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Contact tracing evaluation 
for COVID‑19 transmission 
in the different movement levels 
of a rural college town in the USA
Sifat A. Moon* & Caterina M. Scoglio

Contact tracing can play a key role in controlling human‑to‑human transmission of a highly contagious 
disease such as COVID‑19. We investigate the benefits and costs of contact tracing in the COVID‑19 
transmission. We estimate two unknown epidemic model parameters (basic reproductive number R

0
 

and confirmed rate δ
2
 ) by using confirmed case data. We model contact tracing in a two‑layer network 

model. The two‑layer network is composed by the contact network in the first layer and the tracing 
network in the second layer. In terms of benefits, simulation results show that increasing the fraction 
of traced contacts decreases the size of the epidemic. For example, tracing 25% of the contacts is 
enough for any reopening scenario to reduce the number of confirmed cases by half. Considering 
the act of quarantining susceptible households as the contact tracing cost, we have observed an 
interesting phenomenon. The number of quarantined susceptible people increases with the increase 
of tracing because each individual confirmed case is mentioning more contacts. However, after 
reaching a maximum point, the number of quarantined susceptible people starts to decrease with the 
increase of tracing because the increment of the mentioned contacts is balanced by a reduced number 
of confirmed cases. The goal of this research is to assess the effectiveness of contact tracing for the 
containment of COVID‑19 spreading in the different movement levels of a rural college town in the 
USA. Our research model is designed to be flexible and therefore, can be used to other geographic 
locations.

COVID-19 has affected the lives of billions of people in 2019–2020. The COVID-19 disease is caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has caused a global health emergency. The world 
health organization (WHO) declared it as a Public Health Emergency of International Concern on January 30, 
 20201. The number of confirmed reported cases by SARS-CoV-2 has been rising. On May 31, 2020, worldwide 
there were 5,939,234 laboratory-confirmed cases with 367,255  deaths2.

Many countries issued a pandemic lockdown to slow down the spreading of COVID-19. In the United States, 
a “Stay-At-Home” order was issued in many states. However, those pandemic lockdowns have a massive impact 
on the economy. All the States of the USA started reopening gradually from early May. Understanding the impact 
of mitigation strategies on the spreading dynamic of COVID-19 during the reopening phase of the USA is essen-
tial. In this work, we assess the impact of contact tracing by using an individual-based network model under 
four reopening scenarios: 25% reopening, 50% reopening, 75% reopening, and 100% reopening (no restriction).

Individual-based contact-network models are a powerful tool to model COVID-19 spreading due to its 
person-to-person spreading nature. In this work, we develop an individual-based network model for a college 
town, Manhattan, KS, where households represent nodes of the network. We select Manhattan, KS, as our study 
area, since it is a typical college town in a rural region of Kansas, the home of Kansas State University. There 
are 20,439 occupied households in Manhattan, KS, according to census  20183. The connections between two 
individual households represent the contact probabilities between the members of the households. To develop 
the contact network, we consider age-stratification and use Google COVID-19 community mobility  reports4. 
The individual-based approach provides the flexibility to observe the local dynamic at the individual level. It also 
allows us to include a mitigation strategy in the model at the individual level, such as contact tracing.

To design an epidemic model for COVID-19 is challenging, as many epidemic features of the disease are yet 
to be investigated, such as, for example, the transmission rate, the pre-symptomatic transmission rate, and the 
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percentage of the asymptomatic population. These uncertain characteristics make epidemic modeling challeng-
ing as the outcomes of the model are sensitive to the assumption made on the uncertainties. Therefore, we use a 
simple epidemic model with five compartments—susceptible-exposed-infected-confirmed-removed (SEICR)—
capable of imitating the COVID-19 transmission and flexible enough to cope with new information. This model 
has only two unknown parameters: the basic reproductive number R0 , and the confirmed case rate or reporting 
rate δ2 . An analytical/numerical approach to the computation of R0 can be found in Barril et al.5 and Breda et al.6, 
respectively. We use confirmed COVID-19 cases from March 25, 2020 to May 4, 2020 in Manhattan, KS as data, 
and estimate the unknown parameters from data. We use this period to estimate R0 as there was no reopening 
in Manhattan, KS; therefore, the contact network was the same thorough the whole time. The other parameters 
are taken from the literature. In the spreading of COVID-19, there are pre-symptomatic and asymptomatic cases 
that do not show any sign of  illness7. Besides, there is a strong possibility that infected cases not detected exist. 
In our epidemic model, we have considered those unreported cases. We assume that a confirmed COVID-19 
patient cannot spread the disease anymore except in his/her own household.

Since a vaccine is not available for COVID-19, contact tracing is a key mitigation strategy to control the 
spreading of COVID-19. Contact tracing is a mitigation strategy that aims at identifying people who may have 
come into contact with a patient. This mitigation strategy prevents further spreading by quarantine of exposed 
people. The public health personnel have used contact tracing as a tool to control disease-spreading for a long 
 time8. We implement two approaches of the contact tracing strategy through a two-layer network model with 
two modified SEICR epidemic models. In the first contact tracing approach, we consider all the traced contacts 
of a confirmed case will be quarantined, which follows the CDC contact tracing guidance for COVID-19 (Octo-
ber 21, 2020)9. In the second contact tracing approach, we consider only the tested positive traced contacts of 
a confirmed case will be isolated. We propose two quarantine approach to compare their effectiveness. This 
research finds that quarantine all the traced contacts is always effective than quarantine only test positive traced 
contacts. Feasibility of contact tracing to control COVID-19 spreading was analyzed using a branching process 
stochastic simulation for three basic reproductive numbers R0 = 1.5, 2.5 , and 3.510. The authors find that sufficient 
contact tracing with quarantine can control a new outbreak of COVID-19. They mostly focus on the question of 
how much contacts need to be traced to control an epidemic for the three levels of basic reproductive number. 
However, this article neither explored the effectiveness of contact tracing for a specific location, nor investigated 
the cost of contact tracing.

In this research, we develop an individual-based network framework to assess the impact of contact-tracing 
in the reopening process in a college town of Kansas. To analyze the cost of contact-tracing represented by the 
number of quarantined susceptible people, we develop a contact network and estimate the basic reproductive 
number R0 and confirmed rate (infected to laboratory-confirmed transition) from observed confirmed case data 
in Manhattan KS. We use our individual-based network model and the estimated parameters to run simulations 
of COVID-19 transmission. We use our framework to understand the spreading of COVID-19 and assess the 
contact-tracing strategy in the different reopening situations and different levels of tracing contacts.

Summarizing, the main contributions of this paper are the following:

• A novel individual-level network-based epidemic model to assess the impact of contact tracing.
• A thorough investigation of costs and benefits of contact-tracing in the reopening process in a college town 

of Kansas.

The individual-based network model is developed to represent the heterogeneity in people mixing. Our individ-
ual-based network epidemic model is general and flexible. It can be used to estimate, and model contact-tracing 
for COVID-19 in any location. It can also be used for any other disease that has a similar spreading mechanism 
like COVID-19.

Results
Individual‑based contact network model. We use demographic data to develop an individual-based 
contact network model capable of representing the heterogeneous social mixing. Our network has N nodes and 
L links. In this network, each node represents one occupied household, a link between two households repre-
sents the contact probability between members of these households. The system has a total population of p indi-
viduals, distributed randomly into the N occupied households according to five social characteristics: age, aver-
age household sizes, family households, couple, living-alone3. We maintain the average household sizes, number 
of family households, number of couples, and number of living-alone households. Besides, a person under 18 
years old is always assigned in a house with at least one adult person. To develop this network, we consider five 
age-ranges: under 18, 18–24, 25–34, 35–59, and over 60. Each age-range has pi people, where i ∈ {1, 2, 3, 4, 5} . 
This model considers large shared living spaces (for example, dorms) as a set of households with 4–8 students 
in each household.

After assigning the people, an age-specific network is developed for each age range and a random mixing 
network for all ages. Then a combination of the six networks provides the full network. A full network represents 
a contact network for a typical situation. The configuration network  model11 is used to develop age-specific net-
works and the random mixing network (details are given in the “Materials and methods”). According to census 
2018, Manhattan, KS has p = 55,489 people and N = 20 439 occupied  households3.

Adjacency matrix for the full network Af  is a summation of six adjacency matrices: Af =
∑5

i=1 Ai + Ar . Here, 
Ai is the adjacency matrix for the age-specific network i, and Ar is the adjacency matrix for the random mixing 
network. Age-specific networks and the random mixing network are unweighted and undirected. However, the 
full network is a weighted and undirected network. The full network for Manhattan (KS) has 445,350 edges. The 
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average node degree for an individual household in the full-network is 43.647, and for an individual person is 
16.0518 (which is consistent  with12). The degree distribution is presented in Fig. 1. The networks are available 
at https ://doi.org/10.7910/DVN/3IM82 E.

The full network is a contact network in the normal situation; we modify it to represent the contact network 
in the pandemic lockdown; we name it limited network. Manhattan, KS, is the home of Kansas State Univer-
sity. Most of the people living in Manhattan, KS, are closely related to Kansas State University, which halted its 
in-person activities from early March 2020 to August 17, 2020. Besides, Manhattan, KS was under the “Stay-
At-Home” order from March 27, 2020 to May 4,  202013. To represent this unusual situation, the full network is 
modified to a limited network version. As the educational institute was closed, we randomly reduce 90% links 
from the age-specific networks for the age-ranges under 18, and 18− 24 . The Google COVID-19 community 
mobility reports provide a percentage of movement changes in different places (for example, workplaces, rec-
reational areas, parks)4. We reduced 40% links randomly from the age-specific networks for 25–34, and 35–59 
age-ranges for the movement changes in the  workplaces4. The number of links in the limited network is 155,762. 
The limited network is available at https ://doi.org/10.7910/DVN/3IM82 E.

Epidemic model. We design a susceptible-exposed-infected-confirmed-removed (SEICR) epidemic scheme 
to simulate the spreading of COVID-19 (Fig. 2). This model has five compartments: susceptible S, exposed E, 
infected I, confirmed C, and removed R. A susceptible node is a node that is not infected yet. An exposed node 
is a node infected by the disease, but the viremia level is deficient that it cannot infect other nodes. An infected 
node is infectious, and it can infect other nodes. In this model, an infected node can be symptomatic, asympto-
matic, or presymptomatic. A confirmed node is a laboratory-confirmed COVID-19 case. A removed node can 
be recovered or dead. The SEICR model has five transitions, which are divided into two categories: edge-based 
( S → E ), and nodal ( E → I ; I → C ; C → R ; I → R )  transitions14,15.

An edge-based transition of a node depends on the state of its contacting nodes or neighbors in the con-
tact network with its own state. A nodal transition of a node only depends on the own state. Each edge-based 
transition has an influencer compartment. A transition from susceptible to exposed ( S → E ) of a susceptible 
node depends on the infected neighbors of that node. Therefore it is an edge-based transition, and the infected 
compartment is the influencer compartment of this transition. In this work, we are using the term ‘neighbors 
of a node k’ for the nodes, which have the shortest path length 1 from the node k. The transition rate of the 
susceptible to exposed ( S → E ) transition of a node k is β1

∑N
l Ac(k, l)Il , here, β1 is the transmission rate 

Figure 1.  Degree distribution of the full network. In the network, households are at the node level. The network 
has 20,439 nodes and 445,350 edges. The average degree of this network is 43.647. The maximum degree in the 
network is 227.

Figure 2.  Node transition diagram of the susceptible-exposed-infected-confirmed (SEICR) epidemic model. 
This model has five compartments: susceptible (S), exposed (E), infected (I), confirmed (C), and removed (R) 
compartments. The SEICR model has five transitions (presented by solid lines): S → E (edge-based), E → I 
(nodal), I → C (nodal), C → R (nodal), and I → R (nodal). The infected (I) compartment is the influencer 
compartment of the edge-based S → E transition. The dashed line presents the influence of the I compartment 
on the S → E transition. We estimate R0 and δ2 transition rate from data. We deduce β1 from R0.

https://doi.org/10.7910/DVN/3IM82E
https://doi.org/10.7910/DVN/3IM82E
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from one infected node to one susceptible node, Ac is the adjacency matrix of the contact network, if l node is 
infected then Il = 1 otherwise Il = 0 , and 

∑N
l Ac(k, l)Il is the number of infected neighbors of the node k. The 

transition rate for the transition exposed to infected ( E → I ) is δ1 . The confirmed rate of an infected person is 
δ2 . We consider that a laboratory-confirmed case will be isolated and cannot spread the disease outside of his 
household anymore. The unknown COVID-19 cases will move from infected to removed with a rate δ′2 . We add 
another transition C → R with rate δ1 , this transition does not have any significance in the disease spreading. All 
the transition rates are exponentially distributed with a constant average value (Table 1). A detail of the SEICR 
epidemic model is stated in Table 1.

Parameter estimation for the SEICR epidemic model. The SEICR model has two unknown parameters: basic 
reproductive number R0 , and confirmed or reporting rate δ2 . To estimate the R0 and δ2 , we have used confirmed 
cases in Riley County (Kansas) from March 25, 2020 to May 4, 2020. In this period, Kansas State University was 
closed, and “Stay-At-Home” order was there. It is reasonable to use this time period to estimate R0 as there was 
no reopening and the mobility was the same throughout the period in Manhattan, KS. For the simulation of 
this period, a limited network is used (explained in the “Materials and methods” section), which is a modified 
version of the Full network to simulate the particular situation under the “Stay-At-Home” order. We use approxi-
mate Bayesian computation based on sequential Monte Carlo sampling (ABS-SMC) approach to estimate R0 and 
δ2

19,20. Other parameters ( δ116,17, and δ′218) are taken from the literature.
The estimated value for R0 is 0.55 ( 95% confidence interval: 0.522− 0.564 ) and for reporting rate δ2 is 

1
4.79 day

−1 ( 95% confidence interval: 1
4.89 − 1

4.74 day
−1 ). These estimated values are specific for Manhattan, KS for 

the time from March 25, 2020 to May 4, 2020. The R0 for different reopening scenarios is presented in the sup-
plementary Fig. S1. We consider that some people will develop severe symptoms, and they will be reported as 
a confirmed case of COVID-19 sooner. However, some people will produce deficient symptoms, and may they 
will be tested later. Therefore, the estimated confirmed rate is an average of all possibilities.

A sensitivity analysis for R0 and reporting time on the mean-squared error between confirmed cases data and 
simulated results is presented in Fig. 3.

Simulation for four different reopening scenarios. We simulate the total confirmed cases (or cumulative new 
cases per day) for eight months: from May to December using the SEICR epidemic model with the estimated 
parameters. To simulate, we assume that there is no change except reopening from pandemic lockdown. We 
are presenting four reopening situations: “Stay-At-Home” is still there or no reopening, 25% reopening, 50% 
reopening, and 75% reopening. Kansas has started to reopen step by step after May 4, 2020. We use the limited 
network to simulate from March 25, 2020 to May 4, 2020; then, we change the network concerning the reopen-
ing situation. For example, in a 25% reopening situation, 25% of the reduced movement will start again; to model 
it, we add 25% missing links randomly (which are present in the full network but not in the limited network). We 
preserve the states of each node at May 4, 2020 in the network then use it as the initial condition for the simula-
tion for the reopening situation (from May 4, 2020 to July 1, 2020). Figure 4 is showing the medians (solid lines) 
and interquartile ranges (shaded regions) of the total confirmed cases of the 1000 stochastic realizations of the 
four reopening scenarios. The zoom-in window in Fig. 4 shows the time period when data was used to estimate 
the parameters of the epidemic model.

Contact tracing. Contact tracing is a key mitigation strategy to control the spreading of COVID-19. To 
implement contact tracing, we modify the basic SEICR epidemic model and propose a two-layer network model. 
In the implementation of the contact tracing, we follow the CDC’s guidance for contact  tracing9.

Two‑layer individual‑based network model. This work implements contact tracing in a two-layer network 
model: the contact network is in the first layer, and the tracing network is in the second layer (Fig. 5). We will 
call the first layer as the contact-layer and second layer as the tracing-layer in the rest of the paper. In the t%
-tracing-layer, t% of links of each node in the contact-layer are preserved randomly. To form a t%-tracing-layer, 
at first, we generate a random number r from U(0, 1) for each link from a node i; then keep the link in the 
tracing-layer if r ≤ 0.01t . A 50% tracing-layer is presented in Fig. 5. Although the contact-layer is an undirected 
network, however, the tracing-layer is a directed network. In the directed tracing-layer, a neighboring node of a 

Table 1.  Description of the susceptible-exposed-infected-confirmed (SEICR) epidemic model.

States Type Transition Average transition rate ( days−1) Influencer Source

S (Susceptible)
E (Exposed)
I(Infected)
C (Confirmed)

Edge-based S → E
β1

N∑

l

Ac(k, l)Il
 here, β1 = R0δ2

�d��w�
 ; 〈d〉 = average 

degree; 〈w〉 = average weight
Neighbors in state I R0 is estimated

Nodal

E → I δ1 =
1

3
– 16,17

I → C δ2 =
1

4.56
– Estimated

C → R δ1 =
1

3
– Model

I → R δ
′

2
= 0.66δ2 – 18
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node i has a distance one from node i. The neighbors of a confirmed (C) node in the tracing-layer will be tested 
and quarantined.

Epidemic scheme for contact tracing. For the contact tracing mitigation strategy, we consider two approaches for 
quarantine: I) all the neighbors of a confirmed case in the tracing-layer will be quarantined, and II) only infected 
neighbors of a confirmed case in the tracing-layer will be isolated. For the case I, we propose the SEICQ1 epi-
demic model, and for case II, we propose the SEICQ2 epidemic model (details are given in the “Materials and 
methods”).

Figure 3.  A sensitivity analysis. Mean-squared error (mse) between the time series of the total confirmed 
cases (or cumulative new cases per day) of March 25, 2020 to May 4, 2020 and simulated results for a different 
combination of basic reproductive number and average reporting time (in days). The light-colored boxes 
represent more mse than dark-colored boxes. The color boxes with number “1” means that mse ≤ 3, number “2” 
means that 3 < mse ≤ 10, number “3” means that 10 < mse ≤ 50, number “4” means that 50 < mse ≤100, number 
“5” means that 100 <mse ≤ 500 , number “6” means that 500 < mse ≤ 1000, number “7” means that 1000 < mse. 
More than 80% times epidemic dies out in the combinations of the black squares, and confirmed cases are less 
than 10. The minimum error combination is showing by the red circle. We estimate R0 = 0.55 and average 
reporting time= 4.79 days.

Figure 4.  Total confirmed cases with time in the four reopening scenarios after ‘stay at home’ order lifted on 
May 4, 2020. Solid lines represent the median, and shaded regions represent interquartile range of the 1000 
stochastic realizations. The blue circles in the zoom-in window present the total confirmed case data of the 
COVID-19 in Manhattan (Kansas) for the time period from March 25, 2020 to May 4, 2020. We have used this 
time period to estimate the basic reproductive number and the average confirmed time. The red stars are the 
total confirmed case data of the COVID-19 in Manhattan (Kansas) after May 5, 2020.
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Impact of contact tracing. Contact tracing can minimize the effect of the reopening process and control the 
spreading of COVID-19. We apply contact tracing after May 4, 2020 in Manhattan, KS. The plot of total con-
firmed cases on December 31, 2020 is presented in Fig. 6 for four reopening scenarios : 25% reopening, 50% 
reopening, 75% reopening, and 100% reopening for the different levels of contact tracing. The solid lines in Fig. 6 
represent the median, and shaded regions represent the interquartile range of the 1000 stochastic realizations for 
the SEICQ1 and SEICQ2 model.

The difference between SEICQ1 and SEICQ2 is that SEICQ1 quarantines susceptible, exposed, and infected 
neighbors of a confirmed case in the tracing-layer; however, SEICQ2 isolates only the infected neighbors of a 
confirmed case in the tracing-layer. The SEICQ1 model is always efficient than the SEICQ2 model to control the 
COVID-19 spreading. However, both approaches can reduce the number of confirmed cases, even in the 100% 
reopening situation. For any reopening situations, tracing more than 55% of the contacts in the SEICQ1 can 
reduce the median of the 1000 stochastic realizations of the confirmed cases more than 90% , and in the SEICQ2 
can reduce the median of the 1000 stochastic realizations of the confirmed cases more than 66% on December 
31, 2020, with compare to no-contact-tracing (SEICR model) (Table 2).

The SEICQ1 model can reduce the reported cases further compared to SEICQ2 for the same amount of con-
tact tracing (Fig. 6). However, the SEICQ1 model has a drawback; it quarantines susceptible persons. The number 
of total quarantined susceptible households in the simulation time period for different amounts of traced contacts 
for the SEICQ1 model is presented in Fig. 7 and Table 3. The quarantined susceptible households increase with 
the increase of tracing; however, after tracing a certain percentage ( tp% ) of contacts, the quarantined suscep-
tible households start to decrease with the increase of tracing (Fig. 7). If we consider quarantined susceptible 
households are the cost of SEICQ1 model, then it is cost-effective to trace contacts of the confirmed cases more 
than tp% ; which is 10% for 25% reopening, 10% for 50% reopening, 20% for 75% reopening, and 25% for 100% 
reopening (Table 3). The reason for decreasing the number of quarantined households with the increasing of 
contact-tracing after the maximum value is the smaller number of the infected cases. Although each confirmed 
case will give a long list of possible contacts, this effect will be balanced out by a decreasing number of the con-
firmed cases (supplementary Fig. S2–S5).

Discussion
This research studies contact tracing as a key mitigation strategy to control the COVID-19 transmission in the 
reopening process of a college town in the rural region of the USA. Therefore, we propose a general framework 
to develop an individual-based contact network epidemic model to estimate parameters and implement contact 
tracing. This model is used to estimate the basic reproductive number ( R0 ) and confirmed rate ( δ2 ) in Manhattan, 
KS, for the COVID-19 spreading. The outcomes of this research are valuable to understand the effectiveness of 

Figure 5.  Two-layer network model: contact-layer NC , and tracing-layer Nt . In this example, 50% of contacts 
of each node is traced. For example, node 4 has four neighbors in the contact-layer (2, 3, 5, 8); however, two 
neighbors in the tracing-layer (2, 8). Node 7 has three neighbors in the contact-layer (6, 5, 8); however, two 
neighbors in the tracing-layer (6, 5). Node 8 has three neighbors in the contact-layer (4, 5, 7); however, one 
neighbor in the tracing-layer (4).
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the contact-tracing strategy in the different scenarios of the COVID-19 spreading. Furthermore, this framework 
is generic enough to use any locations and for other diseases as well.

The individual-based network model represents the heterogeneous mixing nature of a population. To inves-
tigate transmission at the individual level, we develop an individual-based contact network model where house-
holds are presented by network nodes. The contact network is a combination of five age-specific networks and 
one random-mixing network; this approach allows us to change an age-specific network according to any change 
in the society (for example, summer break, pandemic lockdown). The pandemic lockdown reduces the contacts 

Figure 6.  Impact of contact tracing. Total reported cases in eight months after ‘Stay-At-Home order’ lifted for 
different movement restrictions scenarios. Contact tracing is applied after May 4, 2020. This figure is showing 
the median (solid lines) and interquartile range (shaded regions) value of 1000 stochastic realizations.

Table 2.  Percentage of reduction of the total confirmed cases in eight months after May 4, 2020, in the four 
reopening scenarios for the two contact tracing mitigation approaches.

Traced 
contacts

Percentage of reduction in the total confirmed cases

SEICQ1 SEICQ2

25% 
reopening

50% 
reopening

75% 
reopening

100% 
reopening

25% 
reopening

50% 
reopening

75% 
reopening

100% 
reopening

5% 55.38 25.90 25.06 24.52 25.70 11.36 10.28 9.10

10% 71.37 43.50 35.87 33.5 48.54 22.84 18.20 16.40

15% 77.73 58.7 45.91 42.39 61.14 33.44 25.14 22.08

20% 84.60 72.60 55.49 42.39 72.64 44.24 32.21 27.90

25% 87.35 83.14 64.26 58.98 79.51 55.01 38.80 33.14

30% 89.52 90.67 72.37 65.90 83.47 66.36 45.47 38.39

35% 90.65 95.29 79.45 72.43 85.74 76.46 51.99 43.80

40% 91.67 97.26 85.16 78.28 86.90 85.00 58.76 49.40

45% 92.20 97.86 89.82 84.19 88.23 91.34 65.36 55.11

50% 92.49 98.02 93.18 88.74 88.75 95.62 72.36 60.97

55% 92.48 98.27 95.73 94.19 89.54 97.25 79.28 66.80

60% 92.41 98.22 96.87 96.60 89.17 97.96 86.59 72.75



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4891  | https://doi.org/10.1038/s41598-021-83722-y

www.nature.com/scientificreports/

mostly among the people who are students. Therefore, age-specific networks for under 18 and 18–24 are changed 
mostly. Pandemic lockdown also affects people in 25–34, 35–59 age-ranges. We propose a ‘full network’ to rep-
resent the usual situation; then, we modify the age-specific networks of the full network according to Google 
COVID-19 community mobility  reports4 to represent pandemic lockdown . The modified network is the limited 
network, a reduced version of the full network. The average degree of the full network is 43.647 for Manhattan, 
KS which means that each household has probable direct connections with an average of 43.647 households. The 
full network is connected and provides an approximation of the contact network at the household level, which 
is useful for doing the simulation anonymously.

We propose a susceptible-exposed-infected-confirmed-removed (SEICR) epidemic model in the limited 
network to simulate COVID-19 transmission from March 25, 2020 to May 4, 2020. We estimate the unknown 
parameters of the SEICR model for the Manhattan, KS, using approximate Bayesian computation based on 
sequential Monte Carlo sampling. We use confirmed cases as an observed data set. Designing an optimal epi-
demic model to simulate epidemic spreading is essential. However, it is challenging to design an epidemic 
model for COVID-19 spreading with limited knowledge; understanding the spreading of COVID-19 needs more 
investigation. Concerning the unclear role of immunity, we assume that the immunity of a recovered COVID-19 
patient is not going to fade in the short period analyzed in our simulations. In addition, we assume that a tested 
positive person is responsible enough to stay in isolation. However, it is important to keep the model simple, 
since the data available to estimate parameters is limited. Therefore, we propose a simple but dynamic and flex-
ible epidemic model to simulate COVID-19 spreading, which has only two unknown parameters. The model 
can easily cope with additional information that may be available in the future.

The estimated basic reproductive number is much smaller in Manhattan, KS (estimated R0 = 0.55 ) because 
of the ‘Stay at home’ order. In Manhattan, 51% of people have age below 24 years, who get a chance to stay at 
home because of the online curriculum in educational institutions. However, the basic reproductive number will 
change when educational institutes start their in-person curriculum (in the 100% reopening, the deduced R0 is 

Figure 7.  The total number of quarantined susceptible households in eight months after May 4, 2020, for the 
SEICQ1 epidemic model for the four reopening scenarios with different tracing levels. This figure is showing the 
median (solid lines) and interquartile range (shaded regions) of 1000 stochastic realizations.

Table 3.  Total quarantined susceptible households in eight months after May 4, 2020, in the SEICQ1 epidemic 
model for the four reopening scenarios.

Traced contacts

SEICQ1

25% reopening 50% reopening 75% reopening 100% reopening

Total confirmed 
cases (median)

Total 
quarantined 
Susceptible 
households 
(median)

Total confirmed 
cases (median)

Total 
quarantined 
Susceptible 
households 
(median)

Total confirmed 
cases (median)

Total 
quarantined 
Susceptible 
households 
(median)

Total confirmed 
cases (median)

Total quarantined 
Susceptible 
households 
(median)

5% 1141 941 10039 4278 15,005 6796 18048 8727

10% 732 1086 7653 5997 12,840 11,329 15,899 15,486

15% 569 1052 5594 5231 10,829 13,515 13,775 19,706

20% 393 1051 3712 4582 8911 15,071 11,740 23,355

25% 323 978 2284 3401 7156 14,919 9807 25,150

30% 268 911 1263 2124 5531 12,120 8151 25,122

35% 239 840 638 1053 4113 8938 6589 22,120

40% 213 800 370 748 2970 5791 5193 18,069

45% 199 765 290 667 2039 3050 3780 12,883

50% 192 757 267 659 1365 998 2693 8052

55% 192 772 233 622 853 872 1386 2870

60% 194 784 241 650 625 856 813 1037
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2.0301). There are 301 college towns in the  USA21, which have a similar population structure like Manhattan, 
KS. A practical contact tracing approach can help to control the epidemic in those college towns.

We implement contact tracing using a two-layer network model. We assess the impact of contact tracing in 
the four reopening scenarios: 25% reopening, 50% reopening, 75% reopening, and 100% reopening (or no restric-
tions). Reopening without vaccination is challenging. It is essential to access the efficacy of the contact tracing 
in the reopening path. Our investigation indicates that more than 50% contact tracing can control the spreading 
of COVID-19 even in the 100% reopening situation. The number of quarantined susceptible people increases 
with the increase of traced contacts, however after a certain amount of tracing ( tp% ), the number of quarantined 
susceptible people decreases with the increases of the traced contacts. We consider that quarantined susceptible 
people represent the cost of SEICQ1 contact tracing model. Therefore it is cost-effective to trace more than tp% 
contacts of a confirmed case. Our research finds that tp increases with the increase in mobility (Table 3).

Our investigation indicates that a sufficient amount of contact tracing can reduce the impact of COVID-19 
spreading in the reopening process of a location. At first, the quarantined susceptible people increase with the 
percentage of traced contacts, however after a certain amount of traced contacts, the quarantined susceptible 
people start to decrease with the increase in the percentage of traced contacts.

Materials and methods
Data. The study area of this research is a college town in the rural region of the USA: Manhattan, KS. We 
use two data sets to develop our model. The first dataset contains the sociodemographic information from the 
census 2018, and the second dataset contains the COVID-19 incidence data.

Contact network. We use configuration network model to develop age-specific networks and the random 
network. The system has N occupied households and p people. The steps are: 

Step 1:  For each person j (here, j ∈ 1, 2, ..., p ), contacts cj is assigned from a Gaussian distribution N (µ, σ 2) . 
The mean µ of the Gaussian distributions are taken from the average number of daily contacts per 
person in each age-range12,22,23. The average daily contacts per person are given in Table 4. For an under 
18-year-old person, the number of contacts is assigned randomly from the N (13.91, 6.95) distribution. 
For a person in 18–24 years age, the number of contacts is assigned randomly from the N (21.25, 10.62) 
distribution. For a person in 25–34 years age, the number of contacts is assigned randomly from the 
N (21.3, 10.65) distribution. For a person in 35–59 years age, the number of contacts is assigned from 
the N (20.912, 10.46) distribution. For an over 60-year-old person, the number of contacts is assigned 
randomly from the N (10.7, 5.35) distribution. In the random-mixing-network, the number of contacts 
is assigned randomly from the N (2, 1) distribution for a person j. The Gaussian or normal distribution 
is the distribution of real numbers; therefore, the number from the N (µ, σ 2) distribution is rounded 
to the closest integer.

Step 2:  For each person j, contacts for its belonging household k is assigned by ( cj − hk − 1 ). Here, cj is the 
number of contacts for a person j, hk is the household size or number of people of the household k, 
person j lives in the household k, j = 1, 2, 3......p , and k = 1, 2, 3......N.

Step 3:  From the mixing patterns of different age-ranges, people have a strong tendency to meet people with 
their same age range (more than 80%)12,22,23. Therefore, We keep the maximum number of contacts 
among the same age ranges and a small percentage for the other age ranges. The percentage of contacts 
in the same age-specific-network for each age-range is given in Table 4. Degree dki of a node k in the 
age-specific network i is s% of ( cj − hk − 1 ), here, s% of average daily contacts of a person happens with 
the people of his same age-range.

Step 4:  After assigning degree, dki for N nodes or households, The configuration network  model11 creates half-
edges for each node, then chooses two nodes randomly and connect their half-edges to form a full 
 edge11.

 The population and network characteristics for the five age-specific networks for Manhattan, KS are given in 
Table 4.

Stochastic simulation. To do the simulation, we use GEMFsim; it is a stochastic simulator for the general-
ized epidemic modeling framework (GEMF), which was developed by the Network Science and Engineering 
(NetSE) group at Kansas State  University24. The GEMFsim is a continuous-time, individual-based, numerical 

Table 4.  Properties of the Age-specific-networks of the Manhattan, KS.

Age-range Under 18 18–24 25–34 35–59 over 60

Population 8074 20,378 9887 10,581 6567

Average daily contacts per  person12 13.91 21.25 21.3 20.91 10.7

Average daily contacts with non-household members per person 12.00 20.00 19.98 19.00 7.05

% of neighbors in the same age-specific  networks22 85.63 90.48 90.29 84.95 71.43

Number of edges in the age-specific networks 40,466 187,723 88,806 90,835 16,511
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simulator for the GEMF-based  processes14. The network and epidemic model is the input of the GEMFsim, and 
the time dynamic of each node state is the output. In GEMF, the joint state of all nodes follows a Markov process 
that arises from node-level transition. A node can change its state by moving from one compartment to another 
compartment through a transition. One assumption of the GEMF system is, all the events or transitions are 
independent Poisson processes with the constant rate; this assumption leads the system to a continuous-time 
Markov process. Initially, the simulation starts by setting two infected nodes randomly. The stochastic simulator 
GEMFsim is based on the Gillespie algorithm. The Gillespie algorithm can produce a statistically correct trajec-
tory of a continuous-time Markov process.

Epidemic model for contact tracing. The SEICQ1 model has eight compartments: susceptible (S), 
exposed (E), infected (I), confirmed (C), quarantined-susceptible ( QS ), quarantined-exposed ( QE ), quarantined-
infected ( QI ), and removed (R). The SEICQ2 model has six compartments: susceptible (S), exposed (E), infected 
(I), confirmed (C), quarantined-infected ( QI ), and removed (R). The transitions S → E , E → I , I → C , and 
I → R are the same as the base SEICR model.

In the SEICQ1 model, neighbors (susceptible, exposed, and infected) of a confirmed node in the tracing-layer 
will be tested and quarantined. In the SEICQ1 model, susceptible, exposed, infected neighbors in the tracing-layer 
of a confirmed case will go to the quarantined-susceptible QS , quarantined-exposed QE , and quarantined-infected 
QI states with rate β2 . The susceptible to quarantined-susceptible ( S → QS ), exposed to quarantined-exposed 
( E → QE ), and infected to quarantined-infected ( I → QI ) transitions are edge-based transitions and confirmed 
compartment is the influencer of these transitions. A COVID-19 positive neighbor of a confirmed node will go 
to the confirmed state immediately with δ3 rate, QI → C is a nodal transition. We model the transition rates β2 
and δ3 are much higher than the rate for the transition C → R to ensure that the neighbors of a confirmed node 
in the tracing-layer will move to the quarantined or confirmed state before the C → R event happens. For the 
simulation, we take β2 = δ3 = 50δ1 . The SEICQ1 model is presented in Fig. 8a. A description of the 11 transi-
tions of the SEICQ1 model is given in Table 5.

In the SEICQ2 model, neighbors of a confirmed node in the tracing-layer will be tested, and only infected 
neighbors will go to the quarantined-infected ( QI ) state immediately with rate β2 . The node transition diagram 
of the SEICQ2 model is given in Fig. 8b. A description of the 7 transitions of the SEICQ2 model is given in the 
Table 6.

Data availability
The dataset and code used to perform this research is available from https ://doi.org/10.7910/DVN/3IM82 E. The 
authors are willing to provide further details upon request.

Figure 8.  Node transition diagrams. (a) SEICQ1 epidemic model, (b) SEICQ2 epidemic model. The solid lines 
represent the node-level transitions, and the dashed lines represent the influence of the influencer compartment 
on an edge-based transition.

https://doi.org/10.7910/DVN/3IM82E
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