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Pre‑arrest doxycycline protects 
donation after circulatory death 
kidneys
Michael Moser1,2*, Sarah Schmid1, Katherine Sawicka3, Tamalina Banerjee4, Erick McNair4, 
Jolanta Sawicka5, Iwona Bil‑Lula6 & Grzegorz Sawicki5,6*

Kidney injury during donation after circulatory determination of death (DCDD) includes warm ischemic 
(WI) injury from around the time of asystole, and cold ischemic (CI) injury during cold preservation. 
We have previously shown that Matrix Metalloproteinases (MMPs) are involved in CI injury and that 
Doxycycline (Doxy), an antibiotic and known MMP inhibitor, protects the transplant kidney during CI. 
The purpose of our study was to determine if Doxy given before asystole can also prevent injury during 
WI. A rat model of DCDD was used, including Control, Preemptive Doxy (45 mg/kg iv), and Preemptive 
and Perfusion (100 microM) Doxy groups. Thirty minutes after asystole, both kidneys were removed. 
The left kidney was perfused at 4 °C for 22 h, whereas the right was used to establish the degree of 
warm ischemic injury prior to cold preservation. MMP‑2 in the perfusate was significantly reduced in 
both treatment groups [Control 43.7 ± 7.2 arbitrary units, versus Preemptive Doxy group 23.2 ± 5.5 
(p = 0.03), and ‘Preemptive and Perfusion’ group 18.0 ± 5.6 (p = 0.02)]. Reductions in NGAL, LDH, 
and MMP‑9 were also seen. Electron microscopy showed a marked reduction in mitochondrial injury 
scores in the treatment groups. Pre‑arrest Doxy was associated with a reduction in injury markers and 
morphologic changes. Doxy may be a simple and safe means of protecting transplant kidneys from 
both WI and CI.

Abbreviations
CI  Cold ischemia
DCDD  Donation after circulatory determination of death
DNDD  Donation after neurological determination of death
Doxy  Doxycycline
ECM  Extracellular matrix
KPS-1  Kidney Perfusion Solution-1
WI  Warm ischemia

In an effort to increase the number of kidneys available for transplantation, transplant programs have revisited 
the use of kidneys from Donation after Circulatory Determination of Death (DCDD). Donation after neurologi-
cal determination of death (DNDD) had been the only source of deceased donor organs for the vast majority of 
transplant programs since the late  1960s1. Unfortunately, DCDD donor kidneys are associated with a higher rate 
of delayed graft function, and reduced graft  survival2,3. Whereas warm ischemia (WI) at the time of procurement 
is minimal in DNDD donation, there is considerable warm (37 °C) ischemia in DCDD-retrieved kidneys and 
this may account for the worse outcomes with these organs.

Matrix Metalloproteinases (MMPs) are a family of proteolytic enzymes that play important roles in a variety 
of physiological and pathological  processes4. They are best known for the degradation of extracellular proteins 
and remodeling of the extracellular matrix (ECM) but also have intracellular actions including effects on the 
 mitochondria5. MMPs have even been shown to reside in mitochondrial  membranes5.
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We have demonstrated in our lab that MMPs play a role in injury at the time of cold preservation. In both 
our animal model and human clinical analyses, there was a considerable release of MMP-2 and MMP-9 as well 
as injury markers LDH and  NGAL6,7 into the preservation solution used in machine cold perfusion (perfusate). 
We have data that showed that the addition of MMP inhibitors doxycycline (Doxy) or MMP-2 siRNA led to a 
significant decrease in MMP-2 and MMP-9 and injury  markers10. Similar results implicating MMPs in cardiac 
injury and the protective effect of Doxy were also shown in our  lab8,9.

It has been shown that the accumulation of succinate is a universal metabolic signature of ischemia, and 
that this drives the accumulation of reactive oxygen species in the mitochondria during  reperfusion10. That the 
mitochondria are central to ischemia and/or ischemia–reperfusion injury is further supported by work of other 
groups looking at the protective effects of hydrogen sulfide and carbon monoxide. The mechanism of these 
interventions appears to be the induction of a hibernation-like state in organs being preserved for the purposes 
of  transplantation11,12. Using a proteomic approach, our group showed that several enzymes involved in glycolysis 
were increased when kidneys were cold perfused with solution containing Doxy, suggesting that the protective 
mechanism of Doxy might be as a result of increased glycolysis in addition to preservation of mitochondrial 
structure and  function13.

We hypothesize that the MMP inhibitor Doxy, a benign and inexpensive clinically used antibiotic that has 
been shown to protect from cold ischemic injury, also protects the kidney from warm ischemic injury when given 
preemptively, before cardiac arrest in a DCDD animal model.

Materials and methods
Treatment and control arms (Fig. 1). Eighteen male Sprague–Dawley rats (n = 6 per group) weigh-
ing 200–250  g (Charles River, Burlington) were randomly assigned to the 3 groups. Rats in the treatment 
groups received the MMP inhibitor Doxy (45 mg/kg) intravenously 30 min prior to laparotomy (‘Preemptive 
Doxy’ group) and/or had kidney perfusion for 22 h with KPS-1 Perfusion Solution containing Doxy (100 μM) 
(‘Preemptive and Perfusion Doxy’ group). Doxy doses were determined from previous studies in our  lab9. Rats 
in the control arm received saline intravenously and underwent kidney perfusion with KPS-1 solution without 
Doxy. A sample size of approximately 6 rats per arm has been standard in these types of studies over the last 
decade in our lab; in this study, each rat contributes two kidneys, each to a different ‘group’.

DCDD donation model. Animals were anesthetized with Isofluorane and ventilated. The abdomen was 
opened with a midline incision, and cardiac arrest was induced by phrenotomy, as previously  described14,15. 
After 30 min of WI after cardiac arrest to ensure ample injury to the kidneys, the left kidney was exposed and the 
left renal artery encircled and cannulated in situ.

Flushing and machine cold perfusion. The left kidney was removed and flushed with Kidney Preser-
vation Solution-1 (KPS-1, 20 cc over one hour) at 4C to flush out the blood. Each cannulated left kidney was 
then suspended in a 50 cc tube (Cole Parmer, Vernon Hill, IL) containing 20 cc of with KPS-1 with or without 
Doxy (100 μM), depending on the group. The perfusion was carried out for 22 h in a 4 °C cold room using a 
micro-pump (Gilson, Middleton, WI) at a flow rate of approximately 15–25 cc per hour, titrated to pressures of 
30 mmHg, not to exceed 40 mmHg. The recirculating perfusate was collected at 22 h and quick frozen at − 80 °C 
for batched biochemical and zymographic analysis. A portion of each kidney was placed formalin in preparation 
for light microscopy and another in glutaraldehyde in preparation for electron microscopy.

Analysis of perfusate from machine cold perfusion. The perfusates were analyzed for MMP-2 and 
MMP-9 activity, LDH, and NGAL collected at 22 h, as per our previous studies. Gelatin zymography for MMP-2 
and MMP-9 activity was performed using the protocol of Heussen and  Dowdel10. LDH activity was measured by 
LDH activity assay (Sigma-Aldrich, St. Louis, MO, USA). NGAL was measured using a commercially available 
ELISA kit (Abcam, Toronto, Canada).

Assessment of histological injury. Slides were prepared and stained with Hematoxylin and Eosin (H&E) 
staining and reviewed by a renal pathologist (TB). Each was scored using the EGTI (Endothelial, Glomerular, 
Tubular, and Interstitial) scoring system for rat kidneys as described by Khalid et al.16.

Electron microscopy. One-millimeter cubes of kidney tissues were fixed with glutaraldehyde then post-
fixed in osmium tetroxide, dehydrated in graded ethanol, and embedded in epoxy resin. Ultra-thick sections 
were cut and stained with uranyl acetate and lead citrate and random areas photographed using digital trans-
mission EM, ensuring tubules were included. Mitochondria from five fields (at 5000× magnification) from 
each group were scored according to the Flameng grading for mitochondrial  injury17. Briefly, Flameng grading 
involves using specific criteria to assign a score from 0 to 4, with higher scores indicating more injury, to each 
mitochondrion. Flameng scores have been shown to correlate with ischemic time and biochemical markers in 
the clinical  setting18.

Statistical analysis. Comparisons between groups were carried out using SPSS 25 (Chicago, USA). The 
Mann–Whitney U test was used for comparisons involving scoring system results and the Student’s t-test was 
used for all other results. A p value of < 0.05 was taken as significant in all cases.
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Ethics statement. This study conforms to the Guide to the Care and Use of Experimental Animals of the 
Canadian Council on Animal Care. The study was reviewed and approved by the University of Saskatchewan 
Biomedical Research Ethics Board (BioREB #20130073 amended 2017).

Results
Injury biomarkers. NGAL and LDH (Fig.  2): NGAL in the perfusate of the ‘Preemptive and Perfusion’ 
group was significantly decreased (1.8 ± 0.4 ng/mL, p = 0.007) compared to the Control group (12.1 ± 3.1 ng/mL), 
while NGAL for the ‘Preemptive Doxy’ group was not significantly different (10.1 ± 1.4 ng/mL, p = 0.42). LDH, a 
less specific marker of injury, showed a similar pattern.

MMP‑2 and MMP‑9 in perfusate (Fig. 3). MMP-2 in the perfusate was significantly reduced in both 
treatment groups [Control 43.7 ± 7.2 arbitrary units, versus Preemptive Doxy group 23.2 ± 5.5 (p = 0.03), and 
‘Preemptive and Perfusion’ group 18.0 ± 5.6 arbitrary units (p = 0.02)]. A statistically significant decrease in 
MMP-9 in the perfusate was seen for the ‘Preemptive and perfusion’ group (65.3 ± 17.5 arbitrary units versus 
Control 291.0 ± 97.2 arbitrary units, p = 0.03). Mean MMP-9 in perfusate was 173.8 ± 52.5 arbitrary units for the 
Preemptive group (p = 0.16).

Figure 1.  Study design, showing details of each of the 5 groups [2 right kidney groups to assess the effect of 
Doxy on warm ischemic injury (that is, with or without pre-arrest Doxy), and 3 left kidney groups to assess the 
effect of Doxy on warm and cold ischemic injury]. CIT: cold ischemic time, Doxy: doxycycline, KPS-1: Kidney 
Perfusion Solution-1, WIT: warm ischemic time.
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Figure 2.  LDH and NGAL in perfusates from left kidneys after 22 h of machine cold perfusion at 4 °C. * 
p < 0.05, **p < 0.01, compared to Control group.

Figure 3.  MMP-2 and MMP-9 in perfusates from left kidneys after 22 h of machine cold perfusion at 4 °C. 
*p < 0.05 compared to control group.
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Light microscopy/histology (Fig. 4). The DCDD model produced significant injury in all kidneys. There 
was a trend towards improvement in EGTI injury scores in the right kidneys, from intravenous preemptive Doxy 
administered prior to warm ischemia (1.8 ± 0.3 versus Control 3.3 ± 0.8, p = 0.105). After perfusion of the left 
kidneys, injury scores were significantly improved in the ‘Preemptive Doxy’ group (3.0 ± 0.4, p = 0.004) and the 
‘Preemptive and perfusion Doxy’ group (3.3 ± 0.5, p = 0.009) versus the Control group (6.4 ± 0.8).

Figure 4.  (A) Histological injury as measured by the EGTI (Endothelial, Glomerular, Tubular, and Interstitial) 
score of Khalid et al. *p < 0.01 compared to the right kidney (Warm Ischemia) Control Group, using the Mann–
Whitney U test. †p = 0.105 compared to the left kidney (Warm and Cold Ischemia) Control Group, using the 
Mann–Whitney U test.  (B) Examples of EGTI scoring.
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Electron microscopy. The Flameng mitochondrial injury score (Fig. 5A) in the right kidneys (exposed to 
warm ischemia alone) was lower in the ‘Preemptive Doxy’ group (1.54 ± 0.05, p < 0.01) compared to the Control 
group (2.5 ± 0.07). In the left kidneys, exposed to warm and cold ischemia, the injury score was highest for the 
Control group mitochondria (2.88 ± 0.35) and significantly lower in the treatment groups (‘Preemptive Doxy’ 
1.64 ± 0.41, p < 0.001 and ‘Preemptive and perfusion Doxy’ 1.41 ± 0.37, p < 0.001), with the difference between the 
latter two groups being significant as well (p = 0.04).

There were subjective differences in the appearance of the extracellular matrix, with endothelial detachment 
seen in the Control groups (Fig. 5B).

Discussion
These results suggest that Doxy, given before cardiac arrest and WI, was associated with a reduction in injury 
markers and cellular and mitochondrial injury morphology in a rat model of DCDD kidney preservation.

Although our study was designed to assess the effect of Doxy in protecting transplant kidneys, MMPs are 
ubiquitous, and our laboratory has indeed documented protective effects of Doxy on ischemic cardiac injury. 
Our results should therefore be of relevance to the study of non-transplant ischemia–reperfusion phenomena, 
in cases where the ischemic event is planned or anticipated, such as occlusion of the renal artery during partial 
nephrectomy. Furthermore, similar protective effects should be expected for the other solid organs procured at 
the time of DCDD.

We have previously shown that Doxy helps protect against cold ischemic injury at the time of machine cold 
 perfusion9. The current results suggest that injury may also be prevented by administering Doxy prior to warm 
ischemic injury. For some of the injury measures, there was a significant incremental protection from the use 
of preemptive Doxy and Doxy in the perfusion fluid, while for other measures, there was not. An incremental 
effect was seen in terms of specific proteins released into the perfusate. Although we have shown that the pro-
teins released into the perfusate do indeed reflect kidney injury during preservation, this does not necessarily 
reflect the intracellular state of the cells. There is increasing evidence to suggest that the structure and enzymatic 
integrity of the mitochondria may be the key to the cell surviving preservation or ischemia–reperfusion10 and 
that accumulation of succinate may be central to ischemia-reperfusion injury.

The mechanism whereby Doxy, through inhibition of MMP-2, protects the kidney in the setting of cold 
ischemia appears to be through the protection of mitochondria as well as the preservation of the ECM. A recent 
publication from our lab used a proteomics approach to identify the intracellular enzymes that were affected by 
Doxy in this same rat  model13. We identified 8 intracellular enzymes, of which the majority are involved in glyco-
lysis and in mitochondrial function. The results in this current study support that a similar benefit, and possibly 
a similar mechanism, contributes to protection of kidneys from warm ischemia by Doxy. The administration 
of the MMP inhibitor before ischemia potentially prepares the cells or their mitochondria to better tolerate the 
warm ischemic insult, in contrast to administering the drug after the warm ischemic insult has already occurred.

Kunugi et al. examined the role of MMPs in renal warm ischemic injury in a study where the renal artery was 
clamped for 30–120 min, and then the kidney was allowed to reperfuse by removing the  clamp19. The degree of 
acute tubular injury, necrosis, and apoptosis was markedly less in MMP-2 deficient transgenic mice, suggesting an 
important role for MMP-2 in warm ischemic injury. Our results agree with Kunugi’s in terms of the importance 
of MMP-2 in injury despite the slightly different injury mechanism.

Our study, like many studies involving an animal model and several treatment arms, is limited by a relatively 
small sample size.

It has been noted that our model that includes a warm ischemia time of 30 min seems extreme compared to 
the clinical scenario of five minutes of “no touch” time followed by about another five minutes before cannulation 
and cooling. We chose a warm ischemia time of 30 min because we wanted to ensure that there was considerable 
injury so that an intervention that helped might be more likely to show a significant benefit. We also wanted to 
account for injury that occurs clinically during the hypotension and relative warm ischemia of the agonal phase 
(between withdrawal of life support and cardiac arrest). In our model, the agonal phase was relatively short, 
between 8 and 12 min in all cases.

Finally, the protective effect of Doxy on kidneys destined for transplant should ideally be demonstrated with a 
model that involves transplantation of the treated and untreated kidneys in an animal model. Our current study 
was a pilot/proof of concept on a small research grant. Kidney transplantation in a rat model requires extensive 
training and considerable expertise in microsurgery and remains a procedure done by only a handful of ‘experts’ 
worldwide. Our centre did not possess such expertise; however, we have plans to collaborate with a larger centre 
to test Doxy’s preemptive protective effect in a rat transplant model.

From a clinical point of view, the administration of Doxy prior to the withdrawal of life-supporting treat-
ments is a potential intervention that is simple and non-toxic. In cases of DCDD donation, one must always be 
wary of the administration of drugs that might be perceived as bringing harm to the donor. It seems unlikely 
that the administration of this antibiotic would lead to harm in the donor, except on the very rare occasion that 
the donor has a severe allergy to Doxy. Given the separation of the donation team and the transplant team at 
most centers, it might be challenging to gain acceptance from the donation team for an intervention that only 
benefits the recipient or recipients of the donor’s organs. Still, the administration of Doxy prior to cardiac arrest 
would undoubtedly be of a lower risk than the administration of intravenous heparin in high doses, a common 
practice in many centres that participate in DCDD donation.

There is one potential challenge that bears mentioning. The administration of Doxy prior to cardiac arrest 
might help improve the quality of not only the kidneys, but the heart, lung, liver, pancreas, and small bowel as 
well. As a result, there is the potential that the administration of Doxy prior to arrest may protect the heart, and 
may prolong the time to cardiac arrest to beyond the two hours most programs consider an acceptable time 
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Figure 5.  (A) Mitochondrial injury in Donation after Circulatory Death rat kidneys as measured by the 
Flameng Mitochondrial Injury Score. ** p < 0.01 compared to Control group, using the Mann–Whitney 
U test. (B) Representative electron micrographs of control and treatment group kidneys with examples of 
Flameng mitochondrial scoring (5000 × magnification). (1) Normal structure with granules absent. (2) Swollen 
mitochondria with clarification of the matrix. (3) Disruption of mitochondrial crests. (4) Loss of integrity of the 
mitochondrial inner and outer membrane. (*) Endothelial detachment.
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to wait for asystole. This is potentially a challenge for any pre-cardiac arrest intervention prior to DCDD and 
something that will need to be discussed in the future. In our study, we did not observe a significant difference 
in time to cardiac arrest between the groups that received preemptive Doxy and those that did not. It may be that 
asystole and the preservation of cardiomyocytes are independent of each other, with asystole occurring instead 
as a result of electrolyte abnormalities.

In conclusion, our pilot study in an animal model suggests that the preemptive administration of Doxy prior 
to the withdrawal of life support and planned DCDD organ procurement might be able to protect transplant 
kidneys (and other organs) from both warm ischemic and cold ischemic injury. In the long term, this has the 
potential to increase the quality of transplant kidneys after DCDD and indirectly increase the number of donor 
organs available.
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