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The design of X‑band EPR cavity 
with narrow detection aperture 
for in vivo fingernail dosimetry 
after accidental exposure 
to ionizing radiation
Junwang Guo1,3, Xiaoxiao Luan2,3, Ye Tian1, Lei Ma1, Xiaoguang Bi1, Jierui Zou1, Guofu Dong1, 
Ye Liu1, Yonggang Li1, Jing Ning1 & Ke Wu1*

For the purpose of assessing the radiation dose of the victims involved in the nuclear emergency or 
radiation accident, a new type of X‑band EPR resonant cavity for in vivo fingernail EPR dosimetry 
was designed and a homemade EPR spectrometer for in vivo fingernail detection was constructed. 
The microwave resonant mode of the cavity was rectangular TE101, and there was a narrow aperture 
for fingernail detection opened on the cavity’s wall at the position of high detection sensitivity. 
The DPPH dot sample and the fingernail samples were measured based on the in vivo fingernail 
EPR spectrometer. The measurements of the DPPH dot sample verified the preliminary functional 
applicable of the EPR spectrometer and illustrated the microwave power and modulation response 
features. The fingernails after irradiation by gamma‑ray were measured and the radiation‑induced 
signal was acquired. The results indicated that the cavity and the in vivo EPR dosimeter instrument 
was able to detect the radiation‑induced signal in irradiated fingernail, and preliminarily verified 
the basic function of the instrument and its potential for emergency dose estimate after a radiation 
accident.

The triage and medical treatments for individuals involved in radiation accidents strongly depend on the ionizing 
 dose1,2. Ionizing radiation generates free radicals in biologic materials, and most of them react and disappear 
immediately. While the radiation induced free radicals in water-deficient materials such as fingernail, tooth or 
bone are stable, and the quantity is proportional to the radiation  dose3,4. The fingernail is a kind of material which 
is much easier to be acquired than tooth enamel or bone in most scenes. EPR spectroscopy is a specific sensitive 
method for the detection of free radicals. Therefore EPR spectroscopy of fingernail is a potential method for 
retrospective dosimetry after nuclear medical  emergencies5–8.

The common method of EPR fingernail dosimetry is ex-vivo measurement of the fingernails. During ex-
vivo measurements, the fingernails have to be cut into fragments. The clipping process generates the so-called 
mechanically-induced signal (MIS) which can seriously interfere with the radiation-induce signal(RIS), thus 
affecting the accuracy of dose evaluation. Therefore, the separation and elimination of the MIS caused by fin-
gernail clipping is usually an important issue in the study of EPR fingernail dosimetry. The elimination of the 
MIS is an important effort to reduce the dose detection limit, improve the dose estimation accuracy, and would 
improve the practicability of the fingernail EPR dosimetry method for the diagnosis of the acute radiation 
syndrome (ARS)9–11.

A method of in vivo fingernail EPR dosimetry is proposed to reduce the negative effect of the MIS by avoid-
ing the cutting process of the fingernail, and this method could improve the accuracy and feasibility of EPR 
dosimetry of  fingernail12,13.

A commercial EPR spectrometer can be only used for ex-vivo measurement of the fingernail. There are several 
technical issues in the realization of in vivo EPR fingernail spectroscopy, and one of the most vital challenges is 
that the microwave resonator of the EPR spectrometer is not suitable for in vivo fingernail measurement. It is 
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principally hindered by the closed structure of the resonant cavity and the additional problem of non-resonant 
absorption of microwave in the presence of lossy tissues.

Therefore, the fingernail has to be cut into pieces and then inserted into the sample tube. So the design of 
resonator for in vivo fingernail EPR measurement should be started before the method can become practical.

Ishii et al. proposed an X-band aperture cavity for in-vivo tooth dosimetry in early  time14,15. Swartz H.M. team 
designed the L-band surface coil resonator for in vivo EPR tooth dosimetry[16]and made important progress 
in the L-band in vivo tooth EPR  dosimetry17–19. And their team also designed several resonators for fingernail 
in vivo EPR  spectroscopy20,21. In previous work, we also designed several kinds of aperture cavities for in-vivo 
tooth  spectroscopy22–27. Based on these works, we newly designed an aperture X-band cavity which is special 
for in vivo fingernail EPR spectroscopy, and based on which, preliminary established an elementary prototype 
machine of in vivo fingernail EPR dosimeter. This paper detailed introduces the design of the cavity, and briefly 
introduced the other important units such as the magnet and the magnet modulation, and final construction of 
the EPR spectrometer. Some typical experiments of the DPPH dot sample and fingernail sample measurements 
were performed to preliminary verify the basic function of the instrument and its potential for radiation induced 
signal detection from the irradiated fingernails.

Results
The cavity and EPR spectrometer for in vivo fingernail dosimetry. The system design. According 
to the principal rules of EPR spectroscopy, the magnetic field, modulation, and microwave electromagnetic field 
should be applied to the sample in a certain direction, amplitude, frequency, and other parameters at the same 
time. We designed an in vivo EPR spectroscopy system as illustrated by Fig. 1. The main components of the spec-
trometer included a combined magnet unit with an electromagnet and permanent magnet, magnet modulation 
coils and its amplifier, microwave resonant cavity, microwave bridge, Lock-in amplifier, host computer installed 
with control and data process software, and DA-AD interface.

The cavity design. Figure 2a shows the design sketch of the cavity. It was composed of the cavity body, detection 
aperture, flange and tuner, and the reference sample (ref. sample). The cavity body was based on a rectangular 
TE101 mode cavity. A rectangular detection aperture was opened on the cavity wall. The fingernail could be 
inserted into the aperture. The aperture was transfixed through the cavity body, in this way the magnet field and 
its modulation can be applied into the detecting aperture. Figure 2b,c showed the magnetic and electric field 
distribution in the cavity. It was consistent with the designed electromagnetic field configuration (The electric 
and magnetic field in Fig. 2a) of the TE101 mode resonant cavity.

Figure 1.  The system design of in vivo fingernail spectrometer.
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The cavity design was confirmed by the finite element simulation software HFSS (High Frequency Structure 
Simulator). The simulation method and parameters were: Material, silver; Filling, dielectric air; Mode, Eigen 
mode; Cavity inner size, 22.1 mm × 7.0 mm × 22.1 mm; Aperture size, 9.0 mm × 1.1 mm. The simulation results 
were (1) the lowest microwave resonant mode was TE101, (2) the resonant frequency was 9.59 GHz. The resonant 
frequency and quality factor Q of the cavity were physically tested using the reflection method by a network 
analyzer. Some of the parameters and results were listed in Table 1. The design parameters, the simulation results, 
and the physical test results were mutually consistent with each other. The distribution of the microwave magnetic 
fields in the cavity was plotted by Fig. 2b. The aperture was located in the area of high magnetic field and thus 
sufficient microwave power could be achieved for the Zeenam levels splitting. The distribution of the microwave 
electrical fields in the cavity was plotted by Fig. 2c. The aperture was located in the area of low electrical field and 
the aperture was relatively narrow for microwave leaking, therefore, the non-resonant loss of microwave due to 
the lossy tissue could be avoided.

The integration of the spectrometer. The final instrument constructed in our laboratory is shown by Fig. 3.

EPR spectroscopy of DPPH dot sample. Figure 4 shows the experimental results of the EPR spectros-
copy of DPPH dot sample. Figure 4a shows the DPPH sample inserted into the detection aperture of the cavity 
in the measuring status. Figure 4b shows a typical EPR spectrum of the DPPH. Figure 4c,d shows the relative 
signal intensity of the DPPH spectra against the square root of microwave power and the magnet modulation 
amplitude. The signal intensity increased as the microwave power increased linearly with the sqrt of power up 
to 100mW, and then a lower rate of signal intensity indicated microwave power saturation. The signal intensity 
continuously increased proportionately as the modulation amplitude increased. The peak-to-peak EPR line-
width of DPPH dot sample was significantly broadened when the modulation amplitude exceeded the intrinsic 
line width. These experimental results confirm that the newly assembled EPR spectroscopy system could func-
tion as designed, and that sufficient microwave power and modulated magnetic field could be applied into the 
detection aperture.

The fingernail EPR spectroscopy. Figure 5a demonstrats the fingernail inserted into the detection aper-
ture with only the cusp of the fingernail being detected. Figure 5b shows a typical fingernail EPR spectrum 
measured in vivo using a sample of an irradiated fingernail placed on top of the natural fingernail. Comparing 
the EPR spectrum of the fingernail before irradiation with the EPR spectrum of empty cavity (without fingernail 
sample), a background signal (BKS) could be found, which suggested the detection sensitivity of the spectrom-
eter was in the ranger needed for fingernail EPR detection. The BKS intensity was approximately equivalent to 

Figure 2.  The cavity design. (a) The sketch of the aperture cavity for in-vivo EPR fingernail dosimetry. (b) 
Magnetic field distribution in the XOY plane. (c) Electric field distribution in the XOY plane.

Table 1.  Some tested parameters of the aperture cavity.

Items Designed Simulated Tested

Length(mm) 22.10 22.10 22.10 ± 0.05

Width(mm) 7.00 7.00 7.00 ± 0.05

Height(mm) 22.10 22.10 21.10 ± 0.05

Aperture width(mm) 1.10 1.10 1.10 ± 0.05

Q value – – 3850

Frequency(GHz) 9.60 9.59 9.53
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Figure 3.  The X-band in vivo EPR spectrometer of fingernail dosimetry.

Figure 4.  Result of EPR spectroscopy of a DPPH dot sample. (a) The DPPH sample inserted into the detection 
aperture of the cavity in the measuring status. (b) A typical EPR spectrum of the DPPH sample. (c) The relative 
signal intensity of the EPR spectra against the square root of power. (d) The relative signal intensity of the EPR 
spectra against the modulation amplitude.
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the RIS intensity of 2–3 Gy. Comparing the spectrum of the fingernail before irradiation with the fingernail after 
irradiation of 6 Gy, a radiation-induced signal (RIS) could be found, which suggested the detection sensitivity 
of the spectrometer was available for dose assessment. Several radiation-induced signals have been found in 
the fingernail  measurements5–10. The peak to peak value of RIS2(g = 2.005) was used as the signal amplitude of 
radiation-induced signal in this work, which was usually used in the previous studies on the feasibility of EPR 
dosimetry with  nails28–30. The dose–response of this signal was found to be linear up to 300 Gy6.

Discussion
The cavity is one of the most vital components for the in vivo EPR fingernail spectrometer system. The develop-
ment of this X-band EPR cavity uses a narrow detection aperture opened on the cavity wall for in vivo fingernail 
detection, using TE101 rectangular mode resonator. The electromagnetic field distribution through an aperture 
in the TE101 mode rectangular cavity provides the possibility of external detection instead of detection inside 
the cavity. In the presence of an aperture the microwave magnetic field loops surround the cavity’s surround-
ing metal walls, and the intensity reaches the highest near the middle of the cavity wall. The detection aperture 
causes very little microwave electric field attenuation. The experiment with the DPPH dot sample measurement 
showed that the system could achieve satisfactory EPR spectroscopy. And the fingernail measurement showed 
that a combination of a background signal and a radiation-induced signal could be obtained, although at his 
time we do not have a practical means to resolve the RIS component.

The most significant feature of in vivo EPR fingernail dosimetry is that it eliminates the influence of the MIS 
signal caused directly by fingernail clipping in the dose evaluation. Compared with the study of in vivo tooth 
 dosimetry17,22,28, the dose assessment precision and limit of the fingernail dosimetry might not be as good as 
tooth dosimetry (the standard error of prediction was approximately evaluated at 1.5 Gy for L-band spectros-
copy of molar teeth)17,18,28. However, in vivo fingernail EPR dosimetry has some advantages in the potential for 
providing information and multiple sites (hands and feet) and future instrumental developments could achieve 
very competitive convenience for positioning, and speed of  measurement31.

This work focused on the instrumental development, and the elimination of the MIS caused by fingernail 
clipping for the fingernail EPR dosimetry. The experiments in this paper were aimed to preliminary verify the 
designed function and demonstrate the feasibility of this method. However, there are still some more issues to 
be settled before this method becomes more available. The comprehensive dosimetric characteristics of in vivo 
fingernail EPR measurement still remain a series of further studies in the future work. The strong sensitivity of the 
radiation-induced signals in fingernails to humidity, especially to the direct contact with water, could result in the 
large deviation between nominal and EPR  doses29–32. This may lead to inapplicability of EPR fingernail dosimetry 
in some circumstances. Other more studies and efforts should include the “real” irradiation experiment with UV 
to generate free radicals in fingernail; the normalization and calibration method of the signal intensity accord-
ing to the size and the thickness of the fingernail; the improvement of the cavity of the spectrometer and so on.

Figure 5.  The in vivo EPR spectroscopy of fingernail. (a) The fingernail was inserted into the detection aperture 
in the state of being measured. (b) The EPR spectra of the in vivo measurement of the fingernails before 
irradiation and after irradiation by 6 Gy.
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Conclusions
For the purpose of elimination the influence of the mechanically-induced signal (MIS) caused by fingernail 
clipping in the fingernail EPR dosimetry, the paper designed the in vivo spectrometer of fingernail with newly 
designed aperture cavity. The experiments with DPPH sample and fingernails were carried out to verify the 
design. The results indicated that the cavity and the in vivo fingernail EPR dosimeter was able to detect the 
radiation-induced signal in irradiated fingernail and could eliminate the MIS caused by fingernail clipping in 
the dose reconstruction of fingernail EPR dosimetry. This work was intended to promote the study of the EPR 
fingernail dosimetry and improve the practicability of this method in the nuclear emergency rescue.

Methods
The cavity design. The microwave resonant mode and electromagnetic field configuration. The microwave 
resonant mode inside the cavity was rectangular TE101, a resonant mode which was not appropriate in common 
ex-vivo EPR spectroscopy but had the superior features for in vivo EPR spectroscopy due to its electromagnetic 
field configuration inside the cavity. The electromagnetic field configuration in the TE101 mode cavity was il-
lustrated in Fig. 2a. Most of the magnetic field component was distributed near the cavity surrounding walls. 
The electric field component was concentrated in the middle area of the cavity along the Z-axis. Figure 2b and 
Fig. 2c showed electromagnetic field distribution in the XOZ plane (Z = 0, the coordinate system was defined as 
Fig. 2a). TE101 mode was the dominant TE mode in the rectangular cavity and had the lowest cutoff frequency. 
Therefore, its electromagnetic field configuration was stable in the circumstances of interfering by resonant fre-
quency or sample volume change. Compared with the TE111 and TM010 mode cavities we designed  before23,24, 
the magnetic field component of the TE101 mode was more concentrated in the detection aperture area and thus 
lead to higher detection sensitivity than before.

The detection aperture. The aperture’s position was plotted by the dot line in Fig. 2a. It was positioned at the 
middle area of the cavity wall. The choice was made for: (1) The microwave magnetic field applied to the sample 
through the aperture was perpendicular with the external magnetic field and the magnetic modulation; (2)
The aperture was located at the position of maximum microwave magnetic field component  (H1) and (3) weak 
microwave electric field component  (E1); (4)The aperture’s longer edge was parallel with the current flow on 
the surface cavity wall. The first requirement arose from the nature of the electron paramagnetic resonance 
condition. The second requirement was because the amount of microwave energy absorbed by the sample was 
proportional to  H1

2 below saturation; the third and fourth requirement minimized the microwave energy loss, 
which could lead to a deleterious effect on the detection sensitivity.

The detection aperture was rectangular. It was transfixed through the cavity body (along the z-axis) for the 
magnetic field and its modulation application. The aperture width was 1.1 mm (along the y-axis), which was 
suitable to set fingernails in and not too wide to cause microwave energy loss. The depth was 2 mm into the 
cavity (along the x-axis).

The dimension. The microwave resonant mode, resonant frequency, and resonant quality factor Q were 
dependent on the cavity’s dimension and material. The following conditions were referred to: (1) the X-band 
microwave system worked at about 9.60 GHz; (2) the resonant mode was TE101; 3) higher quality factor Q. The 
cavity was manufactured using copper material and plated with silver to reduce its surface resistance. Let the 
ideal rectangular resonant cavity length be a, width be b, and height be d. The solutions were given by

The internal reference sample. There was an internal reference sample fixed near the detection aperture (ref. 
sample in Fig. 2a) to indicate the status of the in vivo EPR spectrometer and to calibrate the signal intensity. The 
internal reference sample containing  Mn2+ in CaO encapsulated in a thin quartz capillary. The EPR signal of the 
reference sample could be measured synchronously with the EPR signal of the fingernail. The lines of  Mn2+ and 
RIS of the fingernail could be included in a single spectrum and the two signals would be sufficiently separated.

The tune and coupling. The cavity was coupled to the microwave bridge through a circle coupling hole in the 
flange. The tuner was a screw bolt made of Teflon with a metal tip on its top, and it was fixed in front of the cou-
pling hole. The coupling screw can be gradually turned to the hole to adjust the coupling coefficient between the 
cavity and the microwave system.

The other units and the integration of the EPR spectrometer. The magnet. The magnet unit had 
a wide magnet poles gap. It was composed of a pair of permanent magnets and a set of electromagnetassembled 
on a C-shape yoke  iron33. The main magnet field (about 335mT) was provided by alloy permanent magnet mate-
rial of Nd-Fe-B. The scan of the magnetic field (about 0-10mT) was provided by the electromagnet. The scan of 
the electromagnet was driven by a set of programmable current source controlled through the host computer.

The magnetic field modulation. A special modulation device was developed for the modulation in the wide 
magnet gap. The modulation device included: (1) Modulation amplifier based on MOSFET Bridge that could 







a = 22.10mm

b = 7.00mm

d = 22.10mm
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supply high current than commercial equipment to drive the excitation coils. (2) A pair of excitation coils with 
the feed-back loops inside. The excitation coils generated magnet modulation in the magnet poles’ gap. The feed-
back coils were used to indicate modulation amplitude by the induced currents that were proportional to the 
modulation amplitude. (3) Fixing frame to support the coils. The frame could be adjusted to control the coils in 
the particular angle and position between the poles. The modulation device could provide the modulated field 
higher than 1mT in the aperture area.

The commercial units. The microwave system was composed mainly of a commercial ready-made microwave 
bridge (from Bruker A300 EPR spectrometer) with a homemade water cooling device to secure the microwave 
generator. The signal receiver was also a commercial product of phase-sensitive lock-in amplifier (SR830). Some 
other units contained several power supply apparatus (Beijing Dahua) serving the microwave bridge, magnet, 
modulation amplifier, and others.

The host computer. The host computer was a notebook PC with a USB interface of the AD/AD board. The com-
puter ran the software developed based on the Labview platform. The software function included the magnet 
scan control, data acquisition and storage, and the spectrum display.

Measurement of DPPH dot sample. The experiment of DPPH dot sample measurement was intended 
to confirm if the newly assembled EPR spectroscopy system could realize the designed function, and to check 
the cavity design by verifying if sufficient microwave power and modulated magnetic field could be applied into 
the detection aperture. The DPPH(1,1-Diphenyl-2-picrylhydrazyl radical 2,2-Diphenyl-1-(2,4,6-trinitrophenyl)
hydrazyl) powder was inserted in quartz capillary to form a sample of 1 mm in length and 1 mm in diameter and 
was used as a standard dot free radical sample. The DPPH dot sample was fixed in the center of the cavity aper-
ture. Typical EPR spectroscopy’s parameters were: scan time 20 s, time constant 0.03 s, center field 340 mT, scan 
magnetic field 0 ~ 10 mT, microwave power 0.01 ~ 200 mW, microwave power 1 mW, and modulation amplitude 
0.02 ~ 0.4 mT for modulation feature.

Measurement of fingernail. The measurement of fingernail was used to preliminary verify the system 
design and the applicability of the cavity for in vivo fingernail EPR measurement. Because the fingernail could 
not be irradiated directly, a simulation method was performed. The first step, the fingernail was entirely clipped 
along the free margin of the fingernail and the free edge of the fingernail was clipped (the cracks or scratches 
should be avoided during the process), and then attached to the fingertip again to simulate the in vivo condi-
tions; the second step, the background signal (BKS) was recorded through in vivo EPR measurements; the third 
step, the fingernail was irradiated by 60Co radiation source with dose of 6 Gy, then attached to the fingertip, and 
the radiation-induced signal (RIS) was recorded through in vivo EPR measurements. The detection aperture of 
the cavity was 2 mm in the depth direction, so the length of the fingernail (the length of the free edge) was at 
least 2.5 mm for in vivo EPR measurement. In this experiment, the fingernail length was longer than 4 mm to 
ensure only the cusp of the fingernail was inserted into the aperture and the cutting edge was left outside of the 
aperture, in which way, the MIS signal caused by fingernail clipping could be avoided.

The experiments were approved by the Medical Ethical Committee of Beijing Institute of Radiation Medicine 
(BIRM-MEC-20190115), and all the experiments were performed in accordance with relevant named guidelines 
and regulations. The informed consent was obtained from all participants.

The storage and laboratory environment conditions were: room temperate 20 °C; humidity 55%; container, 
airtight glass container. Typical ERP measurement parameters were: scan time, 5 s per scan, and 30 scans each 
measurement; magnet scan, 10 mT; microwave power, 5 mW; time constant, 0.03 s, center field 340 mT, modula-
tion amplitude, 0.2 mT.
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