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Comparison of computational 
chemistry methods 
for the discovery of quinone‑based 
electroactive compounds 
for energy storage
Qi Zhang1,2,3, Abhishek Khetan1,2 & Süleyman Er1,2*

High‑throughput computational screening (HTCS) is a powerful approach for the rational and time‑
efficient design of electroactive compounds. The effectiveness of HTCS is dependent on accuracy 
and speed at which the performance descriptors can be estimated for possibly millions of candidate 
compounds. Here, a systematic evaluation of computational methods, including force field (FF), 
semi‑empirical quantum mechanics (SEQM), density functional based tight binding (DFTB), and 
density functional theory (DFT), is performed on the basis of their accuracy in predicting the redox 
potentials of redox‑active organic compounds. Geometry optimizations at low‑level theories followed 
by single point energy (SPE) DFT calculations that include an implicit solvation model are found to 
offer equipollent accuracy as the high‑level DFT methods, albeit at significantly lower computational 
costs. Effects of implicit solvation on molecular geometries and SPEs, and their overall effects on the 
prediction accuracy of redox potentials are analyzed in view of computational cost versus prediction 
accuracy, which outlines the best choice of methods corresponding to a desired level of accuracy. 
The modular computational approach is applicable for accelerating the virtual studies on functional 
quinones and the respective discovery of candidate compounds for energy storage.

Commercial utilization of intermittent renewable energy sources, such as solar and wind, requires large-scale, 
low-cost, and durable energy storage technologies to balance the mismatch between energy supply and demand. 
Redox flow batteries (RFBs) are recognized as prime candidates for large-scale and variable-term storage of elec-
trical  energy1–3. RFBs have external storage tanks that store the liquid-phase redox-active electrolyte materials 
separated from the electrochemical reaction cells. This unique design feature is advantageous as it decouples the 
battery’s power and energy density scaling, while also facilitating easier maintenance and  recycling2.

Conventional RFBs are operated using metal-based electrolyte materials, such as vanadium, iron, zinc, lead 
and  chromium4. They, however, face technical challenges of ion crossover through the membranes and slug-
gish reaction  kinetics5. Additionally, the cost of active materials and the risks associated with metal toxicity 
have been hindering widespread deployment of metal-based  RFBs6,7. RFBs employing organic redox-active 
materials offer a promising alternative to metal-based electrolytes, as they can be sourced from earth-abundant 
elements and modified further structurally to tune their key battery-relevant  properties1,2. The emerging classes 
of organic redox-active RFB compounds consist of  quinones3,  viologens8,9,  alloxazines10,11,  phenazines12,13, and 
nitroxide  radicals14. Quinones are ubiquitous in  nature15, and with their fast redox  kinetics16,17 and tunable 
properties owing to their chemical  diversity1,18, they are increasingly being utilized as electroactive materials 
in advanced RFB technologies. In recent years, an increasing effort has been made to develop aqueous RFBs 
(ARFBs) that use quinones as electroactive materials, including the functionalized forms of  benzoquinones19,20, 
 naphthoquinones17,19, and  anthraquinones19,21. Research has shown that these molecules undergo a coupled two-
electron two-proton redox reaction in aqueous  media22. However, these molecules offer low energy densities in 
practical ARFBs as they are not very soluble and their half-cell redox potentials are not close to 0 V versus SHE, 
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which is desired for ARFB  anolytes19,23,24. Therefore, a major challenge for organic ARFBs is to tune the proper-
ties of the electroactive compounds to meet the practical requirements of high power and high energy density 
batteries. To develop an ARFB with a large cell voltage, maximizing the redox potential window of quinone-
based compounds is essential. Recent experimental and computational studies show that the redox potential 
of organic ARFBs are significantly influenced by functionalizing them with electron-withdrawing/donating 
 groups1,2. Assary et al.25 and Aspuru-Guzik et al.26,27 used HTCS methods for creating virtual libraries of candi-
date electroactive compounds populated with the functionalized compounds of quinones and predicting their 
redox properties. These studies utilized robust quantum chemical calculations to estimate the thermodynamic 
properties of compounds and identify the most promising candidates. Thus, they demonstrated the usefulness of 
hierarchical HTCS methods in accelerating the property predictions of redox-active molecules. Using quantum 
chemical calculations to predict the redox properties is, however, a practically challenging task. The approach 
is particularly not well-suited for HTCS studies on a huge space of conceivable molecules. Therefore, there is a 
need to determine the trade-offs between the prediction accuracy and the computational cost. While there has 
been a significant increase in the number of HTCS efforts for  RFBs25–32, to the best of our knowledge, an analysis 
of the factors that affect prediction accuracy, such as the level of theory for optimization of molecular geometry, 
inclusion/exclusion of solvation effects, and the level of theory for the calculation of chemical descriptors, are 
not available in the current literature.

Here, we systematically evaluate the performance of different computational methods, including DFT, 
 DFTB33, and  SEQM34. We compare them based on their accuracy in predicting the experimentally measured 
redox potentials of quinones obtained from four different sources. In addition, we make first-order comparisons 
of the computational cost of these approaches to offer the best approach for the prediction of redox potentials. 
Our results provide new insights on the factors that influence the prediction performance of computational 
methods. The findings are expected to be useful for both customary and HTCS efforts that are aimed at study-
ing of redox-active molecules for RFBs, and also beyond ARFB compounds that take part in bio- and electro-
chemical conversion reactions.

Computational workflow. We developed a systematic workflow to make generalizable and consistent 
comparisons between the different computational approaches. As shown in Fig.  1, the starting point in the 
workflow for any molecule is its SMILES  representation35, which is a widely used form of graph representation 
and can easily be generated for any given molecule. The SMILES representation is at first converted to a two-
dimensional (2D) geometrical representation using a SMILES interpreter. Next,

(1) The 2D representation is converted to a three-dimensional (3D) geometry by applying the geometry opti-
mization (OPT) scheme of OPLS3e  FF36 to identify the lowest energy 3D conformer. As shown in Fig. 1b, 
the FF level geometry is the starting point for all approaches.

(2) The 3D geometry is further optimized in the gas-phase at three different levels of theory, namely: SEQM, 
DFTB, and DFT. For SEQM and DFT, geometry optimizations have also been performed in an implicit 
aqueous-phase, but for simplicity they are not shown in Fig. 1. This step yields different 3D geometries and 
the corresponding SPE of the compounds.

(3) Next, SPEs of all the different 3D geometries are calculated using different DFT functionals. This step yields 
energy values that are directly comparable but are obtained from geometry optimizations that have been 
performed at four different levels of theory.

(4) Lastly, for the geometries obtained from the optimizations in the gas-phase, the SPEs are recalculated, this 
time by including the effect of the aqueous medium (SOL) implicitly by using the Poisson–Boltzmann 
solvation model (PBF)37,38.

Results and discussions
Comparison of DFT methods. Since DFT is the highest level of theory considered in the current study, we 
begin with a discussion of the performance of the various DFT functionals, also with an aim to use them as per-
formance benchmarks for low-level methods. Initially, we briefly discuss the performance of �Urxn and �Go

rxn as 
chemical descriptors to predict redox potentials. For this purpose, DFT energy calculations using the PBE func-
tional are performed, first for optimizing geometries in gas-phase and then for calculating single point energies 
in an implicit aqueous-phase. The calibration performances of �Urxn (RMSE = 0.049 V,  R2 = 0.978) and �Go

rxn 
(RMSE = 0.048 V,  R2 = 0.979) are very similar, as shown in Supplementary Fig. S1. Inclusion of ZPE in �Urxn , as 
well as entropic effects in �Go

rxn , is only marginally better than using �Erxn (RMSE = 0.051 V,  R2 = 0.977). There-
fore, we consider that the effects of including these terms are not significant enough from HTCS perspective. 
Accordingly, all the following discussions in this work consider �Erxn as the descriptor.

First, we discuss linear calibrations of three representative DFT functionals of PBE (Fig. 2a), B3LYP (Fig. 2b), 
and M08-HX (Fig. 2c). The results shown in Fig. 2 have been obtained by using three kinds of DFT calculated 
reaction energies �Erxn = �EDFTrxn  , against the experimentally measured redox potentials ( Eoexp ) as follows: (1) 
OPT in gas-phase without calculation of SPE in SOL, (2) OPT in gas-phase and a following SPE in SOL, and (3) 
both OPT and SPE in SOL.

On comparing RMSE and  R2 data, the following observations are made:

(1) When using �EDFTrxn  from only gas-phase optimized geometry and SPE, PBE is the least accurate functional 
at the GGA level with RMSE = 0.072 V,  R2 = 0.954. Nevertheless, the results show that at any DFT level, it 
is possible to predict Eoexp for quinone-based molecules within a range of common experimental errors 
(~ 0.1 V).
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(2) Upon the inclusion of solvation effects using an implicit model on the gas-phase geometries, all the three 
functionals show a decrease in their RMSE values. The percentage decrease in error is highest for PBE 
(30%) and lowest for M08-HX (23%).

(3) Remarkably for all the three considered functionals, full geometry optimizations and energy calculations 
in an implicit solvation model yield slightly worse results than their counterparts in which geometries are 
optimized in gas-phase. The RMSEs increase by 0.002–0.004 V, indicating that there is no real added value 
of performing geometry optimizations with implicit solvation, not to mention that they are also computa-
tionally more demanding.

Based on the findings above, we evaluate the performances of eight other DFT functionals without consider-
ing geometry optimizations in an implicit solution-phase. In Fig. 2d and Supplementary Fig. S2, a summary of 
the performance of all the DFT functionals considered in this work is presented using bar plots for RMSE and 
 R2, respectively. When compared under the same set of conditions, all functionals, with the exception of LDA, 
show a similar performance. The PBE0/PBE0-D3, HSE06 and M08-HX functionals show a highly similar perfor-
mance when using implicit solvation on gas-phase optimized geometries, which are followed by the other hybrid 

Figure 1.  (a) Schematic showing the chain of operations for geometry optimization (OPT) and single 
point energy (SPE) calculations at different levels of theory (b) A graphical summary of the various levels of 
approximations used to estimate �E

DFT
rxn  . The hollow black arrows with symbol Δt represent the difference 

between gas-phase reaction energies of the optimized geometries obtained at different levels of theory. The 
solid black arrows with symbol Δe represent the difference between energies computed using DFT on a fixed 
geometry obtained from a lower-level theory and energies computed at that given level of theory. The dotted 
gray arrows represent the solvation effect from gas-phase SPE to solution-phase SPE, when the implicit solvation 
model is considered. For both (a,b), the text boxes with no background color represent geometry optimizations; 
the boxes with colored background represent SPE calculations; the boxes with water bubbles in the background 
represent solution-phase SPE calculations using the implicit aqueous solvent model.
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functionals of B3LYP/B3LYP-D3, and then by the PBE/PBE-D3 and BLYP/BLYP-D3 GGA functionals. The 
addition of D3-dispersion corrections makes hardly any difference on either of the hybrid or the GGA functional 
calculated results. For all further comparisons in this work, we choose, among the compared exchange–correla-
tion functionals, PBE as the benchmark DFT functional as it offers the best compromise between prediction 
accuracy and computational cost. We note that, the different DFT functionals have been compared here purely on 
the basis of their performance in predicting the measured potentials. We also note that, functionals constructed 
with higher degrees of empiricism, such as the Minnesota density  functionals39, are aimed at producing better 
values for a chosen set of physically observable properties. In this regard, it is not surprising that the M08-HX 
performs best among the functionals, as it is heavily parametrized to show good performance for thermochem-
istry. However, it must also be kept in mind that such heavily parametrized functionals tend to produce less 
accurate electron densities than the ones with little to no empiricism in their design (e.g. the PBE functional)40.

Figure 2.  Performance comparisons of different exchange–correlation functionals in predicting the 
experimentally measured redox potentials, Eoexp . The scatter plots (a–c) show linear correlations of the DFT 
calculated energy difference, �E

DFT
rxn  , versus Eoexp , for the three representative functionals of (a) PBE, (b) B3LYP, 

and (c) M08-HX. The bar plot (d) shows the RMSE for all the functionals considered. The color green represents 
both OPT and SPE in gas-phase, the color orange represents OPT in gas-phase followed by SPE with SOL, 
and the color blue represents both OPT and SPE with SOL, as also summarized in a tabular format. In (d), the 
horizontal dashed green line represents  PBEg (RMSE = 0.072 V,  R2 = 0.954) benchmark, the horizontal dashed 
blue line represents  PBEaq (RMSE = 0.053 V,  R2 = 0.975) benchmark, and the horizontal dashed orange line 
represents  PBEs (RMSE = 0.051 V,  R2 = 0.977) benchmark.
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Discussion
As shown in Fig. 2d, the DFT LDA data is not as good as the GGA and the hybrid method calculated data. 
Additionally, there is a positive impact on the prediction accuracies due to the inclusion of implicit solvation in 
calculations of �EDFTrxn  . The effect can be attributed to a better accounting of the −OH groups’ interactions with 
the surrounding aqueous environment in the hydroquinone  products32. Surprisingly, optimizing geometries with 
implicit solvation slightly worsens the prediction accuracies. This can be attributed to multiple factors. First, it 
is possible that the PBF solvation model is not accurate enough to improve the gas-phase geometry. Secondly, 
there might be a serendipitous cancellation of errors when using the gas-phase geometry that is affected by the 
changes in the geometry due to the implicit solvation model in use. Additionally, �Erxn is used as an approxima-
tion for �Go

rxn , and accounting for the ignored pressure–volume and entropy terms from Eq. (6) might result 
in better prediction accuracies when optimizing the geometries in solution. In the work of Kim et al.32 it was 
shown that the reduction potentials of Anthraquinones in acidic aqueous solutions are strongly influenced by 
specific interactions with molecules in solvent environment. In aqueous solution, they found that using DFT 
(ωB97X-D/6-31G*) with implicit solvation (PCM(Bondi)) for geometry optimizations yields good results, except 
for the redox couples that have strong intramolecular hydrogen bond interactions. They evaluated a total of 
19 Anthraquinones and reported a mean absolute deviation (MAD) of 0.194 V for three outliers that showed 
strong intramolecular hydrogen bond interactions. This value was more than five times the MAD value of the 
remaining 16 redox couples (0.037 V). Further, they showed that QM/MM calculations (with the TIP3P force 
field for explicit water molecules) alleviate the overestimation and lead to a more balanced treatment of sol-
ute–solvent interactions. Accordingly, using a QM/MM model, the correlation between theory and experiment 
data had a MAD of 0.033 V. In the current work, we performed a similar analysis on our calibration data set 
of 43 molecule pairs. We found that there are only 12 molecules, with IDs: 1, 2, 3, 4, 5, 6, 8, 9, 16, 35, 37 and 39 
shown in Supplementary Table S1, without any possibility of strong intramolecular hydrogen bond interactions 
due to the neighboring positions found in the hydroquinone versions of the molecules. Surprisingly, we found 
that when using implicit aqueous solvation during geometry optimizations, the MADs for the predicted redox 
potentials were 0.039 V for the 12 molecules and 0.037 V for the remaining 31 molecules. We note that these 
MADs are very similar and the difference between the two groups is only in the third decimal digit. Therefore, 
we cannot confirm that the explanation provided by Kim et al. also applies to the methods used in this work. At 
the same time, it must be noted that Kim et al. used only Anthraquinones (3-ring molecules) for their analysis, 
whereas this work considers a wide variety of quinone molecules (from 1 to 3 rings), including those with the 
C=O groups at the 1,2 positions on the compounds. Further, Kim et al. employed the PCM (Bondi) implicit 
solvation model, which is different from the PBF model used in the current work. These differences, as well as 
the difference in the calibration data, make it hard to ascertain the exact origin of the disparities between this 
work and the work of Kim et al.

Another important aspect of the calibration of molecules that needs to be considered is the effect of ionization 
of sulfonic acid groups, as they are prone to dissociation in aqueous media. In the calibration set of 43 molecule 
pairs used in the current work, there are 18 molecules that contain –SO3H groups, with IDs: 7, 8, 9, 10, 11, 12, 
13, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42 and 43 as shown in Supplementary Table S1. In the framework of the best 
performing scheme, i.e.  PBEs, the calculated MAD for these 18 molecules is 0.047 V, which is approximately 
50% higher than the MAD of the remaining 25 molecules (0.032 V). Clearly, the ionization of sulfonic groups 
has adverse effects on the prediction accuracies. Although the effect is not significant from a perspective of 
HTCS studies, we recommend the inclusion of explicit water molecules, such as in a QM/MM formalism, when 
extremely accurate values for the sulfonic group decorated quinone redox potentials are  sought32.

In order to understand the existence of functional group dependent rational trends, we selected anthraqui-
none (Molecule ID 5 in Supplementary Table S1) as the base molecule from our calibration set and found six 
derivatives with –SO3H (Supplementary Fig. S3a) and six derivatives with –OH functional groups (Supplemen-
tary Fig. S3b). Molecules with mixed functional groups were excluded. As shown in Supplementary Fig. S3a, an 
increase in the total number of –SO3H groups leads to an increase in the redox potentials; whereas an increase in 
the total number of –OH groups leads to a decrease in the redox potentials, as shown in Supplementary Fig. S3b. 
These trends are very much in line with the previous knowledge that the electron-withdrawing groups are known 
to increase the redox potential and vice-versa26. It must be noted that the correlation for –SO3H is weak, indicat-
ing that not only the type and the quantity of the functional group, but also the position of functionalization on 
the base molecules is decisive for the redox  potentials26.

The calibration equation for the prediction of redox potentials versus SHE, using the  PBEs (≡ T) calculated 
reaction energies is:

The performance metrics of all the DFT functionals are given in Supplementary Table S2.

Comparison of low‑level methods: FF, SEQM and DFTB. After establishing the effectiveness of DFT-
based methods, we next consider the computationally less costly methods for the optimization of geometries and 
the prediction of energies. As summarized in Fig. 3 and Supplementary Fig. S4, we employ different lower level 
methods such as FF, SEQM and DFTB for geometry optimizations. To obtain �ETrxn of the reactions, we use the 
optimized structures of compounds and perform SPE calculations via the following three schemes:

(1)Eo = −0.409[�EDFTrxn ] − 0.193
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 I. SPE values are taken directly from low-level methods after the geometry optimizations in gas- or aqueous-
phases. Aqueous-phase optimizations are performed only by using FF and SEQM (but not DFTB, as 
explained in Computational Workflow).

 II. SPE values are taken from gas-phase DFT calculations using three different functionals (PBE, B3LYP 
and M08-HX), on the molecular geometries obtained via scheme (I).

 III. SPE values are taken from DFT calculations with implicit solvation using three different functionals 
(PBE, B3LYP and M08-HX), on the molecular geometries obtained via scheme (I).

Several observations are made by comparing the  R2 and RMSE data across the various combinations of 
methods.

Comparisons within scheme (I). When comparing redox potential predictions from SPE data of scheme 
(I) to  PBEg benchmark  (R2 = 0.954, RMSE = 0.072 V), we make the following observations (note: subscript ‘g’ rep-
resents gas-phase and subscript ‘aq’ represents aqueous-phase geometry optimizations at a given level of theory):

• In Fig. 3a, gas-phase  (OPLS3eg:  R2 = 0.596, RMSE = 0.213 V) and aqueous-phase  (OPLS3eaq:  R2 = 0.060, 
RMSE = 0.325 V) calculated FF SPEs are significantly worse than  PBEg. Just as observed for DFT methods, 
aqueous-phase FF optimizations yield worse results than their gas-phase counterpart. Clearly, the internal 
energy predictions at the FF level are inaccurate.

• In Fig. 3a, gas-phase SEQM methods show significantly better performance compared to FF method, and 
are close to  PBEg benchmark. Of note are the  AM1g  (R2 = 0.899, RMSE = 0.107 V) and  PM7g  (R2 = 0.906, 
RMSE = 0.103 V) methods. The aqueous-phase SEQM geometry optimizations with COSMO solvation model 
result in very similar prediction accuracies to their gas-phase counterparts for both  AM1aq  (R2 = 0.886, 
RMSE = 0.113 V) and  PM7aq  (R2 = 0.915, RMSE = 0.098 V).

Figure 3.  Performance comparisons of low-level methods: FF, SEQM and DFTB. (a) RMSE of SPE data 
calculated at the three different levels of theory. Similarly, (b) RMSE of DFT calculated SPE data on the 
geometries obtained from the three different levels of theory. In (b), the solid bars show SPE results without 
implicit solvation effects, whereas the dashed bars show results with implicit solvation effects taken into account. 
The dashed green horizontal line represents  PBEg  (R2 = 0.954, RMSE = 0.072 V) benchmark and the dashed 
orange horizontal line represents  PBEs  (R2 = 0.977, RMSE = 0.051 V) benchmark.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22149  | https://doi.org/10.1038/s41598-020-79153-w

www.nature.com/scientificreports/

• In Fig. 3a, gas-phase DFTB methods perform as good as  PBEg benchmark, with parameter sets DFTB-D3g 
 (R2 = 0.953, RMSE = 0.072 V) and GFN1-XTBg  (R2 = 0.944, RMSE = 0.079 V).

Comparisons within scheme (II). When comparing predictions from SPE data of scheme (II) to  PBEg 
benchmark  (R2 = 0.954, RMSE = 0.072 V), we make the following observations:

• In Fig. 3b (solid bars), the performances of gas-phase DFT calculations of SPEs on gas-phase FF geometries 
 (OPLS3eg:  R2 = 0.947, RMSE = 0.077 V) are significantly better than their counterparts from scheme (I). The 
same is also observed for gas-phase DFT calculations of SPEs on aqueous-phase FF geometries  (OPLS3eaq: 
 R2 = 0.939, RMSE = 0.083 V). However, even after performing DFT calculations of SPEs, the  OPLS3eaq per-
forms worse than  OPLS3eg.

• In Fig. 3b (solid bars), gas-phase DFT calculations of SPEs on gas-phase SEQM geometries also show 
improved prediction accuracies with respect to their counterparts from scheme (I). The two best SEQM meth-
ods are  AM1g  (R2 = 0.963, RMSE = 0.064 V) and  PM7g  (R2 = 0.954, RMSE = 0.072 V), with performances equiv-
alent to  PBEg benchmark. Gas-phase DFT calculations of SPE on aqueous-phase SEQM geometries resulted 
in worse predictions for both  AM1aq  (R2 = 0.956, RMSE = 0.070 V) and  PM7aq  (R2 = 0.943, RMSE = 0.080 V), 
though they are still better with respect to their counterparts from scheme (I).

• In Fig. 3b (solid bars), gas-phase DFT calculations of SPEs on gas-phase DFTB geometries also show slightly 
improved prediction accuracies and are slightly better than  PBEg benchmark, with parameter sets DFTB-D3g 
 (R2 = 0.960, RMSE = 0.067 V) and GFN1-XTBg  (R2 = 0.949, RMSE = 0.075 V).

Comparisons within scheme (III). Upon including implicit solvation effects during DFT calcula-
tions of SPE, the performances of low-level methods versus the corresponding  PBEs benchmark  (R2 = 0.977, 
RMSE = 0.051 V) can be described as follows (please note that the subscript ‘s’ represents gas-phase geometry 
optimization but with implicit solvation included while calculating SPE with DFT):

• In Fig. 3b (dashed bars), RMSEs are lowered by 0.02 V for FF optimized geometries, both from gas-  (OPLS3eg: 
 R2 = 0.969, RMSE = 0.059 V) and aqueous-phases  (OPLS3eaq:  R2 = 0.964, RMSE = 0.063 V), in comparison 
to their counterparts from scheme (II). Surprisingly, the performances of these methods are close to  PBEs 
benchmark. This shows that even though the thermochemistry with FF obtained energies is not accurate (as 
observed in Scheme I), the quinone molecule geometries from FF are good enough for performing DFT SPE 
calculations.

• In Fig. 3b (dashed bars), prediction accuracies from SEQM optimized geometries are improved when 
compared to their counterparts in scheme (II). The two best SEQM methods are  AM1g  (R2 = 0.969, 
RMSE = 0.059 V) and  PM7g  (R2 = 0.976, RMSE = 0.051 V). Yet again, predictions from aqueous-phase 
SEQM geometries resulted in slightly worse results for both  AM1aq  (R2 = 0.961, RMSE = 0.066 V) and  PM7aq 
 (R2 = 0.962, RMSE = 0.065 V). Interestingly, the performances of these SEQM methods are close to  PBEs 
benchmark.

• In Fig. 3b (dashed bars), prediction accuracies from DFTB optimized geometries improve when compared 
to their counterparts in scheme (II). Strikingly, both sets of DFTB parameters, DFTB-D3g  (R2 = 0.978, 
RMSE = 0.049 V) and GFN1-XTBg  (R2 = 0.977, RMSE = 0.051 V), perform better than  PBEs benchmark.

Discussion
All the variations in computational methods that are used for geometry optimizations and SPE calculations, also 
with and without implicit solvation effects, are found to influence the prediction accuracies to varying degrees. 
First, for all methods, gas-phase DFT calculations of SPEs lead to significant improvements in prediction accura-
cies. According to these results, computationally demanding DFT geometry optimizations are hardly necessary 
for a first-order screening of large numbers of candidate molecules. Instead, either of SEQM or DFTB methods 
may be employed for the task of gas-phase geometry optimizations. Secondly, SPE calculations employing the 
PBE functional are generally better performing than SPEs obtained from computationally more costly B3LYP and 
M08-HX functionals. Thirdly, for all low-level methods, the inclusion of implicit solvation during DFT calcula-
tions of SPEs leads to improved prediction accuracies. Finally, the results confirm that the effects of geometry 
optimizations in aqueous-phase are minimal and they often result in slightly worse prediction accuracies.

The calibration equation for the prediction of redox potentials versus SHE, using the DFTB-D3g (≡ T) cal-
culated reaction energies is:

The performance metrics of all the low-level methods, as well as their combinations with high-level methods, 
are given in Supplementary Tables S3-S9. It is worth pointing out that a recent study by Tabor et al.27 also con-
sidered DFT and SEQM based methods for performing a similar calibration exercise to determine an optimum 
method for predicting redox potentials of 28 quinone molecules using �Erxn as a descriptor. In their study, at 
the DFT level, they considered the B3LYP functional with 6-311+G(d,p) basis set, which is very similar to the 
basis set used in this study. At the SEQM level, they considered the PM7 method. The MAD with gas-phase DFT 
was 0.056 V (vs. 0.058 V using PBE in this work) and with implicit aqueous solvation using the PCM model was 
0.041 V (vs. 0.038 V using PBE with PBF solvation model in this work). When using the PM7 method, their 
predicted MAD value was 0.052 V in the gas phase (vs. 0.065 V in this work), and 0.067 V with the COSMO 
solvation model (vs. 0.067 V in this work). The difference between the results from the two studies are quite small 

(2)Eo = −0.447[�EDFTBrxn ] − 0.823
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and vary mostly in the third decimal place, which is not surprising given the common pool of molecules. For 
predicting redox potentials, we recommend using Eq. 1 not only because it has slightly better prediction accu-
racy but also because it covers a larger group of experimented molecules with a wider range of redox potentials.

Accuracy of predictions versus cost of calculations. In addition to determining accurate methods for 
predicting the redox potentials of electroactive quinones, a major aim of the current study is to decide on the 
methods that are most suited for both standalone and HTCS studies for which a balance between the speed of 
computations and the accuracy of results is desireable. This is especially important when the robust DFT calcu-
lations become impractical for studies on a vast chemical space  (103 ~ 106 compounds). Thus, an estimation of 
trade-offs between the computational accuracy and its cost is useful for efficient screening studies. For a compar-
ison of the computation time, we selected a representative method for each level of theory, namely, OPLS3e (FF), 
PM7 (SEQM), DFTB-D3 (DFTB) and PBE (DFT). Next, noting that the geometry optimizations are usually 
the most computationally demanding processes, we optimized the geometries of all the molecules in gas-phase 
using these representative methods. We added the FF geometry optimization time to all other methods’ calcula-
tion times, since we use it as the base method for performing all other geometry optimizations (as explained 
in Computational Workflow). An averaged computation time, as obtained from five different runs that actually 
showed no significant variation, is used to describe the relation between RMSEs versus the computational cost. 
As shown in Fig. 4a, DFTB-D3 is almost as accurate as DFT in predicting the redox potentials, while it requires 
substantially less (~ 103 times) computing time. Also noting that DFTB-D3 has previously been applied for cal-
culations of large systems at relatively lower computational costs and with similar accuracies to that of the higher 
level (i.e. DFT-GGA)  methods41, we suggest that for the small quinone redox compounds the DFTB-D3 method 
provides a good compromise between prediction accuracy and computational cost. Accordingly, for HTCS stud-
ies that are aimed to work on extremely large chemical spaces of molecules, we suggest DFTB-D3 computations 
on OPLS3e optimized geometries, which have an RMSE of 0.072 V that is close to the RMSE of 0.051 V of the 
DFT (PBE) calculations, as a way to accelerate the virtual screening of compounds.

Effects of geometry optimizations at various levels of theory and implicit solvation. For the 
set of methods considered in the previous section, we also quantify the effect of gas-phase DFT calculation of 
SPEs by using the geometries that have been obtained via low-level methods. As shown in Fig. 4b (solid bars), 
the improvement in prediction accuracy, Δe RMSE, is most significant for geometries optimized by OPLS3e (Δe 
RMSE = 0.136 V), followed by PM7 (Δe RMSE = 0.031 V), and then by DFTB-D3 (Δe RMSE = 0.005 V). These 
results show that SEQM, and more pronouncedly, DFTB methods do not only predict the reaction energies 
accurately, but they also predict the geometries of the compounds as comparable to that of DFT. For the same set 
of methods, we also investigate relationships between the differences in molecular geometries and the calculated 
values of Δe RMSE. By performing structure superposition analysis we compared the optimized geometries from 
different methods to the reference, gas-phase PBE optimized geometries. The average root-mean-square devia-
tion (RMSD) of all the 86 reactant and product molecules under various atomic constraints are shown in Table 1. 
First, under all constraints OPLS3e has the largest average RMSD with respect to PBE, which is expected. Sec-
ondly, when considering all atoms or only heavy atoms, PM7 and DFTB-D3 are very similar in geometrical 
difference with regards to PBE. Thirdly, it is surprising to note that DFTB-D3, while the most accurate of the 
low-level methods, does not necessarily provide the geometry closest to PBE (i.e. lowest average RMSD) when 

Figure 4.  (a) Variation of computation time for gas-phase geometry optimizations versus the corresponding 
RMSEs from the four representative methods of each level of theory, namely OPLS3e (FF), PM7 (SEQM), 
DFTB-D3 (DFTB), and PBE (DFT). The SPEs are taken directly after optimization runs at corresponding levels 
of theory. A logarithmic scale is used when plotting the computation time. (b) Bar plot for change in RMSE 
values, Δ[RMSE], due to gas-phase DFT calculation of SPE and inclusion of implicit solvation. Solid bars, Δe, 
show the impact of DFT calculation of SPEs on geometries obtained from lower level methods. Dashed bars, Δs, 
show the impact of implicit solvation on the DFT calculated SPEs.
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all atoms or non-hydrogen atoms are considered. However, when considering only the carbon atoms in the ring 
structure of molecules, DFTB-D3 produces structures that are closest to PBE. Given that the cyclic carbon atoms 
are a large fraction of the total number of atoms, it is possible that being able to represent the geometry of the 
rings accurately is what gives DFTB-D3 (Δe RMSE = 0.005 V) an advantage over PM7 (Δe RMSE = 0.031 V) and 
OPLS3e (Δe RMSE = 0.136 V) for the redox potential predictions.

Next, we quantify the improvements in prediction capability of the methods, with respect to gas-phase DFT 
calculation of SPE, due to the inclusion of implicit solvation effects, Δs RMSE (dashed bars). As shown in Fig. 4b, 
an improvement in prediction accuracy is evident for all levels of theory and Δs RMSE are similar at each level 
of theory. The decrease in RMSEs are 0.018, 0.021, 0.018, and 0.021 V for OPLS3e, PM7, DFTB-D3, and PBE, 
respectively. These results show that the amount of improvement due to the inclusion of implicit solvation is 
independent of the source of geometry. These findings are useful, for instance, when building machine learning 
(ML) models for the prediction of solvation energies directly from simple cheminformatics-based descriptors 
without a real need for an explicit knowledge of compound geometries.

In addition to the above findings, the results presented here are expected to be useful for generating accurate 
and large quantity chemical data on compounds, which can later be utilized by data-driven machine learning 
models for expanding the boundaries of search space during candidate compound explorations. Firstly, as has 
been argued in recent  studies27,29, using the computationally costly quantum chemical calculations for millions 
of molecules, which is required for building powerful ML models, is still a major bottleneck. One of the key 
findings of this work is that the DFTB method is nearly as accurate as DFT when it comes to the prediction of 
quinone redox potentials. Thus, the data scarcity bottleneck can be addressed directly by using DFTB to generate 
large quantities of reliable reference data. Secondly, it has been demonstrated quantitatively in this work that the 
improvement due to the use of quantum chemistry methods, when compared to SEQM and DFTB methods, 
corresponds to an energy contribution that constitutes only a minor fraction of the total energy. An increasingly 
popular strategy that utilizes this fact for the property predictions at quantum chemical accuracy is Δ-ML42. In 
this strategy, by training on quantum chemical reference data, a ML model is trained to predict the correction 
terms, Δ, to values that have been computed using the inexpensive methods. This way, instead of performing 
quantum chemical calculations directly on all candidate compounds, the energy values are interpolated from 
a selected inexpensive baseline theory to quantum chemical accuracy. In our study we recommend a choice of 
methods, for both reference (e.g. M08-HX) and base line (e.g. DFTB-D3) data, to perform such Δ-ML tasks. 
Finally, we would like to emphasize again, that this work provides a general methodology for determining the 
optimum combination of methods with an example case of the quinone family of compounds. This knowledge 
is directly relevant for developing advanced decision-making frameworks that can automatically decide on the 
most optimum combination of computational methods for a target class of chemical compounds.

Methods
Thermodynamic principle. The reaction energy difference between the reactant and product is used as 
an approximation for the Gibbs free energy of proton-coupled electron transfer redox reactions. During a redox 
reaction in the aqueous-phase:

The hydroquinone,  QH2, compounds can be generated from the quinone, Q, compounds via a two-electron 
two-proton redox  reaction22. A quantitative measure of the favorability of a given reaction is the change in 
standard Gibbs free energy, �Go

rxn . According to the Nernst equation, the equilibrium potential of a redox reac-
tion, Eo , is related to the change in the standard Gibbs free energy per coulomb of charge transferred during the 
electrochemical reaction as:

where n = 2 is the number of electrons and F is the Faraday constant. Typically, Eo is measured relative to the 
Standard Hydrogen Electrode (SHE) and �Go

rxn is computed at standard conditions. To calculate �Go
rxn we use 

the following equation:

in which �Go
rxn is expressed simply as the difference in the standard free energies of the reactants and products. 

Thermodynamically, �Go
rxn can be described as a sum of contributions arising from the change in internal energy 

( �Urxn ), pressure–volume ( p�Vrxn ) and entropic ( T�Srxn ) contributions due to reaction as:

(3)Q+ 2H+
+2e− → QH2

(4)Eo = −�Go
rxn/nF

(5)�Go
rxn = �Go(QH2)− [Go(Q)+ Go(H2)]

Table 1.  The difference in the optimized molecular geometry using various calculation methods with 
reference to PBE (DFT) geometry under various atomic constraints. The average RMSD values for the 86 
molecules are shown in units of Å. RMSD values have been calculated for all atoms, all non-hydrogen atoms, 
and carbon atoms of molecule rings.

Method All atoms Non-hydrogen Only ring carbon

OPLS3e (FF) 0.148 0.120 0.052

PM7 (SEQM) 0.132 0.098 0.050

DFTB-D3 (DFTB) 0.135 0.102 0.043
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The change in internal energy can be further decomposed as �Urxn = �Erxn +�ZPE , where �Erxn is the 
reaction energy and �ZPE is the change in zero-point energy. In the present work, the ZPE contributions to the 
internal energy, changes in pressure–volume, and entropic contributions are neglected, thus effectively using 
the approximation:

where Eaq represents the theoretically calculated internal energy of species in aqueous-phase. All the other 
contributions are ignored because they require extra calculation steps, computational resources, and thus, are 
not suitable from the perspective of HTCS. Nevertheless, the effects of ignoring these other contributions on the 
accuracy of predictions are discussed in the main text. In this work, the descriptor of choice, �Erxn , is calculated 
with the inclusion of aqueous solvation effects, which requires additional computation time. To quantify the 
effect of solvation on prediction accuracy, another approximation is considered by ignoring solvation such that 
Eq. (7) can be rewritten using internal energies calculated in the gas-phase as:

Under these set of approximations, the calculated change in internal energies �Erxn from Eqs. (7) and (8) are 
linked to the measured redox potentials using Eq. (4). We used various theoretical methods, as explained below 
in computational details, to calculate �Erxn , and discuss their performance for the prediction of experimentally 
measured redox potentials.

Computational details. We developed a systematic computational approach involving one FF, nine 
SEQM, two DFTB, and eleven DFT methods, as well as their combination with implicit solvation environments, 
to predict the experimentally measured redox potentials of quinone-based electroactive. The MacroModel pro-
gram is used for FF configurational searches and geometry optimizations, while the Jaguar  program38 is used 
for DFT calculations, all as implemented in the Schrödinger Materials Science Suite (version 2019-2). MOPAC 
and DFTB calculations are performed using the ADF  program43. Molecular structures are optimized both in 
gas- and aqueous-phase using the OPLS3e FF, which provides a broad coverage of small  compounds36. The 
gas-phase FF optimized geometries are used as inputs to perform gas- and aqueous-phase geometry optimiza-
tions using nine different SEQM methods, including  AM144,  MNDO45,  MNDOD46,  PM347,  PM648, PM6-D349, 
PM6-D3H4X34,  PM750 and  RM151. The aqueous-phase geometry optimizations at the SEQM level are performed 
using the COSMO-RS solvation  model52,53. The choice of this solvation method is constrained by the present 
availability in the ADF program. The gas-phase FF optimized geometries are also used as inputs for DFTB opti-
mizations using the DFTB-D354 and GFN1-xTB55,56 methods. The DFTB-D3 computations are performed with 
a self-consistent charge cycle using the QuasiNANO-2015 parameter  set33, while the parameters for GFN1-xTB 
are taken from the work of Grimme et al.55,56 The aqueous-phase geometry optimizations of molecules are not 
performed with the DFTB method, since currently there is no available routine for this task in the ADF program. 
Finally, FF minimized geometries are used as inputs to perform geometry optimizations in gas-phase DFT cal-
culations using different flavors of exchange–correlation functionals, including the local density approximation 
(LDA)57, generalized gradient approximation (GGA)58, hybrid and meta-GGA  functionals58, all of which vary 
drastically in their accounting of the exchange–correlation energy. For the geometries that have been obtained 
from FF, SEQM and DFTB optimizations, the DFT level SPEs are computed in gas-phase, and subsequently in 
aqueous-phase using only the PBE, B3LYP, and M08-HX functionals, as they are well accepted in the community 
but also span a wide range of ways for accounting for the exchange–correlation  effects58. A total of 11 exchange–
correlation functionals, also including some of the D3  dispersion59,60 corrected variants, are used for high-level 
OPT and SPE calculations. These functionals include  LDA57,  PBE40,61, PBE-D359,  BLYP62, BLYP-D359,  B3LYP62,63, 
B3LYP-D359,  PBE064, PBE0-D359,  HSE0665, and M08-HX39. Due to computational costs, the DFT aqueous-phase 
geometry optimizations are performed only with the following functionals: PBE, B3LYP, and M08-HX.

As DFT options in Jaguar, we chose “medium” grid density for OPT and “fine” grid density for SPE calcula-
tions. Energy and RMS density matrix change convergence criteria are set to the default values of 5.0 ×  10–5 
and 5.0 ×  10–6 Hartree, respectively. The default direct inversion in the iterative subspace is employed as the 
convergence scheme. For OPT, Jaguar’s mixed pseudospectral grids with default cutoffs are employed. For SPE 
calculations, we used pseudospectral grids with accurate cutoffs. To treat solvated molecules in water, we used 
the standard PBF solver with water as the  solvent37,38. The calculations are performed with  LACVP**++ basis set 
with polarization and diffuse  functions66,67. The LACVP basis set is chosen here because it includes an effective 
core potential (ECP), which represents the effect of the core electrons in a parametrized form. The use of ECPs 
speeds up calculations on compounds that contain heavy elements. For the elements from H to Ar, LACVP and 
the widely employed 6-31G are essentially indistinguishable when evaluating the ground-state properties. The 
quinone molecules considered in this work contain the elements of C, H, O, N, S, F and Cl, and thus, the use of 
 LACVP**++ basis set in this work is consistent with the use of 6-31G**++ basis set.

Calibration data and performance metrics. We collected redox potential data from 43 quinone redox 
couples in acidic aqueous  solution16,19,27,68. In consideration of prediction accuracy and universality for the cali-
bration models, the selection of available experimental data has been expanded within various quinone mol-
ecules, rather than using monotonous structural patterns. This is because compounds decorated with chemical 
functional groups usually show different redox properties as well as charge/discharge capacities when compared 

(6)�Go
rxn = �Urxn + p�V rxn − T�Srxn

(7)�Go
rxn

∼= �Erxn = Eaq(QH2)−
[

Eaq(Q)+ Eaq(H2)
]

(8)�Go
rxn

∼= �Erxn = Eg(QH2)−
[

Eg(Q)+ Eg(H2)
]
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to their undecorated counterparts. The experimental molecules cover both quinone cores and their function-
alized derivatives with multiple substituted groups including –SO3H, –COOH, –OH, –CH3, –F and –Cl (see 
Supplementary Table S1) and the redox data spans a broad range experimental redox potentials between −0.084 
and 1.21 V. The redox couples are chosen consistently from measurements that were performed under similar 
experimental conditions, such as T = 298.15 K, pH = 0, and highly conducting salts. The correlations between 
experiments and calculations are expressed in terms of two commonly used coefficients, namely the coefficient 
of determination  (R2) and root-mean-square error (RMSE).  R2 and RMSE are calculated using the definitions 
from the Originlab. All benchmark simulations of calculation time have been performed on a single core of Intel 
Core i9-9960X 3.10 GHz CPU with Ubuntu 18.04 Bionic Beaver as the operating system.

Data availability
The generated computational data of compounds is provided in Supplementary Table S1.
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