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Improving climate suitability 
for Bemisia tabaci in East Africa 
is correlated with increased 
prevalence of whiteflies 
and cassava diseases
Darren J. Kriticos1,2,3*, Ross E. Darnell4, Tania Yonow1,3, Noboru Ota5, Robert W. Sutherst2, 
Hazel R. Parry4, Habibu Mugerwa6,7, M. N. Maruthi7, Susan E. Seal7, John Colvin7, 
Sarina Macfadyen1, Andrew Kalyebi6, Andrew Hulthen4 & Paul J. De Barro4

Projected climate changes are thought to promote emerging infectious diseases, though to date, 
evidence linking climate changes and such diseases in plants has not been available. Cassava is 
perhaps the most important crop in Africa for smallholder farmers. Since the late 1990’s there have 
been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high 
abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-
oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic 
changes. The climatic niche model was corroborated with independent observed field abundance of 
B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci 
over 2 years across the African study area. Throughout a 39-year climate time-series spanning the 
period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved 
significantly in the areas where the pandemics had been reported and were constant or decreased 
elsewhere. This is the first reported case where observed historical climate changes have been 
attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.

Projected changes to climate are widely believed to affect the range and abundance patterns of many arthropod 
pests, weeds and  diseases1–7. Whilst changes in abundance and voltinism within species ranges have been posited 
in relation to expected climatic  changes8,9, detecting such changes has been  challenging10–13. Climatic systems are 
typically complicated and noisy across broad ranges of spatial and temporal scales, making it difficult to discern 
trends against the background variation in climatic  variables14,15. Detecting trends in biological phenomena 
that are influenced by climate is an even greater challenge due to the added layers of system  complexity16–18. 
One such system type that is theoretically sensitive to climate change is emerging infectious diseases that are 
transmitted by  insects19.

Cassava, Manihot esculenta Crantz (Euphorbiaceae) is one of the most important subsistence crops in Africa, 
with the highest total production in terms of fresh weight; almost 158 million tonnes produced in  201320; and 
is the second most important source of dietary energy after  maize21. Cassava has a critical role in assuring long-
term food  security22. The plants drought tolerance and  hardiness23 have underpinned hopes this crop can play a 
significant role in climate adaptation, providing sustenance and income to low-income farmers in  particular24,25. 
Pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) have been reported 
widely throughout East and Central Africa since the late 1990′s26–33. The cassava production losses to CMD and 
CBSD of up to 47% in East and Central  Africa34 have raised widespread concerns regarding food security over 
the past  decade35.
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A number of hypotheses have been propounded to explain the present cassava disease epidemics in East 
and Central Africa, including the development of a novel recombinant begomovirus causing severe  CMD36, 
the range expansion of a native ‘invader’ Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) (Ug2) whitefly 
vector  population37, the synergistic interaction between the high B. tabaci population and the viruses that cause 
severe  disease27, and changes in genetics of B. tabaci30, possibly through hybrid  introgression28. Garrett, et al.38 
hints at the possibility that climate change may be a causal factor in the emergence of cassava diseases in East 
and Central Africa but stops short of examining the question directly.

Bemisia tabaci is a cryptic species  complex39 consisting of highly damaging pests of agriculture, damaging 
crops through both feeding and transmission of a range of plant viruses, including begomoviruses and ipomovi-
ruses that cause CMD and CBSD,  respectively28. For over 20 years, B. tabaci have been reported to be increasing 
in abundance on cassava in East and Central  Africa27,28. There are many factors influencing high abundance of 
B. tabaci in cassava fields of East  Africa40; though few studies address the impact of long-term climate  patterns41.

Any discussion of B. tabaci requires at least some consideration of its  taxonomy42,43. A recent taxonomic treat-
ment identifies that B. tabaci consists of at least 39 morphologically indistinguishable  species44, though Tay, et al.39 
revealed that pseudogenes were present in Bemisia, conflating the apparent genetic diversity in previous treat-
ments. The most impactful species in the complex globally has been termed Middle East-Asia Minor 1 (MEAM1), 
formerly termed biotype  B45,46. It has not however been recorded as a pest of cassava. In East and Central Africa, 
the most common B. tabaci species on cassava have been identified as belonging to the Sub-Saharan African taxa 
(SSA1, SSA2, and SSA3)28,30,43,45 with SSA1 the most prevalent species in the  region47. Within SSA1 B. tabaci, two 
subgroups (SG) designated as SG1 and SG2 based on their > 1.3% nt divergence in partial mtCO1  sequences28 
are referenced in this study. While we do not advocate for the use of subgroups as a taxonomic classification, we 
use them here for consistent reference to previous work. In addition, SSA2 is the other SSA B. tabaci used in this 
study and diverges from SSA1 subgroups by > 8% nt in partial mtCO1  sequences28.

Simple correlative species distribution modelling techniques have been used to estimate the potential distri-
bution of B. tabaci s.l. and other high-profile risk factors for cassava  production48. These descriptive consensus 
models provide little if any insight into the climatic factors that limit or promote the presence of B. tabaci s.l. or 
the plant viruses it spreads. These models are generally poorly suited for extrapolation in space or  time49, or for 
exploring the abundance patterns of invasive  organisms50. The correlative modelling results in Herrera Campo, 
et al.48 are of poor and erratic quality; they have relatively low sensitivity, and provide projections into implausibly 
cold, dry and hot-wet habitats.

A more recent use of a correlative species distribution model attempted to explore climate change implications 
on the potential distribution of B. tabaci, Biotype B and Q (syn B. tabaci MEAM1 and MED respectively)51. The 
baseline model does not fit the distribution training data very well, with significant omission in the USA (north 
of Florida), parts of Africa (North Sudan and western Tanzania) and throughout equatorial parts of South-
Eastern Asia (Indonesia and the Philippines). There also appear to be modelling artefacts in the results for South 
America, Africa and Australia, with a patchwork pattern of modelled suitability suggesting model over-fitting 
or the use of inappropriate covariates. The modelled unsuitability in Angola, Zambia, Botswana and Namibia is 
doubtful given the climatic similarity to regions such as northeastern Australia where B. tabaci has been recorded 
frequently. The inclusion of the northern Chinese records in the training dataset suggests a misunderstanding of 
the difference between “field-caught records” and evidence of establishment. In this case, the records are likely 
populations that over-wintered in glasshouses and were then subsequently caught in the field. Curiously, the 
inclusion of these northern Chinese records stretched the MaxEnt model to include these regions as climatically 
suitable, but it did not result in areas elsewhere with similar climates being identified as similarly suitable (i.e., 
central western USA). These features and the poor fit to the training data does not inspire confidence in this 
model. In the face of such deficiencies, the relatively high AUC scores (~ 0.89) underscores concerns regarding 
the use of this statistic to evaluate bioclimatic  models52. The application of climate change scenarios to correla-
tive species distribution models is an inherently unreliable method because it requires extrapolation into novel 
climates defined in terms of an n-dimensional space typically consisting of bioclim  variables49. The future climate 
model scenarios in Ramos et al.51 reinforce this caution, with implausible, noisy modelling artefacts in the results.

CLIMEX is an ecoclimatic modelling package for exploring the effects of climate on plants, animals and 
 diseases53,54. CLIMEX has been used to assess the potential distribution of a broad range of invasive organisms 
such as plant  pathogens55,56,  insects57–60 and  plants1,49, and to simulate the seasonal dynamics of pest species 
(e.g.,61) and even long term  changes62,63. CLIMEX models benefit from the modeller being able to cross-validate 
parameters and results across three different knowledge domains: distribution data, phenological observations, 
and experimental observations of development and survival under laboratory or field conditions. This cross-
validation process typically reveals errors and interpretation issues in distribution data (e.g., geocoding errors and 
the effects of human climate-modifying habitat factors such as irrigation and glasshouses) and helps ensure that 
included model components and parameters are biologically plausible. A new development in CLIMEX Version 
4 is the ability to run the Compare Locations model on a monthly time series climate database, providing the first 
opportunity to simulate and visualise the seasonal and inter-annual spatio-temporal patterns of climate suitability.

A CLIMEX model has been developed for B. tabaci MEAM1 (Fig. 1)64. This model was fitted to describe the 
relative climate suitability for B. tabaci MEAM1 using long-term climate averages from 1981 to 2010, centred 
on  199565. The resulting climate suitability model indicated that the potential distribution of B. tabaci MEAM1 
included all of the known distribution records for all of the members of the B. tabaci complex, including the 
known distribution of the SSA species and the area within which the cassava disease epidemics had been observed 
(Fig. 2). There is a large degree of similarity in ecophysiological parameters between different species within the 
B. tabaci complex (e.g. temperature-dependent development rates)64. The geographical distribution of the differ-
ent species within the complex includes regions of range overlap (e.g., MED and MEAM1 in northern China, and 
SSA taxa in Eastern and Central Africa), and also more discrete clustering. This suggests that the fundamental 
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niche of these cryptic species may have a large degree of overlap, and their realised niches reflect differences in 
biotic factors such as the distribution of hosts and natural enemies, interspecific competition and interactions 
with plant  diseases66–68. The range boundaries for a given taxa tend to reflect spatial demographic processes, and 
competitive advantage can be conferred by even slight differences in ecophysiological  performance69,70.

In this paper, we apply the ‘end-to-end’ method of Rosenzweig et al.18 to explore the role of historical climatic 
changes in the cassava disease epidemic in parts of sub-Saharan Africa. To confirm that the CLIMEX model 
fitted to B. tabaci MEAM1 is relevant to the SSA B. tabaci we compare the temperature development response 
patterns for species of B. tabaci found associated with the cassava disease outbreaks in sub-Saharan Africa with 
those observed for MEAM1 and MED. We run the B. tabaci MEAM1 CLIMEX model of Kriticos et al.64 with 
the CLIMEX Compare Locations/Years module, using a set of gridded monthly climate time series to test the 
hypothesis that the modelled annual climate suitability for B. tabaci MEAM1 is correlated with a 13-year time 
series of abundance of B. tabaci in  Uganda71, and that the correlation is stable through time. As a further check 
of model relevance, we compare the CLIMEX model outputs for long-term average climate with data on B. 
tabaci abundance collected from cassava fields across Uganda, Tanzania and  Malawi72. Finally, we use the time 
series of climate suitability to test whether the climate suitability for B. tabaci in East and Central Africa has been 
increasing when and where B. tabaci SSA, CMD and CBSD have been observed to increase in  prevalence28,30. In 
so doing, we explore whether we can attribute the observed epidemiological and ecological changes to changes 
in modelled climatic suitability for B. tabaci SSA species.

Methods
CLIMEX. The CLIMEX Compare Locations model simulates a species population response to climate on 
a weekly timescale; tracking the potential for population growth during favourable seasons, and population 
decreases during the stressful seasons. CLIMEX calculates an annual Growth Index  (GIA) to describe the poten-
tial for population growth as a function of weekly soil moisture and temperature during favourable conditions 
(Eq. 1).

where  GIW is the weekly Growth Index, composed of the weekly Temperature Index multiplied by the weekly 
Moisture Index. The Temperature and Moisture Indices are specified with a functional form that accords with the 
Law of  Tolerance73–75, and are combined in a multiplicative manner that accords with the Law of the  Minimum76. 
CLIMEX employs up to four stress indices (cold, wet, hot, dry) and their interactions (cold–wet, cold–dry, 
hot–wet and hot–dry); respectively CS, WS, HS, DS, CWX, CDX, HWX, HDX) to estimate the ability of the 
population to survive unfavourable conditions (Eqs. 2, 3).

(1)GIA = 100

52
∑

i=1

GIWi
/52

Figure 1.  Modelled global potential distribution of Bemisia tabaci s.l. under a composite scenario of natural 
rainfall and irrigation (Kriticos et al.64). Outlying location records in northern China are thought to represent 
populations that overwinter in glasshouses in areas that are otherwise unsuitably cold for population persistence 
of B. tabaci MEAM1. The climate data is the CM30 1995H V2  dataset65. Map produced using ArcMap 10.6 
(ESRI, Redlands, Ca., esri.com).
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The interaction stresses are used infrequently, and often only one of these is employed in any single model.
The Ecoclimatic Index (EI) summarises the balance between the opportunity for the species to grow during 

the favourable season(s) and the requirement to survive inclement season(s), and scales from 0 (unsuitable) to 
100 (optimal) (Eq. 4).

Very large values of EI are unusual and are restricted to environments that are climatically highly stable, e.g. 
the wet tropics.
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Figure 2.  Modelled climate suitability of Bemisia tabaci s.l. across the study area in East Africa under a 
composite scenario of natural rainfall and irrigation (Kriticos et al.64). The climate data is the CM30 1995H V2 
 dataset65. Pandemic fronts digitised from Legg, et al.28. Map produced using ArcMap 10.6 (ESRI, Redlands, Ca., 
esri.com).
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For the Compare Locations model a 30-year average of monthly climate data from 1981 to 2010 was derived 
from the time series dataset. We calculated the 30-year average from the abovementioned minimum and maxi-
mum temperature and precipitation. We then calculated relative humidity at 9:00 and 15:00 h by (1) calculating 
saturated vapour pressure at these times using the Magnus equation (Eqs. 4, 5 and 6, Kriticos et al.65); (2) obtain-
ing relative humidity by dividing vapour pressure by saturated vapour pressure (Eq. 1, Kriticos et al.65); and (3) 
averaging 30-years by month. The minimum and maximum temperature, precipitation, and relative humidity 
were collated into an Sqlite database for use in CLIMEX Compare Locations.

The Compare Locations/Years model was run with a 39-year monthly time-series climate data provided by 
the University of East Anglia’s Climatic Research Unit (CRU)  data77,78. Climate data with a spatial resolution of 
0.5° × 0.5° were extracted for monthly averages of daily maximum temperature, maximum temperature, vapour 
pressure and monthly totals for precipitation.

Comparing development rates of Sub-Saharan African Bemisia tabaci with MEAM1. In order 
to assess whether the CLIMEX model parameters fitted for B. tabaci MEAM1 were relevant for modelling the 
climate suitability for SSA B. tabaci, we assessed the development rates of three B. tabaci SSA taxa [identified as 
SSA1-SG1, SSA1-SG2 and SSA2 based on their partial mtCO1 sequences in line with Legg et al.28 subgroupings] 
as a function of temperature under laboratory conditions. Until recently, the known geographical range of SSA 
taxa was scant due to limited molecular biological assays of B. tabaci in Sub-Saharan  Africa45,46. Furthermore, 
their distribution is likely to be complicated by inter-specific competition from within the B. tabaci complex, and 
the importance of crop hosts as a likely range-discriminating factor between these  species43,79. A consequence 
of this is that we are unable to reliably infer any stress parameters for these taxa based on their geographical 
distribution. On the other hand, the soil moisture parameters are strongly associated with the hosts, and factors 
such as the minimum soil moisture for growth are closely associated with the permanent wilting point, which 
does not vary much between species. The SSA1-SG1 and SSA1-SG2 B. tabaci colonies used in this study were 
established from B. tabaci collected from Kayingo, Uganda in February 2016. The SSA2 B. tabaci colony used in 
this study was established from B. tabaci collected from Kiboga, Uganda in August 2013.

Six temperature treatments: 15, 20, 25, 30, 35 and 40 °C which were constant for day and night were used in 
the experiment. Each treatment was replicated five times across five cassava plants of cultivar Ebwanateraka, each 
in a Lock and Lock (LL) container. In some cases, one or two replicates out of the five failed, and hence reliable 
data was only obtained for three or four replicates for such treatments. The cassava cultivar Ebwanateraka was 
used because it was the predominant variety grown by farmers before the cassava mosaic disease pandemic in 
the early  1990s80.

Ten pairs (10 female and 10 male whiteflies) were introduced onto a cassava plant in an LL container. The LL 
container with the introduced whiteflies was left at room temperature (25 °C) for 24 h in the insectary at 14:10 
light and darkness, at a relative humidity of 60%. After 24 h of feeding and ovipositing, all the adult whiteflies 
were removed from the cassava plant in the LL container and the number of eggs laid was recorded. Cassava 
plants in the LL containers were maintained at room temperature in the insectary for another 9 days and on the 
tenth day the numbers of emerged nymphs on each leaf were recorded. After recording the number of emerged 
nymphs, plants in the LL containers were transferred to A1000 growth chambers (Conviron Europe limited, 
UK) set at a given temperature treatment, 14:10 light and darkness, relative humidity of 60% for 5 days. On 
day 16, cassava plants in the LL containers were removed from the A1000 growth chambers and maintained at 
room temperature 25 °C in the insectary. Cassava plants in the LL containers were monitored every 2 days for 
emerged adults. The number of emerged male and female progenies were recorded, and the emerged whiteflies 
removed from the plant.

Insect development rate was calculated as the inverse of the time taken for the insect to complete develop-
ment. The mean time taken for whitefly adult emergence (3‒5 replicates) was plotted against temperature for 
each whitefly taxa, and the response patterns were assessed.

Climate suitability for Bemisia tabaci MEAM1 through time. The CLIMEX Compare Locations/
Years  model53 was run on a monthly time series climate database (Climate Research Unit of the University of 
East Anglia) for 1978–2017 to simulate and visualise the seasonal and inter-annual spatio-temporal patterns of 
climate suitability for B. tabaci  MEAM164. We used the R statistics  package81 to fit linear time trend models at 
each spatial grid point to estimate the average annual change in EI,  GIA, TI and MI across the 39 years in the 
series. At each point, standardised effect sizes (t value) for this annual change were plotted spatially, as were the 
95% lower and upper confidence intervals for the annual change.

Comparing modelled climate suitability for Bemisia tabaci MEAM1 with field abundance of 
Bemisia tabaci in Uganda, 2004–2017. A comprehensive set of data on the field abundance of B. tabaci 
and Cassava Brown Streak Disease (CBSD) in Uganda was published  recently71. This dataset includes field sur-
vey data collected from 2004 to 2017 with a gap for 2016, with 7 627 field summaries across 96 districts. While 
the survey effort changed in intensity and spatial pattern from year to year, it remains the most useful dataset 
of its kind. The field data show a clear pattern of invasion of CBSD into cassava fields in Uganda through this 
period, and these invasion dynamics confound any relationship between prevalence of CBSD and climate suit-
ability for B. tabaci sensu lato.

To test the relationship between observed abundance of B. tabaci (field counts) and modelled climate suit-
ability for B. tabaci MEAM1 throughout the same period as the dataset of Alicai, et al.71 we firstly aggregated the 
field counts to the grid of 121 climate cells covering Uganda used for the CLIMEX modelling. A linear mixed 
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effects model fit by REML was used to model the relationship between modelled EI values in each cell and log 
(count + 1) for B. tabaci in cassava fields and to check for consistency in this relationship through time.

Comparing modelled climate suitability for Bemisia tabaci MEAM1 with field abundance of 
Bemisia tabaci SSA in 2015 and 2016. In order to further assess if the CLIMEX model fitted to B. 
tabaci MEAM1 could be of use for understanding B. tabaci SSA climate suitability, we analysed the relationship 
between the EI values and observed B. tabaci abundance data collected from cassava fields in East and southern 
Africa. Cassava fields were surveyed in seven regions across Uganda, Tanzania, and Malawi (Supplementary 
Fig. S1). The first survey took place in September 2015 and the second survey took place in April 2016. In each 
region, we selected up to 10 fields of a known cassava variety to survey. Categories of adult B. tabaci abundance 
on the top five leaves of 30 plants per field were recorded (0, 1–9, 10–99, 100–200, > 200). For this analysis, only 
the presence or absence of B. tabaci adults was used. Bemisia tabaci adults collected here were presumed to be B. 
tabaci SSA (with samples collected to later confirm identity using molecular techniques).

The geocoded locations for the cassava fields were spatially intersected with CLIMEX results for East Africa. 
A logistic model was fitted in R (using the glm function with a binomial link) to the probability of presence 
of one or more whiteflies on a cassava plant as a function of CLIMEX EI. We ran the CLIMEX model using a 
30-year climate average dataset centred on 1995 using the CRU data described above. The intent in comparing 
the modelled climate suitability with abundance data was to discern the patterns of agreement, rather than to be 
able to use modelled climate suitability to predict abundance with any great precision.

Results
Development rates. The observed pattern of development rates for B. tabaci SSA taxa (Fig. 3) compares 
favourably with the cardinal temperatures employed in the CLIMEX model originally developed for B. tabaci 
 MEAM164:

DV0—minimum temperature for development 12 °C
DV1—lower optimum temperature for development 28 °C
DV2—upper optimum temperature for development 32 °C
DV3—maximum temperature for development 42 °C.
The shortest development time for all taxa occurred between 25 and 30 °C, but the maximum temperature for 

optimum development was left at 32 °C because we are modelling the suite of SSA B. tabaci taxa and one of them 
displayed optimum development at 30 °C, and the next higher temperature was 35 °C. The maximum temperature 
for development was set at 42 °C, which is marginally above the maximum experimental temperatures, at which 

Figure 3.  Mean time to develop (± SE) from egg to adult as a function of temperature for each of three Bemisia 
tabaci SSA isofemale lines originally collected in Uganda in 2013 or 2016. Taxonomy follows Legg et al.28.
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all four SSA taxa were capable of completing development. The development time did increase dramatically after 
35 °C, especially for B. tabaci SSA2. Bemisia tabaci SSA1-SG1 and B. tabaci SSA1-SG2 each had similar, and 
relatively short, development times across all the temperatures assessed. The soil moisture response parameters 
mostly reflect the niche requirements for crop hosts, with a wet stress consideration in relation to the sensitivity 
of B. tabaci to  rainfall82. We can therefore feel confident in using the previously developed CLIMEX model to 
adequately simulate climate suitability for the SSA taxa.

Globally, the potential distribution for B. tabaci MEAM1 extends throughout the tropics, sub-tropics, and 
warm temperate climates, with marginal suitability in the Mediterranean region (Fig. 1). Location records in 
temperate locations highlight its potential for recurrent invasion from glasshouses, which allow overwinter-
ing. The climate suitability for B. tabaci MEAM1 in eastern Africa modelled using long-term average climate 
is quite high in the north west (Uganda) and South-East (coastal Tanzania) of the study area, with a moderate 
depression in Central Tanzania (Fig. 2)64. The modelled climate suitability for B. tabaci MEAM1 accords with 
the distribution records for all of the sub-Saharan African species  (sensu45) within the B. tabaci species complex 
reported in Legg et al.28.

Field Abundance of Bemisia tabaci and modelled climate suitability Uganda 2004–2017. The 
relationship between observed field abundance of B. tabaci in  Uganda71 and modelled climate suitability for 
B. tabaci  MEAM164 was statistically consistent throughout the 13 years of surveys, with the variation in slope 
between years appearing random, with 2009 a standout (Fig. 4).

Probability of presence of Bemisia tabaci in East Africa 2015–2016. The field abundance patterns 
(probability of presence of B. tabaci on a cassava plant) displays a sigmoid pattern with respect to modelled EI 
at each site (Fig. 5). There were pronounced differences in prevalence of B. tabaci SSA adults between sites at 
moderate EI values, perhaps reflecting non-climatic influences on population abundance of B. tabaci such as 
crop type, age of the cassava, crop types used across each landscape, natural enemies, competition with other 
herbivores, and insecticide use.

Time series. There is considerable spatio-temporal variation in the modelled climate suitability for B. tabaci 
MEAM1 in eastern Africa at the inter-annual scale (Supplementary Figs. S2, S3). Despite this variability, there 
has been a significant trend in climate suitability throughout much of Eastern Africa during the 39 years from 
1979 to 2017 (Fig. 6). For each cell there were 38 degrees of freedom. Throughout this period, there has been a 
slight decrease in climate suitability for B. tabaci in lower-lying coastal regions (Fig. 6a), though apart from an 
area in Mozambique, only a few isolated areas appear to have experienced a statistically significant decrease in 
suitability (Fig. 6c). Conversely, there has been an increase in suitability throughout a large portion of the area, 
which is most pronounced in the Democratic Republic of the Congo, Uganda, Rwanda, Burundi, and western 
parts of Tanzania and Kenya (Fig. 6a,b). These trends are apparent in both the EI and the  GIA results against a 
backdrop of interannual variation (Fig. 7a,b). Exploring the temporal data in more detail for selected locations 
reveals that most of the increase in suitability is due to increasing temperature suitability (Fig. 7c) and decreases 
in the EI are due to decreasing soil moisture suitability and drought stress (Fig. 7d). At Luweero and Mwanza, 
in the centre of the cassava disease epidemic zone, climatic conditions for both temperature and soil moisture 
improved through this period. 

Discussion
Both the field and laboratory studies support the application of the CLIMEX model originally fitted to develop-
ment data and field distribution records for B. tabaci MEAM1 to examine the historical change in climate suit-
ability for the B. tabaci SSA species. This lack of variation in the fitted model parameters between the different 
B. tabaci species is perhaps not so surprising. Members of the complex are often found to have sympatric ranges. 
Bemisia tabaci MED and MEAM1 frequently  coexist64,83, and in East Africa the SSA taxa frequently co-occur43. 
It is likely that the non-climatic ecological factors such as host relations (e.g.,83) provide bases for niche differ-
entiation within the B. tabaci species complex.

The Ugandan time-series data shows both a statistically consistent relationship between B. tabaci abundance 
and modelled climate suitability (Fig. 5), and an increasing suitability trend across time. The apparent increasing 
climate suitability for SSA B. tabaci in parts of East and Central Africa across the 39 years of the study (includ-
ing the 13 years of the Ugandan dataset) accords with the reported increased prevalence of both B. tabaci33 and 
cassava diseases caused by viruses vectored by B. tabaci26,27. This sustained increase in climate suitability may 
help explain the increasing abundance of SSA B. tabaci27, in combination with increased use of cassava varieties 
that support B. tabaci species, and changes to cropping systems that provide additional host plant  resources40. 
An increase in suitability across time was most obvious around the lake zone of Southern Uganda and Northern 
Tanzania, and west into Rwanda. This matches a more than five-fold increase in observed abundance of B. tabaci 
in this area between 1994 and  200933. In contrast, parts of Malawi have seen little change in the climate suitability 
during this historical time period. Some sites such as Lira in Northern Uganda and coastal Tanzania have seen a 
slight decrease in suitability for B. tabaci; between 1994 and 2009, Jeremiah, et al.33 observed a three-fold decrease 
in abundance at coastal Tanzanian sites, which accords with the model results for Mbawala and Bagmoyo (Fig. 7).

In order to attribute these observed changes to anthropogenic climate change, the observed changes need to 
satisfy the following conditions:
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…unlikely to be entirely due to internal variability; consistent with the estimated responses to the given com-
bination of anthropogenic and natural forcing; and not consistent with alternative, physically plausible expla-
nations of recent climate change that exclude important elements of the given combination of forcings.”84:700.

As observed in Rosenzweig et al.18, attributing climatic changes to natural systems requires special treatment 
through ‘joint attribution’. It seems clear that the recent reports of increased abundance of whiteflies and cassava 

Figure 4.  Observed median field abundance of adult Bemisia tabaci (species not determined) presence on a 
cassava  plant71 as a function of modelled CLIMEX Ecoclimatic Index (EI) for Bemisia tabaci  MEAM164. Black 
line represents slope fitted across all years and blue line represents slope fitted to individual years’ data.
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diseases are not due simply to natural variation (internal variability). Cassava has been grown in the region for a 
long time prior to the recent reports of disease pandemics, and there have been a range of native whiteflies present 
in the  region43. By using the CLIMEX model of B. tabaci  MEAM164, we have satisfied the second and third criteria 
for climate change attribution. The CLIMEX model was fitted using long-term average historical climate data and 
experimental data on MEAM1 response to climate variables (cross-checked with SSA responses), thus satisfying 
the plausibility criterion. When we applied the time-series climate data (natural forcing), the resulting pattern of 
statistically significant changes in climate suitability matched the observed patterns of changes in whitefly abun-
dance and cassava disease. The trend was clearly sustained throughout the 39 years of the study, and was apparent 
despite the substantial inter-annual variability in climate suitability; further supporting the notion that it was 
not due to internal variability in the system, nor due to shorter-term variability in climate (e.g. inter-decadal)15. 
The null hypothesis for climate change is in-effect the baseline CLIMEX model for B. tabaci MEAM1, applied 
to the historical climate dataset centred on 1995. By drawing upon a process-oriented model such as CLIMEX 
in this manner, we are essentially utilizing a variant of the ‘end-to-end’ method of climate change  attribution18.

In attributing the B. tabaci abundance and cassava disease changes to climatic changes we also need to con-
sider other potential explanations and confounding effects. As observed by McQuaid et al.85, the movement of 
diseased cassava material can play an important role in the spread of a disease, especially over longer distances. 
However, the subsequent maintenance of an epidemic relies upon either a local cycling of the disease or constant 
re-introduction of diseased plant material. While farmers may spread diseased material locally, this is likely a 
small effect. Conversely, there is compelling evidence that B. tabaci plays a strong role in spreading the viruses 
within the landscape and maintaining  epidemics85,86, so we can be confident that while the spread of diseased 
cassava cuttings into the epidemic zones was a factor in the spread of the  disease71, the observed epidemic was 
most likely driven by B. tabaci dynamics and abundance.

The statistically significant trend of improving climate suitability for B. tabaci in the cassava disease pan-
demic area in East and Central Africa, centred mainly on Uganda appears to be mostly driven by increasing 
temperatures (Fig. 7c). At some sites at the centre of the recent cassava disease epidemics (e.g. Luweero, Uganda 
and Mwanza, Tanzania), decreasing rainfall also contributed to the increasing favourability for B. tabaci via the 
increase in the Moisture Index (Fig. 7d). This accords with the general perception of B. tabaci having a preference 
for hot, dry  conditions87, and references therein. The preference for dry conditions is at least partly due to the 
susceptibility of nymphs to being dislodged from leaves by raindrops, a fact that has led to overhead irrigation 
being used as a means of suppressing B. tabaci82,88.

Where there were trends toward decreased suitability (e.g., in sub-coastal Tanzania and northern Kenya, 
Fig. 6a,c) the decreases also appear to be associated with decreasing rainfall. However, these predominantly 
rangeland areas were already poorly suited for cropping due to inadequate rainfall and became even drier and less 
suitable for B. tabaci during the period of this study. In East Africa, the trends in increasing climatic suitability 

Figure 5.  Probability of adult Bemisia tabaci (species not determined) presence on a cassava plant as a function 
of CLIMEX Ecoclimatic Index (EI) for Bemisia tabaci MEAM1.
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Figure 6.  East and Central Africa showing changing climate suitability between 1979 and 2012 for Bemisia 
tabaci MEAM1 modelled using  CLIMEX53,64 running the CRU time series climatic  dataset77. (A) average change 
in Ecoclimatic Index, and the probability of significance of Student’s t statistic for a regression of the time-series 
within each cell of the average change in Ecoclimatic Index for (B) positive trend, and (C) for negative trend. 
Maps produced using ArcMap 10.6 (ESRI, Redlands, Ca., esri.com).
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for B. tabaci appear to be correlated with the increase in reported prevalence of SSA B. tabaci species and the 
rapid spread of B. tabaci-transmitted cassava  diseases26,28,30. This result perhaps provides the first evidence for 
predicted effects of climate change contributing to the emergence of infectious plant  diseases89,90 vectored by an 

Figure 6.  (continued)
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Figure 7.  Time-series of annual climate suitability for Bemisia tabaci MEAM1 between 1989 and 2011 for 
selected locations in East Africa modelled using  CLIMEX53,64 running the CRU time series dataset  Mitchell77. 
(A) Ecoclimatic Index (EI), (B) Annual Growth Index  (GIA), (C) Temperature Index (TI) and (D) Moisture 
Index (MI). The locations were selected to span a range of climatic trends spanning the three focal countries for 
the study (Uganda, Tanzania and Malawi). Locations are identified in Fig. 6.
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 arthropod91,92. This result then begs the question of how to use climate change scenarios to assess the potential 
extent of these viral epidemics, though this is beyond the scope of the present study.

Figure 7.  (continued)
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Given the apparent increasing climate suitability trend for B. tabaci in parts of East and Southern Africa, we 
might expect that there could be more generations of B. tabaci and greater survival rates, and hence abundance. 
African Cassava Mosaic Virus (ACMV) prevalence is related to the density of  whiteflies93, so we might reasonably 
expect that the increasing climatic suitability for B. tabaci could translate into greater disease prevalence. While 
Jeremiah et al.33 did not find a positive correlation between B. tabaci abundance and incidence of Cassava Brown 
Streak Disease (CBSD), based on epidemiological theory we might also expect that increasing B. tabaci density 
would have a proportionally greater effect on the levels of cassava diseases with relatively poor transmission 
rates (e.g. CBSD) compared with those with high transmission rates (e.g. CMD or ACMV) because the latter 
would saturate at lower density levels of B. tabaci. Logically, because transmission rates are observed on a per-
insect basis, higher insect density results in higher plant infection rates, up to the point where the availability of 
uninfected hosts becomes limiting.

The sustained trend in climatic suitability for B. tabaci in parts of East and Central Africa suggests that a 
similarly sustained effort will be required to develop and maintain cassava varieties that are resistant to current 
and emerging strains of cassava diseases. Otherwise, the contribution of cassava production toward African and 
global food security will likely be compromised. Clearly, such plant breeding initiatives need to be paralleled 
with efforts to control B. tabaci using biological and cultural control methods. Methods such as those employed 
by Pardey et al.94 to estimate the economically appropriate amount to invest in perpetuity in developing and 
maintaining resistance to wheat stem rust (Puccinia graminis) might be applied to the protection of cassava 
production from arboviruses. Instead of framing this problem as a battle to be won—a project with a start and 
end date—it can be framed as a perpetual investment stream to develop cassava varieties that are resistant to the 
contemporary challenges from the evolving patho-system.

The newly available Compare Locations/Years tool in CLIMEX Version 4, coupled with gridded time series 
climatic data allowed us to explore the effects of climate variability on this important agricultural pest system. It 
enabled us to look not only at the resultant trends, but also to identify which components of climate were driving 
these trends. Linking climate dynamics to a process-oriented niche model is potentially an important mechanism 
for exploring trends in global change biology. The process-oriented nature of CLIMEX, combined with time 
series climatic data, lends it to serving a useful role in climate change attribution in many biological systems.

Our modelling identified that East and Southern Africa includes areas that are highly climatically suitable for 
B. tabaci SSA species, and that this suitability has been increasing for many years in certain regions, highlighting 
an additional potential biosecurity and food security threat for the region. At present, the native B. tabaci SSA 
species already pose a significant threat to cassava production, and there are other related whitefly species also 
present in cassava fields. The role that native African whitefly species play in terms of transmission of a large 
diversity of cassava viruses is sometimes unclear. Africa’s notoriously porous land  borders95,96 make it difficult 
to control the spread of invasive species and emerging infectious diseases. West African cassava production is 
greater than that in East Africa. If Cassava brown streak virus disease or Ugandan cassava brown streak virus 
were to be introduced to West Africa, for example via the movement of infected cassava cuttings, the threat to 
cassava production there could be even greater than that observed in East Africa if a suitable whitefly vector is 
either already present, or invades that area. Clarifying the ability of West African whiteflies to transmit CBSV and 
UCBSV, may help define a range of strategies to manage these disease risks to cassava production in this region.
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