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Quantum computational speed 
of a nanowires system with Rashba 
interaction in the presence 
of a magnetic field
Rabie I. Mohamed1*, Manal G. Eldin1, Ahmed Farouk2, A. A. Ramadan1 & M. Abdel‑Aty3

The present research is designed to examine the dynamic of the quantum computational speed in a 
nanowire system through the orthogonality speed when three distinct types of magnetic fields are 
applied: the strong magnetic field, the weak magnetic field, and no magnetic field. Moreover, we 
investigate the action of the magnetic fields, the spin‑orbit coupling, and the system’s initial states 
on the orthogonality speed. The observed results reveal that a substantial correlation between 
the intensity of the spin‑orbit coupling and the dynamics of the orthogonality speed, where the 
orthogonality speed decreasing as the spin‑orbit coupling increases. Furthermore, the initial states 
of the nanowire system are critical for regulating the speed of transmuting the information and 
computations.

The quantum computational speed has a vital role in quantum  communication1, quantum information 
 processing2, 3, and quantum  computation4. The orthogonality speed refers to the shortest time necessary for 
transition the quantum system from one orthogonal state (node) to another, and it is used to detect the speed 
of  computations2, 5. Many research groups have studied the orthogonality speed for a single or two-qubit state. 
For a single qubit system interacting with a quantized field or interacting with a rectangular pulse, the speed of 
orthogonality has been  explored6, 7, while it was investigated in a two-qubit system interacting with various types 
of spin  interaction8. To our knowledge, no published studies on the effect of applied magnetic and electric fields 
on quantum computational speed in a nanowire system. As a result, in the current work, we study the pattern of 
the orthogonality speed in a novel system consisting of a ballistic nanowire excited by Rashba spin-orbit coupling 
(RSOC) in the presence or absence the perpendicular magnetic fields when system’s initial states are prepared 
in several forms: pure state, maximum entangled state, and superposition state. We find that the magnetic field, 
the spin-orbit coupling strength and the system’s initial states can be used to control the computational speed 
of a nanowire system.

Nowadays with the development of semiconductor manufacture technology, we have reached low-dimen-
sional systems with short length scales such as quantum well, quantum wire, and quantum dot where the motion 
and dynamics of charge carriers (electrons) can only be interpreted via the law of quantum  mechanics9, 10. The 
study of physical characteristics such as transport, optic, and electrical properties of low dimensional semicon-
ductor structures has sparked a lot of interest due to their potential application in the manufacture of a wide 
range of microelectronic devices, optoelectronic devices, and fluorescent  devices11, 12.

The effect of magnetic and electric fields on the transport properties, optical characteristics, and electronic 
structure of low-dimensional semiconductor systems has been investigated in numerous  research13–25. For exam-
ple, the effect of an in-plane electric field on a two-dimensional electron system with RSOC in the presence of 
a magnetic field has been  investigated13. A perpendicular magnetic field’s effects on the spin and spectral char-
acteristics of a ballistic quantum well system with the Rashba impact have been  studied14. Also, the influence 
of an external electric field on the optical absorption of a nanowire exposed to a perpendicular magnetic field 
and the Rashba effect has been  estimated15. The impacts of the magnetic field, RSOC, and external electric field 
on a quantum wire to determine the dispersion relations and effective g-factor for different spin split subbands 
have been  examined16. Moreover, The influence of the SOC and the magnetic field on the energy levels of a 
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quasi-one-dimensional quantum wire have been  investigated17. The thermodynamic properties of a nanowire 
under the Rashba spin-orbit interaction and external magnetic field have been  studied24.

On the other hand, the effects of the SOC and the magnetic field intensities on the nanowire systems have 
received less attention in quantum information and quantum computing. Exceptionally in the last years for 
quantum information, in the presence of strong and weak magnetic fields the dynamical behaviour of squeez-
ing in a nanowire system with Rashba interaction has been  explored26. Furthermore, the quantum correlations 
in a ballistic quantum wire under RSOC within a magnetic field have been  studied27. The energy-level crossing 
and the quantum Fisher information behavior in a two-dimensional quantum wire interacting with Rashba and 
Dresselhaus SOC have been  explored28. In addition, when the weak and strong magnetic fields are employed, 
the quantum entanglement of a nanowire system through negativity has been  discussed29. While, in quantum 
computing a new application of a ballistic nanowire system with SOC to create specific new quantum gates has 
been  investigated30.

This paper is organized as follows: In “The physical model” section, we offer an analytical solution to the 
physical model when three distinct types of magnetic fields are employed to the nanowire system with RSOC. 
In “The orthogonality speed” section, we use the orthogonality speed to estimate the quantum computational 
speed when the system’s initial states are prepared in three different forms. The effects of the magnetic field, the 
SOC, and the system’s initial state on the computational speed of a nanowire system are discussed in “Results 
and discussion” section. Our conclusion will be presented in the last section.

The physical model
Let us consider a semiconductor quantum wire with a parabolic confinement potential in the x-direction given 
as V(x) = 1

2mω2x2 characterized by the harmonic oscillator frequency ω and effective mass m. The Rashba effect 
occurs in this system due to the asymmetry of the structure, which is defined by Hr = αr

�

[
(py + eBx)σ̂x − px σ̂y

]
 

with the strength of Rashba interaction αr . Therefore, the total Hamiltonian of this system when the perpendicu-
lar magnetic field −→B = Bêz is employed in the positive z-direction can be expressed  as14, 15, 26, 31:

Here, F is the external electric field, −→p = (px , py) is the linear momentum, g is Lande’s g-factor, e is the electronic 
charge, −→σ = (σx , σy , σz) are the Pauli matrices, and µB is the Bohr magneton.

In units of �ω the Hamiltonian (1) can be expressed in the following dimensionless form by the ladder opera-
tors of a shifted harmonic oscillator â† and â as:

In Eq. (2) we used the typical length scales lo =
√

�

mω
 , lB =

√
�

mωc
 , and lso = �

2

2mαr
 to describe the strengths of 

the confinement potential, the magnetic field, and RSOC respectively with the oscillator frequency ωc = eB
m  . So, 

the dimensionless Zeeman splitting is δ = g
2

m
mo

(
lo
lB

)2
 with the free electron mass mo . Also, the remaining dif-

ferent quantities above are defined as follows:

Here, we study the Hamiltonian of a nanowire system when a three different type of magnetic field are applied. 

 (i) When the magnetic field is weak lB ≫ lo
   The Hamiltonian in Eq. (2) when the weak magnetic field lB ≫ lo is applied, under condition the 

external electric field F = k�ω
(
�2ω
eωc

− ωc
eω

)
 ,  and loKF = lok ≪ 1 ,  with a rotating-wave 

approximation(RWA) written as: 

 where, σ̂± = σ̂x ± iσ̂y.
   The time evolution of Hamiltonian (3) is governed by the Schrödinger equation 

i ∂|�(t)�
∂t = H1|�(t)� with � = 1 , and the wave function of the two lowest levels energy is 

|�(t)� = α1(t)|1� + α2(t)|2� + α3(t)|3� + α4(t)|4� with the space harmonic-electron states 
{|1� = |g, 0�, |2� = |g, 1�, |3� = |e, 0�, |4� = |e, 1�} where the states |0� and |1� correspond to the states of 
the harmonic oscillator, while the states |e� and |g� represent the excited and ground state of the electron 
spin. Therefore, the solution of this equation is given by |�(t)� = Û |�(0)� , where the unitary operator 
Û  given by: 

(1)H =
[
p2x + (py + eBx)2

]

2m
+ 1

2
mω2x2 + eFx + g

2
µBBσ̂z +

αr

�

[
(py + eBx)σ̂x − px σ̂y

]
,

(2)H = �

(
â†â+ 1

2

)
+ 1

2
(η + ξ1σ̂x + δσ̂z + ξ2(â

† + â)σ̂x + iξ3(â− â†)σ̂y).

� =

√

1+
(
lo

lB

)4

, η = (lok)
2 −

(
�χc

lo

)2

, χc =
lo

�2

[
loKF + lok

(
lo

lB

)2
]
, KF = eF

�ω
,

ξ1 =
lo

lso

(
lok −

loχc

l2B

)
, ξ2 =

1√
2�

lo

lso

(
lo

lB

)2

, and ξ3 =
√

�

2

lo

lso

(3)H1 = �

(
â†â+ 1

2

)
+ δ

2
σ̂z +

(
ξ2 + ξ3

2

)
(âσ̂+ + â†σ̂−),
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 where, 

 (ii) When the magnetic field is strong lB ≪ lo
   With the same conditions in (i) the Hamiltonian (2) if the robust magnetic field lB ≪ lo is employed, 

can be written as: 

 the analytical solution of the Hamiltonian system (6) is similar to the solution in the case of the weak 
magnetic field in Eq. (4) with minor differences in the following quantities: 

 (iii)  In the absence of magnetic field B = 0
   Finally, the Hamiltonian (2) of a nanowire system when no magnetic field is employed B = 0 is given 

by, 

also, the solution of the Hamiltonian (8) is similar to the unitary operator (4), but with different parameters as:

The orthogonality speed
In this section, we use the orthogonality to explore the quantum computational speed when the nanowire system 
is constructed in three distinct starting states as: the pure state, the maximum entangled state, and the superposi-
tion state. Let us consider that, the proposed system is prepared initially in the state |�(0)� which evolved for a 
time t with the final state |�(t)� = Û |�(0)� . Therefore, the orthogonality can be defined by the scalar product 
of the vectors as the  following3, 6, 7:

When the system’s initial state in the pure state. Assume that the nanowire model is constructed 
initially in the pure state |�(0)� = |e, 0� . The eigenvectors of this state is obtained as,

Then, one can compute the time evolution of the density operator for this initial pure state as the following:

where, the density operator elements are given by,

Therefore, the eigenvectors of the final state ρ̂P
AB(t) can be written as follows:

where, γ± = 1
2

[
(ρ22 − ρ33)±

√
(ρ22 − ρ33)2 + 4|ρ32|2

]

(4)Û = e−i�t

[
eiP1t |1��1| + µ−|2��2| + µ+|3��3| − i

�

u
sin(ut)(|2��3| + |3��2|)+ e−iP1t |4��4|

]
,

(5)
µ± =

(
cos(ut)± i

P2

u
sin(ut)

)
, P1 =

(�+ δ)

2
,

u =
√

(P2)2 + (�)2, P2 =
(�− δ)

2
, � = (ξ2 + ξ3)

2

(6)H2 =
(
â†â+ 1

2

)
+ g

4

m

mo
σ̂z +

1√
2

lB

lso
(âσ̂+ + â†σ̂−),

(7)� = 1, δ = 1

2

m

mo
g, � = 1√

2

lB

lso

(8)H3 =
(
â†â+ 1

2

)
+ 1√

8

lo

lso
(âσ̂+ + â†σ̂−),

(9)� = 1, δ = 0, � = 1√
8

lo

lso

(10)Sor = ��(0)|�(t)�

(11)φ1(0) = {1, 0, 0, 0},φ2(0) = {0, 1, 0, 0},φ3(0) = {0, 0,−1, 0},φ4(0) = {0, 0, 0, 1}

(12)ρ̂P
AB(t) = ρ33|3��3| + ρ32|3��2| + ρ23|2��3| + ρ22|2��2|,

(13)ρ33 =| µ+ |2, ρ32 = i
�µ+
u

sin(ut), ρ22 =
�
2

u2
sin2(ut), ρ23 = ρ∗

32

(14)

ψ1(t) = {1, 0, 0, 0}, ψ2(t) = {0, 0, 0, 1},

ψ3(t) =
{
0,

|ρ32|γ−
ρ32

√
|ρ32|2 + |γ−|2

,
|ρ32|√

|ρ32|2 + |γ−|2
, 0

}
,

ψ4(t) =
{
0,

|ρ32|γ+
ρ32

√
|ρ32|2 + |γ+|2

,
|ρ32|√

|ρ32|2 + |γ+|2
, 0

}
,
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When the system’s initial state in the maximum entangled state. Also, if the system is initially 
created in the maximum entangled state |�(0)� = 1√

2
(|e, 0� + |g, 1�) , the eigenvectors of this state become:

Moreover, the time evolution of the final state for this initial maximum entangled state can be calculated as:

where,

Then, the eigenvectors of the final state Eq. (16) are the same eigenvectors in Eq. (14), but the density operator 
elements are different which given by,

When the system’s initial state in the superposition state. Finally, we consider the nanowire model 
is set up in the superposition state |�(0)� = 1

2 (|g, 0� + e, 0� + |g, 1�| + e, 1�) . The eigenvectors corresponding to 
this state can be calculated as:

The density operator for this initial superposition state is given by:

If the electron’s spin states (|g�, |e�) are described by subsystem A, and the harmonic oscillator’s orbital states 
(|0�, |1�) are represented by subsystem B, then the reduced density matrix for subsystem B is as follows:

where, the reduced density matrix elements ρ̂S
B(t) are ,

The eigenvectors of the final state ρ̂S
B(t) are given by:

where,

(15)φ1(0) = {1, 0, 0, 0},φ2(0) = {0, 0, 0, 1},φ3(0) =
{
0,

1√
2
,
1√
2
, 0

}
,φ4(0) =

{
0,− 1√

2
,
1√
2
, 0

}
.

(16)ρ̂M
AB(t) =

1

2

(
| r1 |2 |2��2| + r1r

∗
2 |2��3| + r2r

∗
1 |3��2|+ | r2 |2 |3��3|

)
,

(17)r1 = µ− − i
�

u
sin(ut), r2 = µ+ − i

�

u
sin(ut).

(18)ρ22 =
1

2
| r1 |2, ρ23 =

1

2
(r1r

∗
2 ), ρ33 =

1

2
| r2 |2, ρ32 = ρ∗

23

(19)
φ1(0) =

{
1

2
,
1

2
,
1

2
,
1

2

}
, φ2(0) =

{
− 1√

2
, 0, 0,

1√
2

}
,

φ3(0) =
{
− 1√

2
, 0,

1√
2
, 0

}
, φ4(0) =

{
− 1√

2
,
1√
2
, 0, 0

}
.

(20)ρ̂S
AB(t) =

4∑

i,j=1

ρij|i��j|

(21)
ρ̂S
B(t) = ρ11|1��1| + ρ12|1��2| + ρ21|2��1| + ρ22|2��2| + ρ33|3��3| + ρ34|3��4| + ρ43|4��3| + ρ44|4��4|,

(22)
ρ11 = ρ44 =

1

4
, ρ22 =

1

4
| r1 |2, ρ33 =

1

4
| r2 |2,

ρ12 =
1

4
(r∗1 e

iP1t), ρ21 = ρ∗
12, ρ34 =

1

4
(r2e

iP1t), ρ43 = ρ∗
34.

(23)

ψ1(t) =
{

|ρ21|α−
ρ21

√
|ρ21|2 + |α−|2

,
|ρ21|√

|ρ21|2 + |α−|2
, 0, 0

}
,

ψ2(t) =
{

|ρ21|α+
ρ21

√
|ρ21|2 + |α+|2

,
|ρ21|√

|ρ21|2 + |α+|2
, 0, 0

}
,

ψ3(t) =
{
0, 0,

|ρ43|β−
ρ43

√
|ρ43|2 + |β−|2

,
|ρ43|√

|ρ43|2 + |β−|2

}
,

ψ4(t) =
{
0, 0,

|ρ43|β+
ρ43

√
|ρ43|2 + |β+|2

,
|ρ43|√

|ρ43|2 + |β+|2

}
,

(24)

α± = 1

2

[
(ρ11 − ρ22)±

√
(ρ11 − ρ22)2 + 4|ρ21|2

]
,β± = 1

2

[
(ρ33 − ρ44)±

√
(ρ33 − ρ44)2 + 4|ρ43|2

]
.
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Results and discussion
In our computations, we use typical indium arsenide (InAs) factors m = mo , lo ≈ 100nm , αr = 1.0× 10−11eVm , 
and g = −814–16, 24, 27, 29. Also, to prepare our results we use the Wolfram Mathematica 11 software.

In Fig. 1 we analyze the effect of the spin-orbit coupling (lso) on the orthogonality, Sor , when the system’s initial 
state in the pure state |�(0)� = |e, 0� with a strong magnetic field lB = 0.5lo is employed. We observe that, the 
orthogonality has regular and periodic oscillations. Moreover, the orthogonality speed depends on the strength 
of the SOC, as the spin-orbit coupling is increased the orthogonality speed is decreased and the number of the 
oscillations decreased since the period increases with increasing the SOC and therefore the orthogonality speed is 
decreased. This indicates that when the SOC increases, the probability of transferring the information decreases.

Figure 2 shows the dynamics of the orthogonality when the weak magnetic field lB = 3lo is employed, for 
different values of the SOC strength lso : lso = 0.5lo, 2lo , and 5lo . It is clear that, the orthogonality number is less 
than in the case of strong magnetic field which indicates to the orthogonality speed is decreased in the weak 
magnetic field case. Also, the behavior of the orthogonality in the absence of magnetic field B = 0 for distinct 
values of the SOC strength when the system’s initial state in the pure state is described in Fig. 3. The behavior 
of the orthogonality speed is similar to that illustrated in Figs. 1 and 2 for strong and weak magnetic fields, 
although the number of oscillations and amplitude of the orthogonality speed are clearly different. When there 

Figure 1.  The orthogonality, Sor , when the system’s initial state in the pure state |�(0)� = |e, 0� , for distinct 
values of SOC strength lso : lso = 0.5lo, 2lo , and 5lo when the robust magnetic field lB = 0.5lo is employed.

Figure 2.  As Fig. 1, but when the weak magnetic field lB = 3lo is applied.

Figure 3.  As Fig. 1, but in the absence of the magnetic field B = 0.
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is no magnetic field, the number of oscillations is less than when there is a strong or weak magnetic field, while 
the amplitudes of the orthogonality speed are larger than the case of strong and weak magnetic fields. This means 
that as the magnetic field becomes weak until reaches zero the orthogonality speed decrease. So, any change in 
the magnetic field or the intensity of the spin-orbit coupling can affect the behavior of the orthogonality speed.

In Fig. 4 we investigate the time evolution of the orthogonality when the system’s initial state in the maximum 
entangled state with |�(0)� = 1√

2
(|e, 0� + |g, 1�) , and the strong magnetic field lB = 0.5lo is employed. In addi-

tion, The spin-orbit coupling effect on the orthogonality speed is investigated. From Fig. 4 one can see that, By 
increasing the intensity of the SOC the orthogonality speed decreasing gradually, and the orthogonality number 
is larger than in the case of pure state as obtained in Fig. 1. This means that the orthogonality speed can be con-
trolled by the initial states of the the nanowire model.

Figures 5 and 6 are plotted for a weak magnetic field ( lB = 3lo ) and in the absence of magnetic field ( B = 0 ) 
with various values of the SOC strength lso : lso = 0.5lo, 2lo , and 5lo . In comparison to the strong magnetic field 
case, we note the following impacts: (i) the number of oscillations for lB = 3lo and B = 0 are less than that for 

Figure 4.  The orthogonality, Sor , when the system’s initial state in the maximum entangled state 
|�(0)� = 1√

2
(|e, 0� + |g, 1�) , for distinct values of SOC strength lso : lso = 0.5lo, 2lo , and 5lo when the robust 

magnetic field lB = 0.5lo is employed.

Figure 5.  As Fig. 4, but when the weak magnetic field lB = 3lo is applied.

Figure 6.  As Fig. 4, but without magnetic field B = 0.
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lB = 0.5lo and become more apparent. (ii) the amplitudes of the orthogonality for lB = 0.5lo are larger than that 
for lB = 3lo and B = 0 . As a result, the orthogonality speed of the proposed model is mostly determined by the 
magnetic field values and the system’s initial states.

Now, suppose that the system’s initial state in the superposition state |�(0)� = 1
2 (|g, 0� + |g, 1� + |e, 0� + |e, 1�) . 

In Fig. 7, we analyze the impacts of the SOC strength on the orthogonality speed, when the robust magnetic field 
lB = 0.5lo is employed. It is clear that, the orthogonality speed has irregular oscillations on the contrary with the 
case of pure and maximum entangled state, but become regular with increasing the SOC. Consequently, there 
is a negative relationship between the SOC strength and the orthogonality speed, as the spin-orbit coupling 
increases, the orthogonality speed decrease since the orthogonality time increases with SOC.

The dynamic of the orthogonality when the weak magnetic field ( lB = 3lo ) and no magnetic field ( B = 0 ) are 
applied in the superposition state is shown in Figs. 8 and 9 respectively. It is seen that, the orthogonality number 
increases with increasing the SOC strength and Consequently the computations speed has the same behavior 
in the case of strong magnetic field that shown in Fig. 7 with some differences in the number of oscillations.

Figure 10 show the orthogonality, Sor , as a function of the spin-orbit coupling ( lso ) with the system’s initial 
state in the maximum entangled state |�(0)� = 1√

2
(|e, 0� + |g, 1�) when the weak magnetic field lB = 3lo is 

Figure 7.  The orthogonality, Sor , when the system’s initial state in the superposition state 
|�(0)� = 1

2 (|g, 0� + |g, 1� + |e, 0� + |e, 1�) , for distinct values of SOC strength lso : lso = 0.5lo, 2lo , and 5lo when 
the robust magnetic field lB = 0.5lo is employed.

Figure 8.  As Fig. 7, but when the weak magnetic field lB = 3lo is applied.

Figure 9.  As Fig. 7, but without magnetic field B = 0.
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employed, we observe that the period and the amplitude of the orthogonality increases with increasing the SOC, 
which implies to the orthogonality speed decrease with the SOC that agree with the results in all figures above. 
While Fig. 11 show the orthogonality as a function of the magnetic field in the maximum entangled state and 
we keep lso = lo , it is clear that the orthogonality number in the case weak magnetic field is less than the strong 
magnetic field case which indicates to the orthogonality speed is decreased when the magnetic field become 
weak.

Figure 10.  The orthogonality, Sor , as a function of spin-orbit coupling ( lso ) when the system’s initial state in the 
maximum entangled state |�(0)� = 1√

2
(|e, 0� + |g, 1�) , when the weak magnetic field lB = 3lo is employed.

Figure 11.  The orthogonality, Sor , as a function of magnetic field ( lB ) when the system’s initial state in the 
maximum entangled state |�(0)� = 1√

2
(|e, 0� + |g, 1�) and we keep lso = lo . For strong magnetic field in (a) and 

weak magnetic field in (b).
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We may deduce that our results agree with the results in Ref.6 where the orthogonality speed for a single qubit 
system interacting with a quantized field has been studied, and the effect of the coupling constant on the speed of 
orthogonality is investigated, as one increases the coupling constant the speed of orthogonality decreases which 
is the same role for the spin-orbit coupling in our result where the orthogonality speed decrease with increasing 
the spin-orbit coupling (SOC).

A summary of the results above, the computations speed of a nanowire system is sensitively affected not only 
by the intensity of the magnetic field and the spin-orbit coupling, but also by the system’s initial states.

Conclusion
The quantum computational speed of nanowire system with different types of magnetic fields when the initial 
states are prepared in various forms has been examined via the orthogonality speed. The influence of the magnetic 
field, the spin-orbit coupling, and the system’s initial state on the computational speed have been discussed. Our 
results demonstrate that, the intensity of the SOC is critical in decreasing the orthogonality numbers, as the SOC 
strength increases, the orthogonality numbers decrease. Moreover, the speed of orthogonality can be manipulated 
by the type of magnetic field, where the shortest orthogonality time occurs when the strong magnetic field is 
employed, while the longest duration occurs in the absence of a magnetic field. Finally, the system’s initial states 
have a significant influence on the orthogonality speed, where the orthogonality speed in a maximum entangled 
state is faster than in the pure or superposition states. This means that, the magnetic field, the spin-orbit coupling, 
and the system’s initial state all have a significant effect on the quantum computational speed of the nanowire 
system. As a result, the nanowire SOC and magnetic fields will slow down the computational speed.
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