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Functional random forests for curve 
response
Guifang Fu*, Xiaotian Dai & Yeheng Liang

The rapid advancement of functional data in various application fields has increased the demand for 
advanced statistical approaches that can incorporate complex structures and nonlinear associations. 
In this article, we propose a novel functional random forests (FunFor) approach to model the 
functional data response that is densely and regularly measured, as an extension of the landmark 
work of Breiman, who introduced traditional random forests for a univariate response. The FunFor 
approach is able to predict curve responses for new observations and selects important variables from 
a large set of scalar predictors. The FunFor approach inherits the efficiency of the traditional random 
forest approach in detecting complex relationships, including nonlinear and high-order interactions. 
Additionally, it is a non-parametric approach without the imposition of parametric and distributional 
assumptions. Eight simulation settings and one real-data analysis consistently demonstrate the 
excellent performance of the FunFor approach in various scenarios. In particular, FunFor successfully 
ranks the true predictors as the most important variables, while achieving the most robust variable 
sections and the smallest prediction errors when comparing it with three other relevant approaches. 
Although motivated by a biological leaf shape data analysis, the proposed FunFor approach has great 
potential to be widely applied in various fields due to its minimal requirement on tuning parameters 
and its distribution-free and model-free nature. An R package named ’FunFor’, implementing the 
FunFor approach, is available at GitHub.

Functional data analysis has become an active research topic as technological measurement devices become 
more sophisticated (e.g., new sensors and electrodes). Its far-reaching applications include biological shape and 
contour studies, global climate change, drug sensitivity curve for cancerous cell lines, functional near infrared 
spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), popula-
tion kinetics of plasma folate, and  more1–3. Our work is driven by a leaf morphology (shape) trait that possesses 
tremendous variability in  nature4,5, reflecting ecological and evolutionary  drivers6,7. Each leaf shape is described 
as a 910-dimensional functional data object with regular and dense grids. Scientists are particularly interested in 
exploring which genes truly regulate the variation of the dynamic trajectory of biological shape phenotypes and 
in predicting shape for future observations. Shape has been found to be affected by gene–gene  interactions8,9; 
however, interactive variables are hard to detect because they may have very small marginal/main effects. Manolio 
et al. summarized a few difficulties in modeling complex traits, including the low power to detect gene-gene 
 interactions10.

A typical definition of functional data is to collect data by machines over a dense and regular grid of time/
location points, as our motivated leaf shape data does. Despite the fact that the data is measured in the form of 
multiple discrete points in various aforementioned applications, an underlying trajectory is clearly manifested as 
a smooth random function. Therefore, modeling the response as a single entry and capturing its dynamic trajec-
tory reflects the true need. Challenges come from the potentially hidden structure and that the data’s distribution 
is messier than any assumptions. Nonlinear and non-additive relations, which truly reflect the characteristics of 
the real world’s messy dataset in practice, have been neglected by many existing approaches.

In this article, we propose a new approach named Functional Random Forests (FunFor), which facilitates an 
extension from the traditional random forests methodology (RF for short; designed for a univariate response) 
to a functional or curve response setting. The inputs of the FunFor method will be a curve response along with 
a set of scalar predictors for each observation. FunFor outputs the predicted curve response for each observa-
tion along with the importance rank of each predictor according to its association strength with the curve 
response. The FunFor approach has many beneficial properties: effectively accommodating both the linear and 
nonlinear associations; jointly modeling multiple predictors instead of isolating them; capturing the intricate 
higher-order interactions without the need of specifying the order or structure of interactions; being flexible 
for various predictor types, such as binary, categorical, and/or continuous predictors; demonstrating feasibility 
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for high dimensionality when the number of predictors is larger than the number of observations; embracing 
a nonparametric approach without assuming any specific model structure or certain distribution; and requir-
ing few tuning parameters. We demonstrate that the FunFor approach performs well through eight simulation 
settings under various difficulty levels and also one real data analysis. Although the proposed FunFor approach 
was driven by a genetic leaf shape problem, it has far-reaching potential to be applied widely in various fields 
that have functional  traits2,3,11, as the traditional random forest approach does for univariate traits. An R pack-
age named ’FunFor’, implementing the FunFor approach, is available at GitHub (https:// github. com/ xiaot iand/ 
FunFor). It can be installed by running devtools::install_github (“xiaotiand/FunFor”).

While the literature based on the functional linear regression model is  vast12–20, we want to emphasize that 
they propose a parametric model structure and assume a linear relationship without focusing on interactions 
or complex structures. As commented by Chen et al., few methods for simultaneous variable selection and pre-
diction exist in the functional/curve data  literature16. Additionally, functional analyses exploring higher-order 
interactions and nonlinear associations without any model structure or distribution assumptions are even rarer, 
despite the fact that such scenarios widely exist in practice. In general, nonparametric data-driven tree-based 
approaches have been found to frequently outperform the classic regression approaches when the datasets have 
more complex structures than general  assumptions21.

A few attempts have been made to extend the tree-based models from a univariate response to a curve 
response. Segal assumed three well-known covariance  structures22: independence, compound symmetry, and a 
first-order autoregressive model. As pointed out by Zhang and  Singer23, Segal’s studies were restricted to longitu-
dinal data having a given auto-covariance structure. Abdolell et al. extended the regression tree from a univariate 
response to a longitudinal response, but they only considered a prognostic  predictor24. In summary, these early 
works represented breakthroughs in extending standard regression tree models from one univariate response 
to a curve response. However, they either mainly focused on the longitudinal data instead of functional data 
or built only one single tree. The restriction of using one single tree has been already  observed25. Fu et al. built 
multiple individual models by applying the traditional random forests approach to fit each individual principal 
component score of the curve separately without truly incorporating the functional nature of the curve response 
as a whole  unit8. Moller et al. used a functional random forests approach to model functional predictors but a 
scalar  response26, the opposite of the setting we consider.

In this article, we compare the proposed FunFor approach with three other directly comparable works: the 
‘refund’ R package implementing the function-on-scalar regression model with LASSO penalty proposed by Reiss 
et al.13,27, the ‘splinetree’ R package that was built based on the work of Yu and  Lambert11,28, and the functional 
random forests (FRF) approach proposed by Rahman et al.3. See Scheipl for a comprehensive CRAN task view: 
functional data  analysis29. As demonstrated in the “Simulation studies” section, the FunFor approach achieves the 
most effective and robust performance among the four approaches in the three simulation examples. In addition 
to the empirical comparisons, we also comment on the common and different technique points of these four 
approaches. The four approaches can all be utilized for not only detecting important associations between scalar 
predictors and the curve response but also predicting dynamic trajectory of the curve response.

The differences are as follows: The function-on-scalar regression model shrinks unimportant predictors to 
zero and is feasible for variable selection in the case of p > n when incorporating the LASSO penalty. However, 
it relies on a parametric model structure and linear relationship  assumptions13, without focusing on nonlinear 
associations and complex structures. Yu and Lambert realized the advantage of functional trees to cope with 
complex and nonlinear relationships. However, they proposed a multivariate regression tree to fit the coefficients 
of the spline basis functions or the first few principal component scores of the curve response. Actually, the 
multivariate modeling does not utilize the time course of the functional data and therefore cannot describe the 
overall time trajectory of the response in the functional sense. Yu and Lambert gave an example in which apply-
ing a multivariate regression tree model to a curve response was not  successful11. Rahman et al. also proposed 
a functional random forests approach and obtained good results when applying it to predict the dose-response 
curve for cancerous  lines3. There exists multiple detailed technique differences between the two methods: Rah-
man et al. divided the entire curve into several regions and computed the overall error by summing up several 
individual errors (i.e. node costs) obtained from each of the regions. The node cost computation at each region 
is very close to that of the traditional random forest model by using one point (mean or medium of multiple 
points) per region. However, this region-wise approach may not truly incorporate the functional nature of the 
response during the tree construction process. Additionally, they did not provide a well-justified rule for how to 
determine the number of regions. After investigating multiple options, we noticed that the choice of the num-
ber of regions greatly affected the results. The characteristics of the function were reflected in their last step by 
adopting a linear combination of B-spline functions at the leaf nodes to predict the curve  response3, but they 
neglected the roles of the covariance structure, which were found to produce incorrect variance  estimates30,31. 
Conversely, the FunFor approach integrates the functional nature of the response everywhere into an indispen-
sable system. In addition, the FunFor approach continues to update curve estimates by computing both the mean 
and the complex covariance structure after the observations are recursively divided into two child nodes. Truly 
integrating the functional process during both the tree building-up process and leaf node prediction process is 
not only important but is more accurate.

Methodology
Let Yik , i = 1, . . . , n; k = 1, . . . ,K denote the dense but discretely recorded curve response for the ith observa-
tion, measured at the kth time (or location) point. Here, K is the number of time points, which is set to be the 
same for each observation; n is the number of observations, and p is the number of predictors. Let X i ∈ R

1×p 
be the ith row of the design matrix, and Xj , j = 1, . . . , p be the jth predictor.

https://github.com/xiaotiand/FunFor
https://github.com/xiaotiand/FunFor
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Technically speaking, the FunFor approach incorporates the following multiple steps: it utilizes the nonpara-
metric functional principal component analysis (FPCA) skills to estimate the underlying random function for 
each subject; adopts smoothing techniques to approximate the infinite-dimensional mean functions and auto-
covariance functions; incorporates the estimated and smoothed function of each observation into a regression 
tree framework in order to build a functional regression tree; grows an ensemble of functional regression trees; 
finally, outputs the variable importance measure for each predictor and the predicted curve response for each 
subject.

Functional principal component analysis. The observed response data can be modeled as an underly-
ing function plus noise,

where f1(t), . . . , fn(t) are a collection of independent realizations of a random functional process f(t) and are 
defined on L2([0, 1]) . The εik are the independent experimental errors with E(εik) = 0 and Var(εik) = σ 2

k  , 
k=1,...,K. The mean function of f(t) is E(f (t)) = µ(t) , a smooth function of t ∈ [0, 1] and the auto-covariance 
function of f(t) is G(t ′, t) , a bivariate positive definite smooth function of t ′, t ∈ [0, 1] . In order to model the auto-
covariance function, FPCA interprets G(t ′, t) as the kernel of a linear integral operator on the space of square-
integrable functions on [0, 1], mapping f ∈ L2([0, 1]) to AGf ∈ L2([0, 1]) , defined by (AGf )(t) =

∫ 1
0 f (s)G(s, t)ds. 

We assume that the operator AG has a sequence of smooth orthonormal eigenfunctions vl(t) ∈ L2([0, 1]) satisfy-
ing 

∫ 1
0 vk(t)vl(t)dt = δkl (here δkl is the Kronecker symbol), with ordered eigenvalues �1 ≥ �2 ≥ . . . ≥ 0.

The functional principal component expansion decomposes the random functions {fi(t)}  as31,32

where the sum is defined in the sense of L2 convergence and ζil =
∫ 1
0 (fi(t)− µ(t))vl(t)dt are uncorrelated ran-

dom variables with E(ζl) = 0 , and var(ζl) = �l . Here, ζl is frequently referred to as the lth functional principal 
component score (PC). The curve response can be estimated  as17,33,34

Here, µ̂(t) is the estimated overall mean function and v̂l(t) and ζ̂il are the estimated eigenfunctions and esti-
mated functional PCs of the estimated auto-covariance function Ĝ(t ′, t) , respectively. L is the number of PCs to 
be retained, which is pre-specified according to the proportion of total variation of the curve response explained 
by the first few PCs. The f̃i(t) obtained from Eq. (3) is an estimate of the random function fi(t).

Smoothing and estimating. Since the real data are contaminated with measurement errors, the sample 
mean vector Ȳ  and eigenvectors of the sample covariance matrix Ḡ (a K × K matrix) of the raw data tend to be 
noisy, affecting the accuracy of the results. Therefore, we need to perform smoothing processes to obtain the 
estimates µ̂(t) and Ĝ(t ′, t) , all of which are contained in Eq. (3). Specifically, we applied the univariate P-spline 
smoother approach to get an estimate of the mean function µ̂(t) . To obtain an estimate of the covariance func-
tion, Ĝ(t ′, t) , we applied the sandwich smoother and the fast covariance estimation (FACE)  algorithm35,36. The 
sandwich smoother is a bivariate smoothing approach that employs a tensor product structure to simplify 
asymptotic analysis and speed up computation. It applies univariate P-spline smoothers simultaneously to both 
the row and column coordinates of the sample covariance matrix. Situations where K > 500 raise challenges for 
covariance matrix smoothing in terms of vast computational and storage burdens for high-dimensional matri-
ces. Therefore, FACE, a fast implementation of the sandwich  smoother36, was developed for high-dimensional 
covariance function smoothing used in functional data analysis.

Functional regression tree. In this step, we input the estimated smooth function f̃i(t) obtained from 
Eq. (3) described in “Functional principal component analysis” and “Smoothing and estimating” sections 
into the functional regression tree. A functional regression tree is constructed by successively splitting the 
predictor space into mutually exclusive subregions and then repeatedly partitioning observations into those 
 subregions37. Let s denote a possible split-point value of a given predictor, Xj . Let R denote a parent node under 
consideration. For each j and each s combination, a pair of left and right descendent child nodes are defined as, 
RL(j, s) = {(X i , f̃i(t))|Xij < s} and RR(j, s) = {(X i , f̃i(t))|Xij ≥ s}.

Inspired by the univariate splitting criterion, we designed a new splitting function for a curve response. We 
first define the average function of all smooth functions that are divided into the node R as f̂R(t) =

∑

i∈R f̃i(t)/nR . 
Here, nR is the number of observations divided into the node R. Accordingly, the new residual sum of squares 
(RSS), defined for the functional curve at a node R, will be computed based on the integrated squared error (ISE)38

The new splitting criteria, measuring the between-node separation, can be defined as

(1)Yik = fi(tk)+ εik , i = 1, . . . , n; t ∈ [0, 1],

(2)fi(t) = µ(t)+

∞
∑

l=1

ζilvl(t),

(3)f̃i(t) = µ̂(t)+

L
∑

l=1

ζ̂il v̂l(t), i = 1, . . . , n; t ∈ [0, 1].

(4)RSSf (R) =
∑

i∈R

∫ 1

0
[f̃i(t)− f̂R(t)]

2dt.
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A fixed number of split-points are scanned for each predictor under consideration, and the top split-point 
(the one that maximizes φ(j, s,R) ) is ultimately chosen to produce a split. Specifically, we scan all possible 
combinations of split-points for each categorical predictor and scan ten equally spaced split-points for each 
continuous predictor.

During the tree-growing process, the estimated curve response f̃i(t) in Eq. (3) for each observation will keep 
updating at each candidate split of each node. This is because a split causes a regrouping, so the observation pool 
(and also the mean and covariance functions) in the parent node differs from those of its descendant nodes. 
When a tree grows deeper, the homogeneity of the curve response in each leaf node will increase. A fully-grown 
functional regression tree may be too complex, likely overfitting the data and leading to poor prediction accuracy. 
We first grow the tree to the maximum depth and record the sequence of splits. We then prune the tree back in 
reverse  order37. When a tree is pruned, we calculate the average integrated squared error of the corresponding 
subtree through fivefold cross-validation. Finally, we determine the optimal functional regression tree by using 
the subtree with the lowest prediction ISE.

Randomness. Similar to the traditional RF approach, the FunFor approach introduces two instances of 
randomness and also grows an ensemble of functional regression trees to yield a consensus vote. First, instead 
of using all original observations, the data used to grow each tree is from one bootstrap sample of the original 
observations. Aggregating predictions over hundreds of trees can significantly reduce variance and increase both 
prediction accuracy and stability, when compared to a single tree. Secondly, the method gains additional predic-
tion accuracy by randomly drawing only a subset of predictors to determine the best split for each parent node 
of each tree; hence the predictors which have strong main effects or strong correlations do not always dominate. 
In addition, when the number of predictors is very large, the consideration of only a randomly-selected subset 
of variables for each split greatly improves computational efficiency. In the end, we predict the curve response of 
the ith observation as f̂i(t) =

¯̂
fR(t) , where ¯̂fR(t) is the average of f̂R(t) predicted at the leaf nodes across multiple 

trees that contain the ith observation through bootstrap sampling.

Permutation variable importance measure. The output of the FunFor is the predicted curve response 
for each observation, f̂i(t) , along with the permutation variable importance measure (PVIM) for each predic-
tor based on its association strength with the curve response. The PVIM of each predictor Xj is obtained via the 
difference in average prediction error before and after randomly permuting Xj while keeping other predictors 
 untouched39. Let Bq denote the set of out of bag (OOB) samples of the qth tree and ‘ntree’ denote the total num-
ber of trees, then the PVIM of predictor Xj is defined as

where f̂i(t) is still the predicted curve response obtained from the FunFor approach without permuting Xj , f̂
p
i (t) 

is the predicted curve response after permuting Xj and |Bq| denotes the size of the set. The larger a PVIM is, the 
more important the corresponding predictor is in predicting the curve response. A predictor with a negative or 
close-to-zero PVIM value is interpreted as  unimportant39. The PVIM assesses each predictor’s impact without 
isolating all other predictors nor requiring interactive terms to be explicitly added into the model.

Tuning parameters. There are two tuning parameters involved in the FunFor approach. The first tuning 
parameter is the size of the subset of the predictors that are considered at each split, designated ‘mtry’. For a 
univariate response, it has been suggested that ‘mtry’ should be approximately one third of the total number 
of  predictors40. We use a ‘mtry’ value of 40% (close to p/3) and it works well for all of the eight simulation set-
tings and the real data analysis. Another tuning parameter is the value of L described in Eq. (3). We adopt two 
options to determine the value of L. Option 1: We apply the most standard rule in the functional data analysis 
literature and use all of the observations at the root node. Then we fix this value of L at all splits during the tree 
growth process. As claimed by Di et al.41, this rule simultaneously satisfies two criteria: the proportion of total 
variation explained by the first L principal components is larger than a predetermined threshold (e.g., 90%) and 
the proportion of variation explained by any additional principal component is less than another predetermined 
threshold (e.g., 1%). This rule works well in their simulation studies and practical analyses as demonstrated by 
Di et al.41. Option 2: Specify the minimum percentage of total variation explained by the data (e.g., 90%). We 
then adaptively and flexibly determine and update the value of L at each split according to different observations 
obtained at each child node.

Simulation studies
We experiment with eight simulation settings to explore the performance of the FunFor approach in detecting the 
true predictors under various levels of difficulty. Each simulation design is performed with 100 replications. The 
details of Simulation Examples 1–5 are elaborated in the following subsections, and Simulation Examples 6–8 can 
be found in the Supplementary Appendix. The tuning parameters are set as L = 3,mtry = 0.4p , and ntree = 100 
when applying the FunFor approach to fit each of the eight simulation examples. The FunFor approach is com-
pared with three other relevant approaches. We choose their default settings for the tuning parameters when 

(5)φ(j, s,R) =

∫ 1

0
[f̂RL(j,s)(t)− f̂RR(j,s)(t)]

2dt.

(6)PVIM(Xj) =
1

ntree

( ntree
∑

q=1

1

|Bq|

∑

i∈Bq

[
∫ 1

0

[f̃i(t)− f̂
p
i (t)]

2dt −

∫ 1

0

[f̃i(t)− f̂i(t)]
2dt

])

,
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applying the ‘refund’ and ‘splinetree’ packages and divide the K time points into 10 regions when implementing 
the FRF Matlab code provided in the github. Three criteria are used to assess not only the variable selection but 
also the prediction accuracy of the four approaches under comparison. 

1. M is defined as the minimum selection size that is required to detect all of the true predictors in each rep-
lication. We calculate multiple quantiles and also the average of M across the 100 replications. The closer 
the different quantiles are to the total number of true predictors, the robuster the approach is in variable 
selection.

2. Rk is defined as the average rank of each true predictor across 100 replications. The smaller the Rk and the 
average M values are, the more effective the approach is in variable selection.

3. MAE is defined as the mean absolute  error42, which is the same rule used to assess the prediction performance 
as Rahman et al.  did3. The smaller the MAE is, the more accurately the approach predicts.

Simulation Example 1: a single-true-predictor design. In this design, we consider a scenario in 
which only one true predictor is associated with the response and mimic the motivated real dataset, i.e., the 
gene-shape association. Please see the Supplementary Appendix for three extra simulation examples that also 
mimic the real dataset but with increasing difficulty levels. The genetic marker data is coded as 0 for aa, 1 for 
Aa, and 2 for AA. As a categorical variable, each genetic marker is generated using a binomial distribution with 
a random minor allele frequency ( MAF ∼ Uniform(0.1, 0.5) ). Among all generated genetic markers, we ran-
domly choose one marker to truly connect with the response (call it X∗

1 ) and set all the rest to be noise. We set 
three 360-dimensional curves as the mean responses, µ1 , µ2 , and µ3 , under each of the three genotype categories 
of the true genetic marker. These three mean curves are used to describe three true poplar leaves with varying 
shapes. See Fu et al. for the shape analysis details used to transform an image to a  curve43.

Then the shape curve samples for each replication are generated based on the genotype of this true genetic 
marker and the three true leaf shape curves as

where ε360×1 ∼ N (0360×1,�360×360) , and �360×360 is the empirical sample covariance matrix of the three true 
leaf shapes. Here, IX∗

1
 is an indicator function that is defined as

IX∗
1
=







(1, 0, 0)T , if the genotype of X∗
1 is AA,

(0, 1, 0)T , if the genotype of X∗
1 is Aa,

(0, 0, 1)T , if the genotype of X∗
1 is aa.

In this simulation, we set n = 100, p = 100, and K = 360 . As shown in Table 1, the results of Simulation 
Example 1 achieve a level of perfection because it ranks the true predictor as 1.01 on average; additionally, there 
is no diversity or mistakes among the 100 replications judging from its various quantiles of M.

In addition to the variable selection results, we also demonstrate the prediction performance of the FunFor 
approach by visualizing one replication that is randomly chosen from Simulation 1 (see Figs.  1, 2). Figure 2 
displays information that is similar to that in Fig. 1, but converts the curves back to shapes. The 100 simulated 
samples are divided into three categories based on the genotype information of the single true genetic marker 
X∗
1 . Each separate column of Figs.  1 and 2 represents a different genotype. The top panel of Figs. 1 and 2 stands 

for the original simulated response samples Yik and the second row is the predicted response curve output from 
the FunFor model, i.e., f̂i(t) . The true leaf used to generate data is visualized by a solid black line and the samples 
are demonstrated by transparent green lines. As shown in Figs. 1 and 2, the predicted curve responses are very 
close to the truth, with predictions capturing not only global trajectories but also subtle local details of the shape. 
Despite the fact that the simulated response samples are noisy (see the first rows of Figs.  1, 2) and the 99/100 
predictors are generated to be confounding noise, the prediction results visually look great. In the following 
simulations, we will formally investigate the prediction accuracy using the MAE value.

Simulation Examples 2–4: a statistical model design. In this design, we simulate data through statis-
tical models so that we can easily control the parameter values, difficulty levels, association structures, and also 
compare with other relevant approaches. The time points tk for each observation are scheduled to be {1, . . . ,K} , 
which is consistent with the focused regular and dense setting. The predictor variables, Xs, are generated from 
N(0,�X) , where �X follows an AR(1) design ( σ = 1, ρ = 0.6) so that the joint effects and correlations between 
predictors (as those exist in the practices) can be incorporated. The coefficient functions are set to be

(7)Y
T
i = [µ1

T
,µ2

T
,µ3

T ] · IX∗
1
+ ε360×1, i = 1, . . . , 100,

β1(t) = sin(20π t), β2(t) = cos(20π t), β3(t) = cos(20π t)+ sin(20π t).

Table 1.  Results of the Simulation 1. a Rk stands for the average rank of the single true predictor across 100 
replications. The smaller the Rk value is, the more effective the approach performs in variable selection. b M 
stands for the minimum selection size that is required to obtain the single true predictor in each replication. 
The closer the different quantiles is to the total number of the true predictors, the robuster the approach is in 
variable selection.

Simulation 1 Rka Mb
5%

M25% M50% M75% M95%

X
∗
1 1.01 1 1 1 1 1
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The random error εi = {εi1, . . . , εik , . . . , εiK } is generated from N(0,�ε) , where �ε follows AR(1) design with 
(σk = (5 cos(k)+ rnorm(K , 0, 1))/10, ρ = 0.01) to take their auto-correlation into account.

Simulation Example 2. The response curve and the two true predictors ( X2,X3 ) and their interactive terms 
( X2X3 ) are connected as

In this simulation, we set n = 100, p = 100, and K = 500.

Simulation Example 3. This Simulation Example 3 has the same design and model as the Simulation Example 
2, except we change the parameters to n = 200, p = 500, and K = 100 to explore the robustness of the approach 
under a different parameter setting.

Simulation Example 4. The response curve and the true predictors are connected as

Yik = Xi2β1(tk)+ Xi3β2(tk)+ Xi2Xi3β3(tk)+ εik .

Figure 1.  Visualization of the prediction performance of the FunFor approach for one replication in the 
Simulation 1: The top panel illustrates the simulated response samples (transparent green lines on the first row) 
and the bottom panel demonstrates the predicted curve response (transparent green lines on the the second 
row) output from the FunFor approach. Each column corresponds to a different genotype category. The black 
lines demonstrate the three true shapes used for generating data.

Figure 2.  Same information as the Fig. 1, but converting curves into shapes.
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In this simulation, we remove the main/individual effects and keep only one interactive term, thus increasing 
the difficulty level. In this simulation, we set n = 100, p = 100, and K = 100.

The results of Simulation Examples 2–4 for the four approaches under comparison are demonstrated in 
Tables 2 and 3. The FunFor approach performs the best in most of the cases among the four approaches in 
terms of both variable selection and prediction accuracy. As one can see from Table 2, the FunFor approach 
consistently ranks the two true predictors among the top three ones on average no matter if main effects exist 
(Simulation 2) or not (Simulation 4). When the p/n ratio increases to be 2.5 times higher, it still effectively ranks 
the two true predictors among the top five ones on average (Simulation 3). For Simulations 3, the ranks of the 
FunFor approach are slightly worse than those of the refund and FRF. However, these two approaches perform 
much worse in Simulation 4 when there are no main/individual terms included in the model. Additionally, their 
ranks in Simulation 4 are more than five times higher than those in Simulations 2–3. We are not surprised at 
this gap because lack of strong main/individual effects or lack of ability in detecting complex structures has been 
a common challenge for many approaches. In addition, the prediction accuracies (i.e., MAEs) of the FunFor 
approach are consistently the smallest among the four approaches in all of the three simulation settings. Table 3 
demonstrates the quantiles of the minimum selection size for the four approaches in order to simultaneously 
detect all of the true predictors. We can see that the FunFor approach is the most robust approach no matter if 
the main/individual effects exist or not. The M values of the FunFor approach do not show much variation from 
5 to 95%, which further indicates that the majority of replications effectively achieve the best results under vari-
ous settings. The FRF and refund also perform great under Simulation 3 without being affected by the p/n ratio, 
but their performances greatly decrease under the more complex scenario in Simulation 4.

Yik = Xi2Xi3β1(tk)/3+ εik .

Table 2.  The variable selection and prediction performances of the four approaches for the Simulation 
Examples 2–4. a The average of M is the average of the minimum selection size that requires to obtain all of 
the true predictors across 100 replications. The smaller, the better. bRk stands for the average rank of each true 
predictor across 100 replications. The smaller, the better. cMAE is the prediction error. The smaller, the better.

Simulation Method Average of Ma RkX∗

2

b RkX∗

3
MAEc

Simulation 2

FunFor 2.58 2.01 2.12 1.48

FRF 6.70 4.37 4.08 2.29

Splinetree 21.91 20.88 21.91 2.30

Refund 2.00 1.18 1.82 2.23

Simulation 3

FunFor 5.17 4.66 4.68 1.50

FRF 2.83 2.40 1.51 2.28

Splinetree 38.58 37.40 38.42 2.28

Refund 2.00 1.58 1.43 2.31

Simulation 4

FunFor 3.74 2.25 3.06 0.58

FRF 25.35 15.02 17.65 0.62

Splinetree 56.99 43.49 40.35 0.62

Refund 28.40 16.26 18.10 0.62

Table 3.  The quantiles of the minimum selection sizes of the four approaches for the Simulation Examples 
2–4. aM stands for the minimum selection size that is required to include all of the true predictors in each 
replication. The closer of different quantiles, the robuster.

Quantiles of Ma Method 5% 25% 50% 75% 95%

Simulation 2

FunFor 2.00 2.00 2.00 3.00 4.00

FRF 2.00 2.00 4.00 9.00 18.00

Splinetree 16.00 19.00 22.00 24.00 28.00

Refund 2.00 2.00 2.00 2.00 2.00

Simulation 3

FunFor 3.00 4.00 5.00 6.00 7.05

FRF 2.0 2.0 2.0 3.0 5.1

Splinetree 32.00 35.00 38.00 41.00 46.05

Refund 2.00 2.00 2.00 2.00 2.00

Simulation 4

FunFor 2.00 2.00 3.00 3.00 5.05

FRF 3.00 12.00 22.50 36.25 62.05

Splinetree 16.00 38.00 58.00 81.00 94.00

Refund 2.00 2.00 2.00 98.00 100.00
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Simulation Example 5: a null model. To fully verify that the good performances of the FunFor approach 
are not caused by chance, we generate data from a null model, under which there is no association existing 
between the curve response and any of the predictors. That is, the Xs , random errors, and β1(t) are all set as 
above, but we do not connect Y with any of the predictors. Specifically, the response is generated as

In this simulation, we set n = 100, p = 100 , and K = 100 . As demonstrated in Fig. 3, the average PVIM 
scores across 100 replications for all of the predictors output from the FunFor approach are close to zero, locat-
ing within a very small range of [− 0.0025, 0.0025]. It’s good to see that no predictor stands out, which is well 
aligned with the true situation.

Real data analysis
In this section, we analyze the leaf shapes of a natural population of 421 Populus euphratica (also named Euphrates 
Poplar or Desert Poplar) trees, which naturally grow along river valleys in arid regions of the Xin Jiang province 
of China. Twenty-five leaves were randomly collected from each tree. The leaf shapes of Populus euphratica are 
polymorphic with complex subtle details on their boundaries, so a small set of loose landmark points will be 
incapable of accurately describing them. Therefore, we use a 910× 1 dimensional curve to describe each shape 
based on the directional radii  method44. As observed in Fig. 4, the one-to-one mapping between the shape and the 
910-dimensional curve is accurate, with sharp and complex teeth on the boundary also being well-maintained. 
Then we perform the alignment to filter out the variations caused by pose (translation, size, and rotation) before 
performing the  analysis43,44. The directional radii curve then becomes standard functional data measured on 
dense and regular grids. The scientific interest is to detect which genes are truly associated with the variation 

Yik = β1(tk)+ εik .

−0.0050

−0.0025

0.0000

0.0025

0.0050

0 25 50 75 100
Simulated X

PV
IM

Figure 3.  Average prediction variable importance scores across 100 replications for all of the predictors output 
from the FunFor approach in Simulation 5.

Figure 4.  The shape curve generation process: recognize a shape outline demonstrated from (A,B); and 
transform a shape to a curve demonstrated from (B,C).
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of the trajectories of biological leaf shape traits, and to predict morphology for future observations. Since the 
twenty-five leaves collected from the same tree are correlated and share the same genetic information, we use 
the average of the twenty-five shape curves as the curve response of each observation. For each of the 421 trees, 
104 markers were also genotyped.

We empirically explore whether the FunFor approach is robust over a few different choices of tuning param-
eters. Since ‘mtry’ is suggested to be p/3 ≈ 35 , we employ three mtry values: 10, 20, and 35. In addition, we also 
try the two options, the fixed version and the adaptive version, for choosing L. For the fixed setting, we choose 
L = 4 because the first four PCs can explain about 90% of the total variation in the curve response using all of 
the observations at the root node. The performance of FunFor approach is assessed by evaluating the average 
prediction integrated squared error between the observed and the predicted curve response using five-fold cross-
validation. Judging from the results demonstrated in Table 4, the prediction ISE does not differ much among 
the six different combinations, which empirically verifies the robustness of the FunFor method over reasonable 
choices of the two tuning parameters. In the following, we interpret the results obtained from the adaptive L 
setting and mtry = 20 for the real data analysis because it achieves a relatively optimal prediction ISE.

Figure 5 demonstrates the PVIMs of all of the genetic markers. The majority of markers have PVIMs close 
to zero, which reflects the sparsity phenomenon of the genetic dataset. The three markers strikingly standing 
out with the highest PVIMs ( > 200 ) are ORPM_190, GCPM_1812, and U50206, highlighted by red dots. In 
order to demonstrate the genetic effects of these three important markers, Fig. 6 visualizes the average of the 
predicted shape curves (i.e., ¯̂fi(t) ) that FunFor outputs across the observations of each genotype category. The 
three genotype categories exhibit quite different curve trajectories, which indicate the non-negligible association 
existing between these three genetic markers and the shape curve. Specifically, the marker ORPM_190 has only 
two genotypes (AA & aa) and its red line (corresponding to Aa) does not show up. For marker GCPM_1812, the 
entire trajectories of aa (blue line) and Aa (red line) are very similar, but they are dramatically different from the 
curve of AA (black line), which represents a recessive genetic effect. For marker U50206, the entire trajectories 
of AA (black line) and Aa (red line) are very similar, but they are different from the curve of aa (blue line), which 
represents a dominant genetic effect. As a comparison, the results of the three genetic markers (Pe_5, Pe_8, 
GCPM_1941) with the minimum PVIMs are also visualized in Fig. 7. Opposed to Fig. 6, the three average shape 

Table 4.  The prediction error obtained from the fivefold cross-validation under six combinations of the two 
tuning parameters. aL is the number of functional PCs to be retained in Eq. (3). bmtry is the size of the subset 
of the predictors that are considered at each split.

La

mtryb

10 20 35

Adaptive L 119.5 118.9 119.4

Fixed L = 4 119.7 119.3 118.9

Figure 5.  Prediction variable importance measures of 104 genetic markers. The highest PVIMs are highlighted 
with red dots.
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curves corresponding to the three different genotype categories for each of the three markers with minimum 
PVIMs almost overlap each other. Figure 7 visually reconfirms that the markers with low PVIMs are unlikely 
to be associated with the responses curve. In addition to the mean shape curve, we also demonstrate the first 
two eigenfunctions for the three most important markers (see Fig. 8). The first mode accounts for around 41% 
of the total variation of all shape observations in this data. We noticed that the v̂1(t) for aa (the solid blue line) 
is completely negative for ORPM_190, but completely positive for U50206, throughout the entire range. This 
demonstrates that the same genotype aa of different genetic markers can have opposite contributions to the big-
gest variability mode among all leaf shapes. The second mode accounts for around 32% of the total variation of 
all shape observations in this data. We also notice that the signs of the v̂2(t) for aa (dash blue lines) are almost 
exactly the opposite to those of v̂2(t) for AA (dashed black lines) everywhere among each of the three subplots 
demonstrated in Fig. 8. This demonstrates that the genotypes aa and AA of the same marker can have opposite 
contributions to the second mode variation, which corresponds to a measure of uniformity for genotypes of 
each marker contributing to the shape variation. Actually, Fig. 8 visually confirms that information is lost when 
independence is assumed or the auto-covariance structure is neglected.

The FunFor can predict the curve response for new observations by following the same tree building and 
ensemble process if the predictors of new observations are given. To visualize the prediction capability of Fun-
For approach, we divide our data into training and test sets by fivefold cross-validation. Figure 9 demonstrates 
that the predicted shapes (dotted lines) and the observed shapes match with great consistency. Note that the 
observed shape is the one after averaging the twenty-five leaves for each observation, which is the Yik specified 
in the model (1).

Figure 6.  The average of the predicted shape curves output from the FunFor approach across all observations 
belong to each genotype category for the top three most important markers ORPM_190, GCPM_1812, and 
U50206. The black curve for AA, the red curve for Aa, and the blue curve for aa.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24159  | https://doi.org/10.1038/s41598-021-02265-4

www.nature.com/scientificreports/

Discussion
The FunFor approach extends the well-established traditional random forests approach from a univariate 
response to a functional curve response, while empowering the traditional functional data analysis approaches 
with more capabilities to cope with complex structures and nonlinear associations. Most important of all, the 
proposed FunFor approach has far-reaching applications due to its model-free and distribution-free nature. 
The real data analysis of this article was performed on a small dataset with a limited number of genetic markers 
because of the difficulty and cost of collecting the whole genome data for a natural population of trees. These 
markers did not provide full genome coverage or the concomitant ability to pinpoint specific loci that affect leaf 
shape traits. However, the proposed FunFor approach is ready to be applied to large datasets. It can be flexibly 
applied to various fields where the functional data is collected. For example, fMRI, EEG, drug sensitivity curves, 
climate change, growth curves, and risk prediction in population genetics are possible application directions.

In addition to its aforementioned advantages that are the focus of this article, we now comment on some 
of the limitations of the FunFor approach as future work directions. This article mainly focused on functional 
data that is collected at regular and dense time/location points. In future work, we will extend it to be feasible 
for longitudinal data, i.e., when the data is measured on an irregular grid with various time or location points 
in the response  curve45–47. In addition, the FunFor approach adopted the most standard techniques in the forest 
building process. With the rapid advancement of the forest building process and machine learning skills for the 
univariate response, the FunFor approach can be improved accordingly in its splitting criteria, variable impor-
tance measures, p-values, theoretical inferences, etc.

Specifically, the splitting criterion proposed in Eq. (5) works well in this article; however, alternative split-
ting criteria can also be tried in the FunFor approach. For example, the splitting function used to measure the 
within-node homogeneity, defined by φ1(j, s,R) = RSSf (R)− RSSf (RL(j, s))− RSSf (RR(j, s))

22, or the weighted 
variance splitting approach that enables a tree to recover from a bad  split48. The semi-metric proposed by Ferraty 
and vieu (2006) is an alternative option to replace the L2-metric when we define the proximities between two 
functional  objects18. In addition, the permutation variable importance measure that we proposed in Equation (6) 
may inherit the shortcomings of the traditional random forest and hence yield biased variable selection results or 

Figure 7.  The average of the predicted shape curves output from the FunFor approach across all observations 
belong to each genotype category for the three least important markers Pe_5, Pe_8, and GCPM_1941. The black 
curve for AA, the red curve for Aa, and the blue curve for aa.
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Figure 8.  The first two Eigenfunctions output from the FunFor approach across all observations belong to each 
genotype of the top three most important markers ORPM_190, GCPM_1812, and U50206. The black curve for 
AA, the red curve for Aa, and the blue curve for aa. Solid line for the first Eigenfunction v̂1(t) and the dash line 
for the second Eigenfunction v̂2(t).

Figure 9.  Visualization of the predicted and observed shapes for four observations. The solid lines are the 
original observed shape (averaging the twenty-five shapes for each observation), and the dot lines are the 
predicted shape output from the FunFor approach by fivefold cross-validation.
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may perturb individual predictors and cause predictions that extrapolate to areas of the predictor space with low 
density when predictors are  dependent49,50. Therefore, we will consider incorporating the conditional variable 
importance measures into the FunFor framework. For example, the conditional predictive impact (CPI) proposed 
by Watson and Wright was theoretically proven to be a consistent and unbiased  estimator51; or the model-agnostic 
variants of the conditional PVIM performed subgroup permutation by constructing subgroups in which the 
predictor distribution within a group is more homogeneous and between the groups is more  heterogeneous50. See 
Degenhardt et al. for a comprehensive review of the several variable selection procedures that have been invented 
for the traditional random forests for the univariate  response52. Finally, hypothesis testing has also received great 
attention in the traditional random forest approach because there is a high need in obtaining p-values to assess 
the significance levels in biomedical applications. To obtain the p-value for each predictor from the FunFor 
approach, the nonparametric permutation skill is feasible if the number of predictors is small, as Chen et al. and 
Hapfelmeier and Ulm did for the traditional random forests  approach53–56. If the number of predictors is large 
with sparse structures, we suggest incorporating the FunFor approach with heuristic variable importance test 
designed for high-dimensional data, which constructs the null distribution based on the non-positive importance 
scores corresponding to those predictors that are likely non-relevant to the  response57.
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