicity and divergence. The sto-
chasticity is higher than previous dynamics and the “mirage correlation” in the phase space has higher variance. 
Time-dependent mirage correlations in sign and magnitude mean that correlation (that may suggest common 
dynamics in a linear framework) does not imply similarity in dynamics for the two species. Non-linearity is 
higher from blue to red dynamics as well as predictability but lower absolute information entropy. Then, it is safe 
to say that linear dynamics (or small stochasticity) does not imply higher predictability.

Real-world sardine–anchovy-temperature ecosystem. CCM and proposed OIF model are also 
used for a real-world fishery ecosystem to infer potential causal interactions between Pacific sardines (Sardinops 
sagax) landings, Northern anchovies (Engraulis mordax) and sea-surface temperature (SST) recorded at Scripps 
Pier and Newport Pier, California. Sardines and anchovies do not interact physically (or the interaction is low 
in number), while both of them are influenced by the external environmental SST that is the external forcing. 
To quantify the likely causal interactions between species and SST based on real data, we use CCM considering 
the length of time series for convergence of ρ , as well as OIF considering a set of time delays for acquiring stable 
values of inferred interactions TEs.

Results from CCM in Fig. 5A (plots from top to bottom) show that no significant interaction can be claimed 
between sardines and anchovies, as well as from sardines or anchovies in the SST manifold which expectedly 
indicates that neither sardines nor anchovies affect SST. This latter results, considering its biological plausibility 
should be taken as one validation criteria of predictive models, or complimentary as a test for anomaly detec-
tion of spurious interactions. The reverse effect of SST on sardines and anchovies can be quantitatively detected 
with the correlation coefficient ρ as well as TE. Although the calculated causations between SST and sardines or 
anchovies are moderate, CCM is able to provide a good performance in causality inference when the length of 
time series used is long enough due to convergence requirement.

Figure 5B shows OIF’s results of inferred causal interactions between sardines, anchovies and SST dependent 
on the time delay u. For sardines and anchovies, OIF exposes bidirectional interactions that are actually biologi-
cally plausible, especially when both populations coexist in the same habitat, versus the results of CCM that 
infer ρ = 0 . Ecologically speaking, even though fish populations do not directly influence sea temperature, we 
can find some clues about SST in fish populations influenced by SST. These clues can be interpreted as informa-
tion of SST encoded in fish populations over abundance time records. So, observations of fish populations can 
be used to inversely predict the change of SST; this can be interpreted as “reverse predictability” (or “biological 
hindcasting”) in a similar way of when predicting historical climate change from ice cores. This information is 
captured by OIF, leading to nonzero values of TE from fish populations to SST. In this regard, we emphasize the 
distinction between direct and indirect (reverse) information flow, where direct information flow is most of the 
time larger and signifies causality (e.g. of SST for sardine and anchovies), and indirect (reverse) information 
flow that is typically smaller and signifies predictability (e.g. sardine and anchovies for ocean fluctuations). It is 
possible—especially for linear systems where an effect is observed immediately after a change—that information 
of SST encoded in fish populations is high if the interdependence, represented by the functional time delay u, of 
the environment-biota is small. However, for highly non-linear systems such as fishes and the ocean, changes in 
temperature may take a while before being encoded into fish population  abundance53. Thus, it is correct that the 
highest values of TE are for high u. Values of TE for small u-s are numerical artifacts related to systematic errors 
leading to overestimation of interactions that are time-delayed eventually. One way to circumvent this problem, 
largely present for short time series, would be to extend time series by conserving their dynamics (see Li and 
 Convertino39) or to bound the calculation of TE only for the u that maximizes the Mutual Information; this 
would provide an average u within a range where TE is approximately invariant. Thus, for the effect of external 
SST on sardines and anchovies, OIF model gives unstable causal interactions with bias for lower time delays due 
to known dependencies of TE on u (such as cross-correlation for instance) that establishes the temporal lag on 
which the dependency between X and Y is evaluated. In a sense, plots in Fig. 5B are like cross-variograms for the 
pairs of variables considered. TE becomes stable when the time delay is located in an appropriate range. It means 
that OIF requires an optimal time delay that makes results of the causality inference robust and that is related 
to optimal TEs (as highlighted in Li and  Convertino39 and Servadio and  Convertino49) that defines the most 
likely interdependency between variables for the u with the highest predictability. The fact that TE of sardine and 
anchovies to SST is high for same small ranges of u may be also a byproduct of data sampling, i.e., fish and SST 
sampling locations are different (fish abundance is actually about fish landings) and that can introduce spurious 
correlations/causation. Overall, these findings suggest that the OIF model provides more plausible results, but 
it requires careful selection of optimal time delays.

Figure S1 shows the relationships between normalized ρ and TE estimated for all selected values of L and u 
of pairs in Fig. 5 (sardine-anchovy, sardine and SST, anchovy and SST). These plots show opposite results than 
the proportionality between ρ and TE in Fig. 3 because non-optimal values are used, that is non-convergent ρ -s 
and suboptimal TE during the interaction inference procedure (Fig. S1). TE for too small u-s determines over-
estimation of interactions due to the implicit assumptions that variables have an immediate effect on each other 
and that is not always the case as highlighted by the vast time-lagged determined non-linear regions in Fig. 3. If 
“transitory” values of ρ for small L are disregarded, as well as TEs for small u-s, the relationship between ρ and 
TE shows a correct linear proportionality.
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Real-world multispecies ecosystem. Interactions between fish species living in the Maizuru bay are 
intimately related to external environmental factors of the ecosystem where they live, the number of species 
living in this region considering also the unreported ones and biological species interactions, which lead to a 
complex dynamical nonlinear system. In Fig. 6 the network of observed fish species (Table S1) is reported where 
only the interactions considered in Ushio et al.37 for the CCM are reported. This is because the goal is to compare 
the CCM inferred network to the TE-based one based on abundance. Figure 7 shows the temporal fluctuations 
of abundance and the functional interaction matrices of ρ and TE. In this paper we study and compare aver-
age ecosystem networks for the whole time period considered but dynamical networks can also be extracted 
via time-fluctuating ρ and TE as shown in Fig. S3. These dynamical networks can be useful for studying how 
diversity is changing over time and ecosystem stability (Figs. S4, S6–S7) as well as understanding the relation-
ship between ρ and TE (Fig. S5). In the network of Fig. 6 the color and width of links are proportional to the 
magnitude of TE (Table S2); for the former a red-blue scale is adopted where the red/blue is for the highest/
lowest TEs. The diameter is proportional to the Shannon entropy of the species abundance pdf (Table S3). The 
color of nodes is proportional to the structural node degree, i.e. how many species are interconnected to others. 
Therefore, the network in Fig. 6 is focusing on uncooperative species whose divergence and/or asynchronicity 
(that is a predominant factor in determining TE over divergence) is large. Yet, the connected species are rarely 
but strongly interacting in magnitude rather than frequently and weakly (i.e., cooperative or similar dynamics). 
Additionally, the species with the smallest variance in abundance are characterized by the smallest Shannon 
entropy (smallest nodes) and more power-law distribution although the latter is not a stringent requirement 
since both pdf shape and abundance range (in particular maximum abundance) play a role in the magnitude 
of entropy. Average entropy such as average abundance are quantities with limited utility in understanding the 
dynamics of an ecosystem as well as ecological function. Nonetheless, species with high average abundance (e.g. 
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species 5) have a very regular seasonal oscillations and the largest number of interactions with divergent spe-
cies. This dynamics is expected considering the population size of these dominant species and their synchrony 
with regular environmental fluctuations. 

Figure S2 shows that the strongest linear correlation is for the most divergent and asynchronous species (from 
species 4–9) for which both ρ and TE are the highest (Fig. 7B,C). This confirms the results of Fig. 3 and the fact 
that competition (or dynamical diversity more generally) increases predictability. This also highlights the fact 
that linear correlation among state variables does not imply synchronicity or dynamic similarity as commonly 
assumed. The interaction matrices in Fig. 7B, C confirm that TE has the ability to infer a larger gradient of inter-
actions than ρ and the total entropy of the TE matrix is lower than ρ . Pairwise the inferred interaction values 
by CCM and OIF are different but ρ and TE patterns appear clearly similar and yet proportional to each other.

CCM and OIF models are applied to calculate the potential interactions between all pairs of species. Fig-
ure 7B,C show interaction matrices describing the normalized ρ from CCM and TE from OIF model of all 
pairwise species, respectively. The greater the strength of likely interaction, the warmer the color. These results 
demonstrate that CCM and OIF model present similar patterns for the interaction matrices in terms of interac-
tion distribution, gradient and magnitude in order of similarity. This indicates that both CCM and OIF are able 
to infer the potentially causal relationships between species. Compared to the CCM interaction heatmap the 
OIF heatmap presents larger gradients of inferred interactions that highlight the divergence and asynchrony in 
fish populations of species 4–9 from other species. This difference can be observed in Figure S2 that shows the 
strongest linear correlations for the most divergent and asynchronous species (4–9). It is worth noting that spe-
cies 4-8 are all native species (See Table SS11). Therefore, despite the patterns of interactions of CCM and TE are 
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Figure 6.  Part of the estimated species interaction network for the Maizuru Bay ecosystem. Species properties 
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to the Shannon entropy of the species abundance (Table S3) that is directly proportional to the degree of 
uniformity of the abundance pdf and the diversity of abundance values (e.g., the higher the zero abundance 
instances the lower the entropy). The color of nodes is proportional to the structural node degree, i.e. how many 
species are interconnected to others after considering only the CCM derived largest interactions (see Ushio 
et al.37 and Fig. 7). Other interactions exist between species as reported in Fig. 7. TE is on average proportional 
to ρ (Figs. S4 and S5). Freely available fish images are from FishBase https:// www. fishb ase. in/ search. php; the 
network was created in Matlab and the composition of network and images was made in Adobe Illustrator 
version 21 (2017) https:// www. adobe. com/ produ cts/ illus trator. html.
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similar, CCM allows one a better identification of clusters of species with similar or distinct interaction ranges. 
Additionally TE estimates some weak observed interactions such as of species 2 (E. japonicus) with others, while 
CCM essentially considers null interactions for these species.
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Figure 7.  Normalized species interactions matrices inferred by CCM and OIF models for Maizuru Bay 
ecosystem. In the census of the aquatic community, 15 fish species were counted in total. Interaction 
inferential models use time lagged abundance magnitude (CCM) or pdfs of abundance (OIF) shown in (A). 
(B) normalized CCM correlation coefficients ( ρ ) between all possible pairs of species. (C) normalized transfer 
entropies (TEs) between all pairs of species from the OIF model. Both CCM and OIF predict that the most 
interacting species (in terms of magnitude rather than frequency) are 7, 8 and 9 on average. Thus, interaction 
matrices are more proportional to the asynchronicity than the divergence of species in terms of abundance pdf, 
although abundance value range defines the uncertainty (and diversity) for each species that ultimately affects 
entropy and interactions (e.g., if one species have many zero abundance instances or many equivalent values, 
such as species 2, TEs of that species are expected to be low due to lower uncertainty despite the asynchrony and 
divergence).
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Precisely, the most interacting species (4–9) are the most divergent and asynchronous species (with respect 
to the whole community) as well as diverse in terms of values of abundance; these species form the ”collective 
core” that is likely determining the stability of the ecosystem. Interestingly the number of these species is rela-
tively small and it confirms results of other studies  (see39, 54–57) showing that the number of species with weak 
interactions is much larger. Theory suggests that this pattern promotes stability as weak interactors dampen the 
destabilizing potential of strong  interactors54. Mediated cooperation (e.g. by many “weakly” interacting competi-
tors) as shown by Tu et al.52 promotes biodiversity and diversity increases stability. When considering abundance 
values (at same time steps) of collective core species (Fig. S2) these species are linearly related and this increases 
their mutual predictability by either using linear or non-linear models based on correlation coefficient and TE. 
This proves that non-linearity increases predictability.

The choice of the optimal u that maximizes MI leads to the optimal TE model and resultant interaction 
network. The observed u over time is really small (Fig. S9) and this signifies how likely the ecosystem has small 
memory and responds quickly to rapid changes, or the information of change is carried over time by ecosystem’s 
interactions which lead to accurate short-term forecasting. In other words, temperature-induced changes may 
take long time but the information of change is replicated at short time periods. The chosen time delay u = 1 
corresponds to the species sampling of two weeks. Note that values of u are also dependent on the data resolu-
tion and they are strongly related to fluctuations rather than absolute α-diversity value. Thus, while biodiversity 
may fluctuate rapidly in time, value of α-diversity for seasons or longer time periods can be more stable and 
manifesting higher memory (representative of u for the whole ecosystem) than the one between species pairs 
(related to pair’s u). Short-term catastrophic dynamics (for instance related to dramatic habitat change, sudden 
invasions, extinctions or rapid adaptations) may lead to irreversible shifts in interactions (strength and sign); this, 
in turn can affect biodiversity patterns that are completely uninformed by past dynamics. Thus, there is certainly 
a limit to predictability and to the validity of time delays which can change very rapidly. However, we insist in 
emphasizing that models are predictive tools and predictions are not necessarily causality reflecting the many 
and highly complex underlying processes. Yet, interpretation of results must be done with care.

We also study temporally dynamical networks for the fish ecosystem community (see “Real-world sar-
dine–anchovy-temperature ecosystem” section). CCM and OIF model are applied to quantify the causality 
between all possible pairs of species at each time period by calculating ρ and TE, respectively. Estimated effective 
α-diversity (Eq. S1.2) from CCM- and TE-based inferred networks at each time point can be obtained and then 
compared to the taxonomic (or ”real”) α-diversity. Results are shown in Fig. 8 and Fig. S6. In the whole time 
period, the estimated α-diversity from CCM is constant, whereas the global trend of the estimated α-diversity 
from OIF model slightly decreases over time that is consistent with the global trend of real α-diversity. CCM 
always predicts a non-zero interaction for all species (including negative values) whereas OIF predicts zero 
interactions for some species that are then not making part of the estimated effective α-diversity.

Figure 8 shows the effective α diversity from CCM and OIF for an optimal threshold of ρ and TE (i.e., 0.2 
and 0.3) that maximizes the correlation coefficient and Mutual Information (MI) between αCCM or αTE and the 
taxonomic α , respectively. The maximization of the correlation coefficient and MI guarantees that the estimated 
effective α are the closest to the taxonomic α . Figure S6 shows effective α for unthresholded interactions and 
other thresholds. Note that the threshold on TE does not coincide with the value of TE that maximizes the total 
network entropy (Fig. 8) and then some of the reported species may not be part of the ecosystem strongly. Thus, 
this threshold method is also useful to identify species that are truly forming local diversity versus transient spe-
cies. Considering the pattern of fluctuations of effective α-diversity from CCM, they are poorly unrelated to the 
real α-diversity, while those from OIF are much more synchronous with seasonal fluctuations of real α-diversity. 
However, αTE is a bit higher than the average taxonomic α . Both CCM and TE predict a decrease in α in time 
that corresponds to an increase in SST. As shown in Fig S6, OIF is attributing higher sensitivity to SST for small 
interaction species because α fluctuations show seasonality that happens when species follow environmental 
dynamics closely. Vice versa, CCM predicts a broader sensitivity for all positively interacting species. These results 
reveal that OIF gives an effective tool to measure meaningful interdependence relationships between species for 
constructing temporally dynamical networks where the number of nodes over time [estimated α(t) ] can reflect 
closely the taxonomic α-diversity. This allows us to find more reliably how changes of environmental factors 
(e.g. SST) affect biodiversity in ecosystems. The establishment of thresholds on interactions is also useful for 
exploring ranges of interdependencies and associated effective α-diversity with respect to the average taxonomic 
diversity. β effective diversity is another very important macroecological indicator informing about ecosystem 
changes; for instance in Li and  Convertino39 β-diversity identified distinct ecosystem health states. However, α 
and β (effective diversity) variability are highly linked to each other and yet looking into one or another would 
provide equivalent results. The difference between taxonomic and effective β-diversity may provide some infor-
mation about invasive or rare species have weak influence on the ecosystem since they are characterized by low 
TEs. Supplementary Information contains further elaborations on results.

Discussion
In the paper the proposed optimal information flow (OIF) model was validated by considering the problem of 
causality inference of species interactions for ecosystems with different level of complexity and systemic uncer-
tainty: a deterministic mathematical model of predator-prey dynamics, the real Sardine–Anchovy-Temperature 
triplet ecosystem in the Pacific, and a real multispecies fish ecosystem in Japan. These three case studies are 
epitomic example of deterministic, low and high complexity dynamics. The mathematical model can be general-
ized as a model for interaction dynamics between individual or communities of the same species or between two 
generic variables X and Y. The quantification of interactions was compared to the well-documented CCM model.
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Early method of correlation were proved to be neither necessary nor sufficient to estimate the causal relation-
ship between time series variables (mostly due to the fact that any association does not prove causality because 
models are not surrogate of reality and scale-dependent data are just a sample of ecosystem dynamics), even 
though it remains a common and heuristic  notion29, 35. Despite these views we prove the power and limitations 
of correlation methods with respect to non-linear methods (such as OIF and CCM), dynamics of the complex 
ecosystem considered, and target patterns to predict that define whether correlation is able to measure interac-
tions. As for the latter, for instance we show how even highly non-linear systems show linearity when non-linear 
”causal” variables are considered at the same time step (as a virtue of non-linear asynchronicity). Therefore, the 
scale of analysis considering also the space-time domain with the explicit consideration of lag effects, determines 
the dynamics that is visible and the model that can be used for predictions.

Granger causality is the primary framework that uses predictability especially for identifying causation, how-
ever it is problematic in highly nonlinear systems even with some deterministic states or components. Sugihara 
et al.29 managed to deal with the problem and introduced the CCM model. CCM was well documented and suc-
cessfully applied to bio-inspired mathematical models, as well as real-world  ecosystems29. Despite interactions 
among species or variables, or interdependencies more generally defined, are rarely completely zero and related 
to patterns of different processes to capture, Sugihara et al.29 maintains the view of a deterministic single-value 
causality. In our opinion calculating causality in an absolute sense between variables is always not only very 
hard, but also meaningless because the resulting values are dependent on data and models used as well as the 
predicted patterns for which interactions are calculated for. The very first question should be causality about 
what? After that the evaluation of the dynamics of the ecosystem coupled to the target patterns to map should 
drive model selection. Causality is actually predictability of patterns of interest and predictability can be close 
to true causality for systems with low complexity and noise. The basic principles to interpret predictability are 
uncertainty reduction and accuracy that can be quantified as the probability of an event to occur given another 
one (as predictands and predictors, respectively).

From the perspective of information theory that has attracted attention in complex networks research, entropy 
is the information-theoretic description for uncertainty or more precisely lack of organization rather than abso-
lute uncertainty. Uncertainty is in fact also information about the diversity of values of a complex system (see e.g. 
 Jost50 that demonstrated how entropies are reasonable indices of diversity) and the distribution of these values 
determines entropy. The fundamental work of studying complex networks is to untangle complex interdepend-
encies comprising a large number of potential causations between all pairwise nodes (variables), that allows 
one to predict the collective behavior of complex systems. The intuitive and heuristic notion for this problem in 

Figure 8.  Predicted α -diversity via optimal interaction threshold for CCM’s ρ and OIF’s TE versus taxonomic 
diversity. Effective α-diversity from CCM and OIF are shown (blue and red) for an optimal threshold of ρ 
and TE (i.e., 0.2 and 0.3) that maximizes the correlation coefficient and mutual information (MI) between 
αCCM or αTE and the taxonomic α , respectively. The maximization of the correlation coefficient and MI 
guarantees that the estimated effective α are the closest to the taxonomic α . g is the resolution of the network 
inference determined by the minimum number of points required to construct pdfs and infer TE robustly (see 
Supplementary Information section S1.3).
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information theory is transfer entropy that measures the uncertainty reduction (or information flow) between 
nodes (variable). From this conceptual perspective we name the OIF model for inferring potential causality seen 
as sets of uncertainty reduction networked fluxes. Multiple transfer entropies for one single variable as a function 
of all others determine non-linearity that cannot be overlooked even when variable interaction is deterministic. 
Considering entropy as diversity also implies that OIF provides reflections of temporal changes in diversity (e.g. 
biodiversity) determined by changes in information fluxes.

The bio-inspired mathematical model generates a clean inter-species interaction ecosystem without any 
noise, that allow us to estimate “true” causality between synthetic species X and Y. The so-called “true” causality 
means the causation embedded numerically in the parameters in the dynamical Eq. 1 ( βxy and βyx ). When βxy 
is fixed as zero only the unidirectional causality ( X → Y  ) exists between species X and Y. Then, any estimator 
of predictive causality closer to the physical causality β defines the accuracy of the model. Results from Fig. 2 
shows how OIF model outperforms CCM.

Depending on the values of the parameters the model may capture some biological dynamics such as amen-
salism and commensalism (when βxy or βyx are zero), or predation, competition and mutualism (when both 
βxy and βyx are different than zero). Biologists define amensalism (i.e. a strong asymmetrical competition) as a 
type of biological relationship between species in which one species (e.g. X) has a potential negative effect on 
another (Y), but the second species Y has no detectable effect on the first species X. Biologically speaking, com-
mensalism is another type of biological relationship in which one species (Y) gets benefits while the other one 
(X) is neither helped or harmed.

In a broad complex dynamic perspective it is easier to talk about “cooperation” or “competition” between 
variables, meaning that variables contribute similarly to the uncertainty propagation of the whole ecosystem, or 
that one variable is predominant over the other in terms of magnitude versus frequency of effects. Similarly to 
brain  function58, cooperation is typically driven by excitatory interactions leading to synchronization in biomass 
fluctuations, where species are characterized by power-law distributions; vice versa competition is driven by 
inhibitory interactions leading to asynchronization, where species are characterized by exponential or non-fat 
tail distributions of abundance. The generic dynamical characterization allows to avoid pitfalls of the categorical 
classification of interactions in biology that suffers from the lack of knowledge about true and meaningful values 
of interactions that distinguish one biological dynamics from another; this is also considering change in biological 
interactions over time driven by environmental changes and/or evolution. Depending on the ecosystem state, 
interactions might range between “positive” and “negative” with no clear cuts between them: e.g.39 showed that 
network topology and interactions among the same microbial species change for different ecosystem states. We 
also caution to use numerical estimates of interactions to replace empirical biological knowledge because data-
inferred interactions are always much more complex than experimental values (e.g. about highly controlled lab 
tests) and interactions are certainly highly affected by the environmental context, measurement technology, and 
biomarker considered (e.g. abundance or others). The similar pattern of inferred interactions of the predator-prey 
system shows that all methods (correlation, MI, CCM and OIF) can work for inferring causality between two 
variables with different level of granularity. However, considering our definition of predictive causality, as non-
linear predictability of diverse events from independent predictors, OIF outperforms all other models due to the 
explicit consideration of asynchronicity, divergence and diversity of events that define model sensitivity, uncer-
tainty and complexity. All these considerations further emphasize the need to distinguish biological interactions 
and model-driven inferred interdependencies (or predictive interactions) as also emphasized by other  authors51.

To analyze OIF performance for “low complexity” ecosystems we considered the ambiguous dynamics of 
sardines and anchovies in oceans. On multidecadal time scales, sardines and anchovies present alternating 
dominance across global fisheries. Although in in appearance a ecological competition seems to exist between 
these two species (due to the inversely proportional and synchronized abundance changes), the simultaneous 
fluctuations of sardine and anchovy stocks suggest that they are also influenced by the ocean temperature.

Incompatible hypotheses have been advanced to try to give explanations for this pattern of alternating domi-
nance, unfortunately leaving aside many other species that clearly exist in the ocean and interacting with sardines 
and anchovies. Some supposed that these two species act in direct and clear  competition59, while others argued 
that this pattern is just a result of different or opposite fish dynamics in response to common global environmen-
tal  forces60. Results in  Baumgartner61 revealed that in longer time series not only the negative cross-correlation 
observed in the 20th century disappears, but the correlation with global environmental forces also has been 
ambiguous. This lack of correlation is however only related to the fact that species are synchronous and envi-
ronment→species effects are characterized by relatively small lags. Yet, lack of evident correlation exist but that 
does exclude causation. Jacobson and  MacCall62 applied two models to this issue and proposed a relationship 
that SST influences the behavior and population of sardines and anchovies; however, this relationship vanished 
when applying the analysis to stock assessments from 1992 to 2009. Although all these possible explanations 
from different points of view are competing, or even unstable, such results can illustrate that causal interactions 
among sardines, anchovies and SST present features of nonlinear dynamics. Nonetheless, and more importantly, 
the conclusion is that both species are weakly interacting and majorly affected by the environment. All interde-
pendencies exist and they just change in terms of normalized magnitude without neglecting the fact that intrinsic 
interspecies interaction is also modulated by the environment. As shown by the predator-prey mathematical 
model (Fig. 3) and real data (Figs. 5, 7), synchronized species are certainly affected by a third variable (e.g. the 
environment and other species) that is forcing both in fluctuating at the same time.

Heuristically, it is also very unlikely that two species (or variables more generally) are perfectly synchro-
nized unless they are identical. In the case of symbiotic populations, interactions would be theoretically small 
(if based on similarly varying biomarkers) while their relation with the environment would be strong. What 
Fig. 4 shows is somewhat very affine to the Heisenberg’s uncertainty principle that marks a clear break from the 
classical deterministic view of the universe. We cannot know the present state of the world in full detail (such as 
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for the “red” dynamics), let alone predict the future with absolute precision. Determinism, driven by synchrony, 
allows us to know the current state of the system if that is unaltered but not to predict future states. Vice versa, 
uncertainty-driven asynchronicity and divergence allow us to predict likely future more than actual present and 
that appears to be in contradiction to deterministic views but not to realistic probabilistic (or relativistic) view of 
system dynamics. For this sardines-anchovies “problem” unfortunately the whole complexity of ecosystems has 
never been considered despite other species may have a dominant effect on their abundance. This underlines the 
importance of space-time and biological scale (where biological scale is define by the number of interdepend-
ent species at the same or different trophic levels) in framing the problem and bounding conclusions to model 
results: any “causation” is in reality an interdependence between species constrained to the chosen scales, data 
resolution, as well as model analytics and biomarkers used for inferring interdependencies. For instance, lack of 
large environmental disturbances (or coarse resolution sampling) affecting rapidly small organism change may 
reduce the information flow, and yet affecting the inferred interaction network.

In addition to testing OIF on the simplified sardine-anchovy ecosystem, we apply OIF and CCM to a multispe-
cies ecosystem in which 14 dominant fish and 1 jellyfish species were monitored in an abundance census in the 
Maizuru Bay, Japan. In this ecosystem, all species can be interconnected, leading to an intricate causality system 
that is extremely hard to decode numerically considering intrinsic biological reproduction and intra-species 
interactions, interactions related to environmental changes, and inter-species interactions mediated by the physi-
cal habitat. “True causality” assessment is also extremely hard because there is no knowledge of which ecological 
or biological marker can capture all these interaction types. However, when causality is shifted to predictability 
of patterns of interest, the issue of inferring causality becomes practical and meaningful. Predictive causality 
between species X and Y, for instance, depends on whether X can assist in predicting the future of Y beyond the 
extent to which Y itself predicts its own future, and complementarily whether the model can predict the collec-
tive behavior of the system which can be reflected by macroecological indicators dependent on all predictive 
causality. In this case study, both CCM and OIF models are effective for causality detection from different points 
of view and they majorly differ considering interaction gradient and computational complexity. As for the latter 
OIF and CCM have 3 and 20 parameters to populate and the speed of inference assessment for the Maizuru 15 
species ecosystem is 2 and 15 minutes, respectively. An already published work used the same time-series data 
to study how to infer the network and forecast the system stability for the fish community using  CCM37.

Ushio et al.37 used a “S-map” model (i.e., sequential locally weighted global linear map model) to track 
dynamical interactions over causally related species over time where causality between species is estimated 
a-priori via CCM. S-map does so by predicting future values of species abundance from the reconstructed mul-
tivariate state-space vector (where species are interdependent by inference). Before CCM a “phase-lock twin 
surrogate” method removes seasonality from abundance data; this method generates time series that preserve 
the shape of a species attractor but exhibit no causal relationship with a target (seasonality) time series. Other 
predictive models other than S-map have been proposed such as the multiview embedding  model63 (in a “Empiri-
cal Dynamic Modeling” suite of  models64) that is combining multiple species embeddings (with different time 
delays) and that is superior in forecasting skill than multivariate (e.g. S-map) and univariate embedding (used 
by CCM for reconstructing the attractor of each species individually and later on the cross-mapping skill ρ of 
each other is evaluated).

Here we believe that any environmental forcing is important to be captured and affect non-linearly and in an 
unpredictable way the interactions among species; pure biological interactions are utopianly impossible to meas-
ure (leading to the ”curse of environment separability” from biota) and they are always context dependent (i.e. 
the geographical area considered although universality in biological dynamics may be expected). While it may 
be true that synchronization driven by seasonality can lead to misidentification of “biological” or “true” causality 
(false negative without the consideration of time lags, or false positive as in Ushio et al.37 if lags are considered 
in the phase-space), we believe that the environment is precisely the common identifiable cause of synchroniza-
tion of species (or of other asynchronous effects impacting species differently) in a predictive causality purview. 
Additionally, our ecosystem analysis is more realistic where the environment is central in shaping interconnected 
populations, and then community patterns, via complex non-linear function versus simple assumed sinusoidal 
seasonality (homogeneous for all species). Lastly, in our opinion another pitfall of the “phase-lock twin sur-
rogate” model of Ushio et al.37 is that seasonality importance is weighted for each species in isolation whereas 
seasonality is also affecting interactions of species pairs in ecosystems. Then, arguably, interactions should be 
inferred from data as they are, since data contain hardly separable non-linear effects of environment and other 
species dependencies, in addition to single species adaptation and evolution.

OIF, through the inference of a better gradient of systemic interaction “causality”, predicts how biodiversity 
changes over time with average value, fluctuations and trend that is closer to the taxonomic α-diversity. This is 
for effective α diversity with the optimal threshold on interactions maximizing the similarity with observed α 
(via maximization of Mutual Information). The concept of effective α is very useful because it allows to see which 
set of interactions is determining levels of α-diversity that is potentially more or less sensitive to environmental 
forcing. For example, S6 shows that high interaction species form a small portion of community diversity that 
is increasing over time versus the systemic decrease in diversity (observed in Fig. 8). More importantly, the 
increasing fluctuations of estimated α from OIF show the potential way in which climate and/or other anthro-
pogenic changes negatively affects biodiversity in the region considered in relation to intensified interspecies 
interactions as suggested also in other  studies65–67. These results are certainly beneficial for fishery resources 
management and habitat protection aiming to preservation of the fish community with ecological, economic 
and social outcomes. Thus, models like OIF should be evaluated in this bigger perspective of ecosystem utility 
or ecological engineering with multiple utilities rather than just seeing these models for the hard inference of 
pure “biological” interaction causality. Supplementary Information contains further discussions about CCM, 
TE causality inference, predictability, ecosystem organization and stability.
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Conclusions
Causality detection is a fundamental step in the inference of complex networks with the aim of understanding 
processes of observed complex systems. This is incredibly important for poorly observable large scale ecosystems 
whose structural and functional networks are their backbone. However, quantifying the “truly causal” interac-
tions in complex systems is illusory and perhaps impossible to achieve due to data and model limitations (e.g. 
sampling over space and time), partial ignorance about underlying processes, the strong unmeasurable influ-
ence of environmental dynamics, and more importantly their relativity dependent on the scale of analysis and 
the patterns for which interactions are relevant for. Nonetheless, when causality is shifted to predictability, this 
issue becomes practical and useful because it links causal predictable interactions to some patterns to predict. 
These patterns are defining the socio-ecological outcomes of interest for which interactions are signatures of the 
underlying processes. In this paper we propose the Optimal Information Flow (OIF) model and assess its validity 
and performance in causality inference by comparing OIF to well-documented CCM and correlation model. This 
is done for a deterministic predator-prey mathematical model, a data-driven sardine-anchovy species dynam-
ics, and an observed multiple fish species ecosystem. We show that OIF, like CCM, is able to effectively identify 
asymmetric causal interactions between any pair of species. Moreover, OIF performs better than CCM because 
it provides: (1) a larger gradient of interaction values, yet defining interactions at higher resolution with better 
definition of asymmetrical interdependencies; (2) smaller fluctuations around the estimated interaction values 
for any time delay u, yet a less uncertain inference; (3) the estimated memory of one and pairs of species in terms 
of time delay (without considering future modifications of  CCM68); (4) independence on the length of historical 
data and no requirement for convergence, as well as lower computational complexity (leading to lower sensitivity 
and uncertainty in state estimates); and, (5) more accurate predictions of temporal changes in macroecological 
indicators of ecosystems such as for the effective α-diversity after optimal MI-based threshold selection. However, 
OIF requires the identification of the optimal u value as shown  in39 but this is easily automated by exploring 
the delay that maximizes MI. Even though a time delay can be defined for any pair of species, we show the the 
average time delay, derived from analyzing all species pairs, can be a global optimum providing accurate mac-
roecological predictions for the ecosystem considered. Thus, the assumption-free information-theoretic OIF is 
a strong candidate model for the inference of predictable causality in complex ecosystems. A model that is itself 
an ecosystem mimicking the information flow constituting the backbone of real ecosystems of any nature, from 
environmental to socio-technological systems. The complexity of real world systems might be higher than the 
ones studied in this paper, considering the velocity of transitions in rapidly changing systems. Nonetheless, we 
believe that the dynamics encompassed in our study reflects the fundamental stochastic processes observable in 
the real world, particularly at stationarity but changes in network topology can be mapped by inferring dynami-
cal networks over time. In a broader uncertainty propagation perspective interactions should be considered as 
“cooperation” and “competition” between species (or variables more generally) meaning that they contribute in 
a similar or opposite way to the uncertainty (or information) propagation. Competition means that one variable 
is predominant (or very diverse) over the other in terms of magnitude of interactions since TE is proportional 
to the magnitude rather than the frequency of interactions. Interactions that are specifically proportional to the 
divergence and asynchrony of variables/species which leads to higher predictability. In conclusion, our model 
can find useful applications in research and applied work for ecosystems at multiple biological scales. A myriad 
of other models have been proposed in literature, and these can be used simultaneously in real-life applica-
tions, to provide the full range of possible states of interactions and average systems’ patterns trajectories. As 
causality is considered as non-linear predictability of diverse events of populations or communities, we believe 
OIF is the optimal model able to predict the largest divergence of trajectories due to the full consideration of 
ecosystem states via species probability distribution functions. Predictive causality is a convenient definition for 
any ecosystem, or data science problem more generally. However, for investigations of causality aiming to learn 
underlying physical processes of observed patterns, or for solving pressing issues of real complex ecosystems, 
a more in depth inquiry of complexity and dynamics (in relation to the target objectives), system learning and 
stakeholder collaboration are of paramount importance since data and models alone cannot reveal the full picture 
nor identify realistic and optimal solutions.

Materials and methods
Ecosystems models. Bio-inspired two species mathematical model. In Sugihara et al.29, a mathematical 
model was introduced to generate coupled nonlinear sequences for testing the CCM presented in that study. The 
model consists of two diffusively coupled logistic maps describing a simple bio-inspired dynamics without any 
external environmental effects on both species. It is analytically formulated as:

where X and Y are two random variables linked by factors βxy and βyx that establish the strength of their interac-
tions. It gives possibility to estimate the “true” causality in an absolutely numerical sense and this model can be 
therefore indicated as S(βxy ,βyx) . If βxy is fixed as 0 and βyx is fixed as non-zero or varied free, that is, X causes 
Y, but not vice versa. If βxy and βyx are both non-zero, X causes Y and vice versa. These conditions generate two 
different kinds of coupling variables that respectively represent unidirectionally and bidirectionally interactive 
species-species systems described as the case 1 in Fig. 1. rx and ry are the intrinsic growth rates for each variable.

In this study, we focus on both unidirectionally and bidirectionally interactive species-species systems. For 
unidirectional coupling, βxy is fixed as 0, but βyx is free varied within the range of [0,1], leading to a simplified 
model as S(0,βyx) . This unidirectional model S(0,βyx) is exploited to generate coupled sequences of two random 

(1)
X(t + 1) = X(t)[rx − rxX(t)− βxyY(t)]

Y(t + 1) = Y(t)[ry − ryY(t)− βyxX(t)]
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variables X and Y where X affects Y, but not vice versa. For bidirectional coupling, we study two different condi-
tions. On the one hand, we consider a system S(βxy ,βyx) in which βxy is fixed as 0.2, 0.5 and 0.8, βxy is free varied 
within the range of [0,1]. This model can be indicated as a univariate model S(0.2/0.5/0.8,βyx) and is used to 
generate interdependent coupled time-series variables where the effect of X on Y changes over βyx , while the effect 
of Y on X is stablized due to the fixed non-zero βxy s. On the other hand, we consider a bivariate system S(βxy ,βyx) 
in which both βxy and βyx are free varied. This model indicated as S(βxy ,βyx) generates coupled time series of 
variables X and Y where X and Y randomly interact with each other. For all these conditions mentioned here, 
S(0,βyx) , S(0.2/0.5/0.8,βyx) and S(βxy ,βyx) are run under the conditions of which initial x(1) = 0.4 , y(1) = 0.2 
and intrinsic growth rates of variables rX and rY respectively are 3.8, 3.5 as used  in29. These time series of variables 
X and Y generated by the models for example can be time-series data of species abundance.

Sardine–anchovy-temperature ecosystem. As a real-world ecosystem case study, yearly time-series data of 
Pacific sardine landings, northern anchovy landings and sea surface temperature (SST) obtained at Scripps Pier 
and Newport Pier, California are used here. Sardines and anchovies seldom interact with each other because of 
geographical distribution. External environmental factors including SST affect sardines and anchovies, but not 
vice versa. It is a typical example of unidirectional causal relationship in real-world ecosystems and such tripar-
tite relationship can be described as the case 2 in Fig. 1. Sugihara et al.29 also studied this fishery ecosystem and 
successfully inferred the weak causal interactions between between sardines, anchovies and SST with the CCM 
method. We remake the experiments Sugihara et. al did, and apply our proposed OIF model to do the same work 
as well, thereby validate the OIF model by comparing results to those from CCM.

Fish community in the Maizuru Bay ecosystem. Long-term time-series data counting the observations of the 
fish community collected along the coast of the Maizuru Fishery Research Station of Kyoto  University37 are used 
in the multispecies case study described as the case 3 in Fig. 1 for OIF model validation. Underwater direct visual 
censuses were conducted approximately once every two weeks from January 1, 2002 to April 2, 2014, totally gen-
erating 285 time points sequences during about 12 years long census. Dominant fish species (that is, with a total 
observation count was larger than 1000) were considered, because rare species that were sporadically observed 
during most of the census term have many zero values, and yet there were not suitable for the time-series analy-
sis. Information of rare species dynamics is typically very small within other species and their inclusion does 
not change results about the whole ecosystem interaction topology beyond just adding poorly or not interacting 
species as found in Ushio et al.37. Therefore, only 14 dominant fish species and 1 jellyfish species were selected in 
this dataset. 1 Jellyfish species was selected in the dataset because this species was abundant in this area and was 
thought to have considerable influences on the community and ecosystem dynamics. Accordingly, both OIF and 
CCM model are exploited to measure causal interactions among 14 dominant fish species and 1 Jellyfish setting 
up the dynamical complex multispecies system.

Interactions inference models. Linear correlation model. The linear correlation between non-lagged 
random variables X and Y is given by:

where X̄ = 1
L

∑L
t=1 xt and Ȳ = 1

L

∑L
t=1 yt . L is the length of time-series of X and Y.

Convergent cross mapping model. The principle of CCM model involves state space reconstruction from two 
variables and quantifies the potentially causal (asymmetrical) relationship between these variables using the 
method of nearest neighbor forecasting. Nearest neighbor forecasting method is an application of Takens’ Theo-
rem called simplex projection. States of a system are reconstructed by applying successive time lags of time-
series variable underlying the method of time lag  embedding29, 38. Interestingly, this method has been originally 
applied to describe the transition to turbulence of  fluids69, 70.

In the case where X causes Y, Takens’ theorem indicates that there should exist a “causal” relationship between 
states of X and the contemporaneous states of Y. CCM quantifies this relationship using the simplex projection 
to predict time-series X from reconstructed Y. Specifically, a manifold MX (“reconstructed”, “shadow” or pre-
dictor manifold) is constructed from lags of variable X (i.e., X(t − τ) with the time lag τ ) and used to estimate 
contemporaneous values of Y(t). MX is an approximation that will display convergence up to the level set by 
observational error and process noise. At convergence the approximated Ŷ(t)|MX will be close to Y(t). The rela-
tionship between Y(t) and Y(t − τ) is on the target manifold. To explore the opposite “causality” CCM explores 
the convergence of X̂(t)|MY to X(t) where MY is the predictor manifold. Thus, CCM determines how well local 
neighborhoods (defined by E + 1 points, that is the minimum number of points needed for a bounding simplex 
in an E-dimensional space) on the manifold MX correspond to local neighborhoods on MY.

Pearson’s correlation coefficients ρ (originally defined as Eq. (2) considering non-time lagged variables) 
between predicted time series and observations of X (or Y) are calculated. The non-linear correlation coefficient 
is considered as the indicator of cross-mapping skill, that is the “causality” between species X and Y. The non-
linear ρ is defined as:

(2)corr (X,Y) =

∑L
t=1(xt − X̄)(yt − Ȳ)

√

∑L
t=1(xt − X̄)2

∑L
t=1(yt − Ȳ)2
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where cov and σ are the covariance and standard deviation. X̂(t)|MY and Ŷ(t)|MX are the predicted values of 
X(t) and Y(t) considering the attractor manifolds of lagged Y and X. Considering the relationship between the 
calculated cross-mapping skill and the length of time series L, ρ increases with L until a convergent stable value. 
ρ is alway larger the longer L and that indicates causality according to Sugihara et al.29. Typically, no less than 
30 points in the time-series data should be used for CCM  analyses71. Further details about the use of CCM for 
this study are provided in Supplementary Information. CCM codes are available at https:// github. com/ Hokud 
aiNex usLab/ net- valid.

Optimal information flow model: TE inference. OIF requires time-series data of variable biomarkers (e.g. 
abundance) as input, and produces a Transfer entropy (TE) matrix quantifying interactions between all pairs 
of variables. Therefore, the primary output of OIF is a functional interaction network for the ecosystem con-
sidered. In this paper we consider all inferred TEs without any redundant interaction removal as in Servadio 
and  Convertino49. All OIF codes are available at https:// github. com/ Hokud aiNex usLab/ net- valid. TE is a non-
parametric statistic in information theory that estimates the amount of information that a source variable con-
tains about a destination variable considering destination’s current and historical  states40. It measures how much 
directed (time-asymmetric) information transfers between two variables, giving an incentive to quantify the 
causal relationship between two variables with TE. Here it can be calculated as:

where, X and Y denote two random variables, k and l refer to the Markov orders of variables X and Y, imply-
ing that we need to at least consider k (l) time points of variable X (Y) in the past for the estimation in order to 
capture all relevant information in the past of X (Y). Here we assume that the time-series analysis here obeys a 
memoryless Markov process. Hence, parameters k and l are fixed as 1, that is to say, the next states of X and Y are 
only dependent on the current states and not on states in the past. u is the source-target time delay establishing 
lagged influence and is free varied. Servadio and  Convertino49 proposed a framework of optimal information 
networks (OIN) to select TEs that maximize the total entropy for inferred networks. Probability distribution 
functions associated to the network with maximum entropy are considered as the most predictive distributions 
fitting observations (where power-laws have the lowest entropy but highest uncertainty reduction when compared 
to other distributions). TE in Eq. (4) is estimated until the selected time t with incremental time series data whose 
minimum resolution is g (equal to 30 time points, that is 60 weeks) that defines the minimum number of points 
required for robust inference (see Supplementary Information section S1.3).

In this paper, OIF is improved by incorporating the well-documented Java Information Dynamics Toolkit 
(JIDT)  toolkit42 in computing TE. JIDT provides users with multiple alternatives for pdf estimation including 
discrete, binned, Gaussian, Kraskov (KSG) and Kernel models that cover most data types (from uniform to 
power-law). Therefore, OIF with JIDT is more flexible in relation to diverse ecosystems and datasets.

JIDT-Kernel as model-free estimator calculates joint pdf by discretizing data into bins. A classical approach 
called Kernel estimation uses equal-width bins specified by a bin-width parameter. The joint pdf can be written as:

where � is a step kernel such that �(x ≤ 0) = 1 otherwise equals zero, |x − xn| is the maximum distance between 
variable x and observation measurement xn for n = 1, 2, ...,N . The parameter r is the specified bin width. Note 
that the estimation is sensitive to the choice of parameter, and the number of bins can be different between vari-
ables. After calibration we selected the optimal bin-width as 0.25.

In this study we also investigate the optimal TE that provides a clearer detection and more accurate quantifica-
tion for causal relationships between two variables by choosing an appropriate time delay u in a specified range. 
The choice of the optimal u within the range leads to the optimal TE model and resultant network inference 
while considering the minimum computational complexity. As shown in our previous work about  microbiome39, 
time delay u used to calculate TE between species is the one who minimizes the distance from one species to 
another in the inferred network.

The distance can be calculated  by31:

where MI is the mutual information of variables X and Y. MI of two random variables X and Y, is given by:

(3)

ρ(X → Y) =
cov (Y(t), Ŷ(t)|MX)

σY σŶ(t)|MX

ρ(Y → X) =
cov (X(t), X̂(t)|MY )

σX σX̂(t)|MY

(4)TE
(k,l)
Y→X =

∑

x,y

p(Xt ,X
(k)
t−u,Y

(l)
t−u)log

p(Xt |X
(k)
t−u,Y

(l)
t−u)

p(Xt |X
(k)
t−u)

,

(5)p(x) =
1

N

N
∑

n=1

�
(

|x − xn| − r
)

,

(6)d(X,Y) = e−MI(X(t±u);Y(t))

(7)MI(X(t ± u);Y) =
∑∑

p(x(t ± u), y) log
p(x(t ± u), y)

p(x)p(y)
,
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where p(x) and p(y) are the marginal distributions of random X and Y, and p(x(t ± u), y) is the joint probability 
distribution that is the pdf affected by the time-delay. The time delay u that is chosen is exactly the one that 
maximizes the MI of the two variables, because that is the one that minimizes the uncertainty. MIs is calculated 
using a range of time delays u (defining temporal entropy reduction parameters) and then the time delay cor-
responding to the maximum MI is selected before the calculation of TE. The choice of using the time delay u that 
maximizes MI is focusing on the highest predictability rather than the investigation of true causality. For example, 
two species may have a relatively low average interaction, except for a limited time period when the interaction 
is very high due to seasonal predation or sudden environmental disturbances (e.g., intense fishing or water 
pollution). Thus, by considering the maximum MI the focus is on extreme interactions (leading to the highest 
predictability) versus average most likely mutual interactions, or more precisely it is focused on the magnitude of 
potential interactions rather than the interaction frequency. Yet, extreme accidental interactions are also captured 
by the choice of MI(u = umax) , although very limited interactions may exist on average. This is equivalent to the 
approach of extended  CCM38 for which the time delay that maximizes convergence (corresponding to different 
predictive accuracy) is chosen. The existence of a time delay explicitly takes into account delayed interaction 
effects, for example, due to delays in biomass conversion in case of predation; interestingly these model-inferred 
delays should be used when assessing predator-prey abundance scaling  laws72 (fingerprinting ecosystem meta-
bolic function) whose exponent is affected. In addition, we also compare the results of the linear cross-correlation 
estimates and the non-linear MI estimates for species interactions. Mutual information is a distance between 
two probability distributions while correlation is a linear distance between two random variables. This is done 
to detect the causal relationships between variables in the non-linear mathematical predator-prey model (where 
the two variable X and Y can be also belong to the same species) also to detect the performance of linear versus 
non-linear interaction inference models. On the contrary of the asymmetric TE (that measures directed inter-
dependencies between variables), MI, as well as cross-correlation, provides a symmetric measure for inferring 
mutual interdependencies unable to identify the direction of potential causal interactions.

Predicted ecosystem biodiversity patterns. Details about the calculations of taxonomic and effective 
α-diversity are contained in the Supplementary Information.
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