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A model to rate strategies 
for managing disease due 
to COVID‑19 infection
Shiyan Wang 1,2 & Doraiswami Ramkrishna 1,2*

Considering looming fatality and economic recession, effective policy making based on ongoing 
COVID‑19 pandemic is an urgent and standing issue. Numerous issues for controlling infection have 
arisen from public discussion led by medical professionals. Yet understanding of these factors has been 
necessarily qualitative and control measures to correct unfavorable trends specific to an infection area 
have been lacking. The logical implement for control is a large scale stochastic model with countless 
parameters lacking robustness and requiring enormous data. This paper presents a remedy for this 
vexing problem by proposing an alternative approach. Machine learning has come to play a widely 
circulated role in the study of complex data in recent times. We demonstrate that when machine 
learning is employed together with the mechanistic framework of a mathematical model, there can 
be a considerably enhanced understanding of complex systems. A mathematical model describing 
the viral infection dynamics reveals two transmissibility parameters influenced by the management 
strategies in the area for the control of the current pandemic. Both parameters readily yield the 
peak infection rate and means for flattening the curve, which is correlated to different management 
strategies by employing machine learning, enabling comparison of different strategies and suggesting 
timely alterations. Treatment of population data with the model shows that restricted non‑essential 
business closure, school closing and strictures on mass gathering influence the spread of infection. 
While a rational strategy for initiation of an economic reboot would call for a wider perspective of the 
local economics, the model can speculate on its timing based on the status of the infection as reflected 
by its potential for an unacceptably renewed viral onslaught.

The pandemic of coronavirus (SARS-COV-2) infection has gripped the world with unparalleled anxiety. An 
alarming number of deaths have occurred within the short span of a little over 4 months! In US, more than one 
hundred thousand have died at the time of compiling this article with prospects of many more in the horizon. 
Despite the epidemic slowing, it appears to be abating at an unacceptable rate. There has been a scramble for 
controlling the spread of infection by people of various backgrounds including medical professionals, scientists, 
engineers, economists, the media, and political leaders. Although considerable insight has accumulated over 
efficient ways to confront this  cataclysm1,2, much more remains to be learned about the disease transmission, its 
treatment, and prevention by a suitable vaccine for the future. While the government has taken actions to relieve 
the economic burden of coronavirus on certain industries, businesses, and American workers (e.g., paycheck 
protection program), the looming prospects of an economic breakdown of catastrophic proportions are a further 
complication that must also somehow influence the mode of confrontation of the pandemic.

An essential prerequisite to facing the coronavirus pandemic is understanding of the various factors that have 
a potential contribution to limiting the spread. The spread of infection occurs in multifarious ways. Thus one 
that is cited the most frequently is spread of the virus through droplets from coughing and  sneezing3. Another 
is from unwitting contact with infected  surfaces4 such as glassware, boxes and so on. Intimate contact through 
handshakes and hugs are even more efficient ways to transmit infection. Each occurs through different scenarios 
that must be envisaged with their respective frequencies of occurrence for a model formulation. For symptomatic 
disease associated with a pathogen transmissibility (marked by a basic reproduction number), different transmis-
sion routes are aligned to their implications for prevention; specifically, there may be four categories: symptomatic 
transmission, pre-symptomatic transmission, asymptomatic transmission, and environmental transmission. 
Given recent evidence of SARS-CoV-2 transmission by mildly symptomatic and asymptomatic  persons5, its 
incubation period is about 5.1 days and about 12 days of infection from exposure to symptom development 
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(latent period). Therefore, unusually long term of latency period and pre-symptomatic transmission could have 
important implications for transmission  dynamics6.

Analysis of data accumulated from numerous sources have provided the general features of the spread in 
terms of when to expect the peak infection rate and what it takes to flatten this curve. Yet this understanding 
must be said to be qualitative without notable predictive features. A mathematical model is presented here of 
the spread of coronavirus (COVID-19) in terms of three parameters that control the rate of its spreading and 
flattening the infection rate curve when intervention by a vaccine is not available. Our model is concerned with 
a specific geographic domain of the United States with a given population of specified density (number per unit 
area) of which a fraction is initially infected. The infected population contributes virus within the domain which, 
for the present, is completely isolated from other domains. The spread of infection within the domain depends 
on the uninfected population and occurs at a rate governed by the extent of protective measures adopted to 
avoid infection from those infected. This spread obviously depends also on the viral population in the domain 
which grows by contribution from the infected (exhaled droplets, aerosol, contaminated surfaces, and possibly 
fecal-oral  contamination7) and disappears by death/isolation etc. We should note that while there are numerous 
reports on reinfection of COVID-198, majority of recovered patients retain certain immunity against the virus.

Our goal here is to find a suitably simple framework to produce a mathematical model that contains a limited 
number of parameters which can be readily identified from gross observations. Furthermore, they should relate 
in some way to various strategies that may be envisaged to control the spread of infection. To simulate both 
dynamics of viral and infected population, the modeling of the system in a considered geometric domain can 
be abstracted as its dimensionless form

where x = n/No is the infected population density (n) normalized by the population density in the domain ( No ), 
y = V/Vo is the dimensionless viral population density, τ = t/Tinf  is the time scaled by the average time ( Tinf  ) 
for an individual to be infected; The explanations of both dynamic equations are elaborated in the methods sec-
tion. Three dimensionless parameters (see physical interpretation of α , β , γ in Table 1) presented in the above 
differential equations compare the rates of different processes and have the capacity to control the spread of infec-
tion. Daily infection data must be fitted to the model by appropriate choice for the values of the dimensionless 
parameters (see Fig. S1 in supplementary material). The socio-economic behavior has diversified the dynamics of 
the infection curve; Furthermore, major regulatory governmental strictures may enforce more discipline in public 
behavior thus seriously affecting the parameters. This effect, it must be conceded, is buried in subtle empiricism 
of the model that we must seek to unearth. In doing so, we emulate the currently popular practice of machine 
learning towards estimating the parameters in each domain to assess the local government policy. We note that 
the current study focuses on the measurement of policy effectiveness during the pandemic; the policy measures 
during the early stage of disease transmission have been document by the World Health  Organization9,10. In this 
regard, the informative results delivered by combining both approaches (i.e. mechanistic model and machine 
learning) could promote effective policy implementations against the transmission of disease (Fig. 1A). In Fig. 1B, 
the national scale social distancing is undertaken with the administration guideline “15 Days to Slow the Spread” 
that divides the pre-guideline enforcement period (P1) and the post-guideline enforcement period (P2). Further-
more, to consider the heterogeneity of the population density, we model the infection dynamics in the leading 
county of every state (50 states plus Washington D.C.) Within different periods and regions, their parameter 
values will reflect the quality of management of the spread of infection in the area under consideration. The 
different mechanisms of transmission of infection may operate to varying extents in different areas depending 
on how the infection is managed locally. Thus one must regard the model as only “broadly” mechanistic and the 
relationship of model parameters to different strategies would be somewhat diffuse. Therefore, in connecting the 
model to guide strategies we resort to a statistical methodology based on machine learning tools, which could 
overcome the limitation just mentioned.

(1)
dx

dτ
= (1− x)y − γ x,

(2)
dy

dτ
= αx − βy,

Table 1.  Emerging indicators from pathogen system.

Dimensionless variables Definitions

α =
kvNo

kV2
o

Fractional rate of viral growth during the (average)
infection time with Vo viral population;
kv is the rate constant for production of
virus from the infected; k is the rate constant for
transfer of infection

β =
k
′
v

kVo

Viral death rate during (average infection time);
k
′
v is the rate of death of virus

γ =
kr
kVo

Removed rate of infected patients relative to
infection rate with Vo viral population;
kr is the rate of removed population
(either by death or recovery)
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Results and discussion
Role of parameters in spread of infection. We first examine role of model parameters in the spread of 
infection. The P1 duration reveals the period of pathogen transmission with limited prevention in the United 
States. The early state of virus transmissibility can be characterized by ‘R-naught’ (R0), which is the basic repro-
duction number. Our estimate of R0 is about 2.8 (the median from data is 2.75; our model is 2.90; see the 
calculation method in supplementary material) whose transmission is stronger than influenza (R0: 1.4–1.6)11 
and weaker than Measles (R0: 12–18)12. The speed of infection of an individual would depend on the value of 
Tinf  : a large Tinf  would imply a longer real time and thus a slower rise in infection. For instance, in New York 
at P1 period without government policy intervention, it typically takes about Tinf ∼ 10 minutes to infect an 
individual. With the implementation of government policy about social distancing, in P2 period, Tinf  increases 
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Figure 1.  Parametric study on coronavirus infection in United States. (A) By incorporating both mechanistic 
modeling and data analysis (in blue) into the traditional workflow of the policy making (in black), a refreshed 
framework forms a three-way communication among expert (doctor/epidemiologist), engineers/scientists and 
lawmakers, thus improving the implementation of health policies against the infectious disease. (B) The timeline 
of total population with COVID-19 positive in conjunction with the policy of “15 Days to Slow the Spread” 
in the United States, in which the infection period is divided into the pre-guideline enforcement period (P1) 
and the post-guideline enforcement period (P2). (C) The phase space in terms of α/β and γ is plotted for the 
leading infected counties in first fifteen states: P1 duration and P2 duration. The phase space is segregated as 
three regions: ‘severe’ (labeled as green; α/β ∈ (1.0,∞) ), ‘moderate’ (labeled as red; α/β ∈ [0.4, 1.0] ), and ‘mild’ 
(labeled as blue; α/β ∈ (0, 0.4)).
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25 times, and the approximation of an individual infection takes about 4 hours! To measure parameters ( α , β , 
γ ), it is purposeful to examine the steady state solutions of the model represented by Eqs. (1) and (2). We show 
that the only relevant solution is x̃ = 1− γ (α/β)−1 and ỹ = α/β − γ where the projected total infected popu-
lation ( ̃x ) and viral population ( ̃y ) are determined by α/β and γ . Parameter α/β represents the ratio of viral 
growth rate to its death rate, which represents the extent of environmental virulence. Fig. 1C shows that severe 
virulence environment (large α/β ) are associated with the large counties (i.e. Los Angeles-CA (P1,P2), New 
York City-NY(P1,P2)). In particular, Wayne county at Michigan State shows significant improvement (severe−→
moderate) as the proper social distancing is taken and thereby there would be a significant reduction of the virus 
in circulation. In general, counties with populous majority remain as small virulence during the entire period 
(Fig. 1C). Parameter γ represents the removal rate of infected patients (by recovery/death). Our model implies 
that γ is associated with α/β positively: despite the infection, its percentage in each county remains low (e.g. 
the percentage of infection at New York City is about O(10−2) ); Therefore, γ (α/β)−1 ∼ 1 and always γ < α/β . 
Here, we ought to demonstrate two significant points: (1) mathematically, γ < α/β is the necessary and suf-
ficient condition for the stability of the solution; (2) as the difference between γ and α/β becomes smaller, the 
eventual infected population is smaller. The most direct way of containing infection depends on the availability 
of effective vaccines and therapies that can raise the value of γ . However, we should note that, without further 
modification, the current model would not directly account for the possibility of using experimental prescrip-
tions such as Remdesivir recently authorized by Food and Drug Administration (FDA)13.

Indicators of COVID‑19 transmissibility: α/β & x̃. Based on our model, we propose two indicators 
α/β and x̃ to characterize the infection dynamics. Reducing α/β is accomplished by slowing the viral trans-
fer from the infected to the uninfected which can be accomplished by several ways such as social distancing 
(individual precautions can be washing, wearing masks, physical distancing 6 or 12 feet, and so on). In Fig. 2A, 
we find that α/β is strongly correlated with the county population (R = 0.91, p = 2.1e−6; p<0.05 considered as 
significant), which is consistent with the physical explanation of (α/β) ∝ (No/Vo) in Table 1; given any domain, 
No/Vo increases with large population number but independent of population density No . On the other hand, 
the projected total infection fraction x̃ , which characterizes the pathogen transmissibility, is positively correlated 
with the county population density (R = 0.61, p = 0.016 in Fig. 2B) because of No ; the transmission of the infec-
tion becomes faster when the population density is high. Other factors such as weather (temperature, humidity) 
remain insignificant (weak correlation) to the infection dynamics (see Fig. S2 of the supplementary material and 
 reference14; also see the effect of temperature on the of suspected, confirmed and death of COVID-1915). Fig-
ure 2C exhibits how parameters α/β and x̃ affect the peak infection rate. The peak infection rate represents the 
stage beyond which the infection rate will drop. It is now possible to address the much debated strategy of “flat-
tening the curve” by lowering peak infection rate. To reduce the transmissibility (i.e. lower x̃ ), the peak infection 
rate has to be small (see Fig. 2C). Our model recommends that this is accomplished when α/β is low, suggesting 
the reduction of virus circulation (Fig. 2D).

Impact of lockdown: New York city. We now proceed to model the effect of lockdown on COVID-19 
transmissibility in New York City, as an example. Additionally, considering recently published policy of “Open-
ing Up America Again” by the white house administration, we will study the effect of reopening economy on the 
dynamics of transmissibility in the New York metropolitan area in next section. Here, we consider the influence 
of lockdown policy at New York City, where the isolation is determined by the geographic constraint of five 
boroughs (the Bronx, Brooklyn, Manhattan, Queens, and Staten Island) within the New York City (Fig. 3A). 
From Fig. 3B, our model suggests that the mitigation brought about by lockdown is sensitive to the moment 
of implementation; an early enforcement of lockdown could delay its occurrence. Our study also shows that if 
the implementation happens after the peak infection, the strategy of slowing works less efficiently. However, the 
lockdown likely results in a long-term dynamics; it not only impacts the economic damage, but also brings the 
negative mental health to children and college students due to depression, and  anxiety16, which calls for inter-
ventions and preventive  strategies17.

Reopening economy on second wave: New York metro area. During this pandemic, the financial 
center of the world–New York City area has been hit by massive layoffs and anticipates looming  recession18. This 
situation, spells some urgency for reopening the economy and resuming normal daily activity. However, we 
stress that opening the economy has to be cautious to the possible appearance of a second wave thus making the 
timing of the reopening very important. To simulate the impact of normal daily activity on the current dynamics 
of infection, we study the transmissibility in both New York City and Bergen County (Inner New Jersey) within 
the metropolitan area. These two regions represent the most active interactions in the United States (leading 
out-computing in the metro area, NYC Planning 2018) and yet both have the leading coronavirus infections in 
their states. In the model, we relax the current government restraints and resume normal daily operations and 
activities, which allows the model to consider the worst scenario of the infection curve. Figure 3C shows that the 
economy reopening (with the least precaution) inevitably brings the second wave and thereof more mortality. 
However, the extent of infection outbreak can be drastically reduced by delaying the opening date (35% increase 
at 5.5th week vs. 4% increase at 7.5th week). We note that an effective policy intervention may reduce the drastic 
increment of the infected population. In the next section, we discuss how to quantify the effectiveness of current 
implemented policy on coronavirus transmissibility.

Influence of policy measures in states. With the U.S. administration declaring the social distancing 
guideline since March 16th, local governments have implemented more than 300 executive orders in fifty states, 
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Puerto Rico, the District of Columbia, Guam, and the Virgin Islands. The executive actions and policies are 
related to declarations of states of emergency, school/business closure, prohibition of mass gathering, stay at 
home order, etc. Central issues stand as the effectiveness of ongoing individual policy is unclear. In our study, 
while the coronavirus transmissibility is strongly influenced by the local population dynamics (Figs. 2A,B), the 
statistical inference suggests the relevance of several ongoing policies on the coronavirus transmission (Fig. 4A). 
With our model empowered by machine learning tools, we perform the regression of both parameters α/β and 
x̃ based on all policy influences, where the detailed description of data sample for policy is shown in Table S3-1 
of the supplementary material. By examining the weight associated with each policy measure and its significance 
(p-value) in Fig. 4B-1, we should conclude that factors such as non-essential business closure, gathering ban and 
school closure possess strong impact on x̃ (adjusted-R2 = 0.59, p = 2e−6; also see Fig. S3 in the supplementary 
material), which represents the total infected population. Both gathering ban and school closure emphasize the 
activity of population in young age, which is consistent with the recent finding that young people play a vital 
role in spread of COVID-1919,20. For virulence environment ( α/β ), while the severity of coronavirus spread is 
largely determined by the local population number, nonessential business closure plays a role in its attenua-
tion effort among other considered policies (adjusted-R2 = 0.30, p = 1e−3; see Fig. 4B-2 and Fig. S4). With the 
context of reopening the economy (since May 1st 2020), there are several reports on the surge of coronavirus 
infection in multiple states and most contagious region remains at the leading counties. Policies on both certain 
non-essential business limitation and gathering ban have been revised in almost all states (note: schools remain 
closed across the United States; see Table S3-2 in the supplementary material). Our model enables to incorporate 
these policy changes to predict and diagnose many states having surges of positive cases (Fig. 4C). By predicting 
the increase of α/β and x̃ using machine learning, we find that the strong surges (marked as ‘severe’ in Fig. 4C) 
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in states like Utah, Nebraska, Ohio, Kentucky, Texas and Virginia could stem from the relaxation of the gathering 
ban; Nevada, North Carolina, South Carolina and Mississippi have observed high daily positive cases, which is 
interpreted by our model as due to the non-essential businesses; We also find that several states (e.g. California, 
Wisconsin, Arizona, Alaska, Tennessee, Maine, etc.) have strong infection due to both factors (non-essential 
business closure and gathering ban). Our model captures all currently emerging states, indicating significant 
impact of government policy on the spread of coronavirus when a vaccine is unavailable. In Fig. 4C, several 
states (marked as ‘moderate’) should be cautiously optimistic when relaxing social distancing measures despite 
downward trending of daily positive number because we observe increases in either α/β (elevated virulence) 
or x̃ (increased projected total infection number) in our model. In particular, the state of Massachusetts should 
retain strong measures (increments in both α/β and x̃).

Conclusions
In this report, we have proposed a new mechanistic model describing the transmission of COVID-19 in the 
United States. Our model is established in conjunction with administration policy, from which we propose two 
significant parameters. The parameter α/β quantifies the severity of the coronavirus circulation, and the param-
eter x̃ represents the projected total infected fraction. To be consistent with CDC county-by-county guideline, 
we studied the infection dynamics of the leading county in each state. By examining the peak infection rate, our 
suggested strategy of ‘flattening the curve’ has to deal with lowering α/β , towards drastically diminishing the 
virus population in the environment. Our study of lockdown suggests that it be implemented before the peak 
infection rate, since its arrival can be sensed well by the parameters. We have quantified the impact of current 
social distancing policies with α/β and x̃ , suggesting that polices such as, restrictive non-essential business clo-
sure, a ban on gathering, and that of school closure are critical. This may strongly associate with the restricted 
activity of young people (young adults and teenagers). The novelty of this contribution is derived from two spe-
cific features. One locates each geographic region in our parameter space at any stage providing for a diagnosis 
of the disease status in the region, and the prevailing quality of its management. The other affords a direction in 
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Figure 4.  Evaluation of policies on COVID-19 transmissibility. (A) The relevance and significance of individual 
policy and population dynamics (population and population density) on model parameters α/β and x̃ , 
characterized by adjusted R-square and p-values, respectively. In the diagram, the color of the ellipse represents 
the value of adjusted R2 while the size of ellipse accounts for p-value. (B) The regression analysis of government 
policies and local population dynamics against (B-1) the projected eventual infection fraction x̃ and (B-2) 
virulence α/β . The extent of influence from individual factor is reflected by the corresponding weight (W). 
In (B), the weights are normalized by the first factor. (C) Upon economy opening, the modification of polices 
impacts the trend of infection curve. We can identify the states with the surge of positive cases by the prediction 
of α/β and x̃ using machine learning: the blue plots represent the daily increment �n (7-day running averaged) 
normalized by the total population density No in the leading county of all fifty states (including D.C.) For all 
emerging counties in each state, a red filled circle is recognized by the elevation of α/β from the prediction of 
the machine learning; A green filled star represents the increase of x̃ ; the red square implies the severe situation 
based on the plateau/upward-trending daily growth and the yellow square indicates the moderate scenario based 
on the downward-trending daily growth curve.
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which changes in strategy must be brought about for controlling the disease. Although a rational analysis for an 
economic reboot should be based on a considerably expanded view of the local economics, it is possible to derive 
some useful guidelines from our model study. To this extent, we conclude, perhaps somewhat speculatively, that 
our suggestion for an economic reopening may be viable if non-essential business closure is conditional, mass 
gathering is limited and school opening is delayed. At any rate, in the absence of such restrictive measures, the 
prospect of an economic recovery is less likely. For the further study for the school opening, the transmission 
among different age groups (i.e. teenager/adult/elderly) should be carefully considered. In addition, the effect of 
the policy mandate (e.g. mask wearing) on COVID-19 transmission will likely be studied.

Methods
Mechanics model. We consider a geometric domain D in which there is a total population density (num-
ber per unit area) No , containing n individuals (per unit area) diseased with the coronavirus. These population 
densities must be clearly viewed as averaged over the whole domain, which may be a county, city, state or even 
an entire country. One may expect steep variations of the actual number densities about their average values. 
Both the averages and fluctuations about them may be expected to vary with time and location, and a model that 
includes such dynamic effects would require a complex mathematical framework riddled with parameters not 
easily identified even if detailed observations can be made. Our goal here is to find a suitably simple framework 
to produce a mathematical model that contains a limited number of parameters which can be readily identified 
from gross observations. Furthermore, they should relate in some way to various strategies that may be envis-
aged to control the spread of infection.

The basic mechanism of spreading infection is assumed to be exposure to a viral population in the environ-
ment (exhaled droplets, aerosol, contaminated surfaces, and possibly fecal-oral contamination) contributed by 
all those infected with the coronavirus. Obviously, the viral population in the environment will notably vary with 
location but over a period of time during which individuals in motion would encounter viruses when they are in 
the vicinity of the infected and are thus open to catching the infection which is represented below.

The rate at which this process of infection occurs would clearly depend on the local viral population. Indeed, the 
viral virulence would vary significantly with location but the assumed simplicity of the model is derived from 
sufficient mixing of both the infected and the uninfected individuals that they see the average viral population 
over a period of time. The fate of infected individuals is represented by

Mathematically, we represent the rate in Eq. (3) by kV where V is the viral population averaged over the domain 
D. Alternately, (1/kV) may be viewed as the average time for an individual to be infected. Since the transfer of 
infection implied in Eq. (3) occurs in multiple ways, the average time for infection must represent the mean of 
the average times for the different mechanisms. Thus the rate at which the infected population increases is then 
given by k(No − n)V  , where (No − n) represents the uninfected population density. The rate constant associated 
with the process of removed population is denoted as kr and krn represents the rate at which infected people are 
removed by death or recovering from treatment.

We can now write a balance equation for the infected population given by

Eq. (5) is coupled to a balance equation for V  , the viral population which accounts for their multiplication and 
their random death. This is given by

The first term on the right-hand side accounts for viral multiplication from all diseased individuals while the 
second term is their first order disappearance. The model at this stage is represented by 4 parameters, k, kr , kv , k′v . 
Table 2 collates their broad interpretations representing the spreading characteristics. It should be apparent that 
constants kr and k′v are not as sensitive to disease management as the constants k and kv are. For instance k and 
kv could be conceivably reduced by the use of masks and social distancing.

Insofar as the infection curve results from different processes, it is more meaningful to convert the model 
variables to dimensionless variables as below.

As a scaled variable, y is a more convenient representative of the viral population as their absolute numbers 
are very large. The scaled time relates absolute time to the average time it takes to infect a single person. Three 
dimensionless parameters emerge from the differential equations (Eqs. (1–2)) that are presented in Table 1, along 
with their physical interpretations.

Peak infection rate. The peak infection rate occurs when the second derivative d2x/dτ 2vanishes along its 
path. It is readily shown that this occurs when

(3)Uninfected individual
Exposure to viral environment
−−−−−−−−−−−−−−−−→ Infected individual

(4)Infected individual
Under treatment
−−−−−−−−−→ Recovered or deceased individual

(5)
dn

dt
= kV(No − n)− krn.

(6)
dV

dt
= kvn− k′vV .

(7)x ≡
n

No
= fraction infected, y ≡

V

Vo
= Viral population density scaled to Vo, τ ≡ kVot
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The peak infection rate is obtained when the curve represented in Eq. (8) intersects the curve 
{

x(τ ), y(τ )
}

 . This 
represents the stage beyond which the infection rate will drop. It is now possible to address the much debated 
strategy of “flattening the curve” at a lower infected fraction. Therefore, the peak infection rate (PIR) occurs at

It will then be of interest to specify either the maximum infection rate or the fraction infected at which there is 
noticeable slowing of the infection rate (Figs. 2C,D of the manuscript).

Modeling lockdown of New York city. Here, we consider the influence of lockdown policy at New York 
City, where the isolation is determined by the geographic constraint of five boroughs (the Bronx, Brooklyn, 
Manhattan, Queens, and Staten Island) within the New York City. In the strict isolation, the entire New York 
City D is divided into five boroughs ( Di , i = 1, 2, . . . , 5 ) and there being no interaction between the populations 
in different boroughs (Fig. 3A of the manuscript). We may model the transmission dynamics in domain Di by 
using Eqs. (1) and (2) with the parameters of

where ( α , β , γ ) are the parameters for New York City; Nio is the total residing population in borough i and No 
is the total population in New York City. In Fig. 3B of the manuscript, we evaluate the lockdown strategy by 
comparing x obtained for domain D with 

∑5
i xi.

Data availability
The data and code that support the findings of this study are available from the corresponding author upon 
reasonable request. Parameters for reproducing the calculated numerical results and protocols for reproducing 
the numerical experiments are included in the main text and supplementary material. US coronavirus data are 
publically available from the New York Times GitHub source: https ://raw.githu buser conte nt.com/nytim es/covid 
-19-data/maste r/us-count ies.csv; Weather data are publicly available from NOAA Global Surface Summary of 
the Day (GSOD): https ://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C0051 6; State and policy data to 
address coronavirus are publically available from Kaiser Family Foundation: https ://www.kff.org/healt h-costs /
issue -brief /state -data-and-polic y-actio ns-to-addre ss-coron aviru s/.
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