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COVID‑19 cycles and rapidly 
evaluating lockdown strategies 
using spectral analysis
Guy P. Nason

Spectral analysis characterises oscillatory time series behaviours such as cycles, but accurate 
estimation requires reasonable numbers of observations. At the time of writing, COVID‑19 time series 
for many countries are short: pre‑ and post‑lockdown series are shorter still. Accurate estimation of 
potentially interesting cycles seems beyond reach with such short series. We solve the problem of 
obtaining accurate estimates from short series by using recent Bayesian spectral fusion methods. 
We show that transformed daily COVID‑19 cases for many countries generally contain three cycles 
operating at wavelengths of around 2.7, 4.1 and 6.7 days (weekly) and that shorter wavelength cycles 
are suppressed after lockdown. The pre‑ and post‑lockdown differences suggest that the weekly 
effect is at least partly due to non‑epidemic factors. Unconstrained, new cases grow exponentially, 
but the internal cyclic structure causes periodic declines. This suggests that lockdown success might 
only be indicated by four or more daily falls. Spectral learning for epidemic time series contributes to 
the understanding of the epidemic process and can help evaluate interventions. Spectral fusion is a 
general technique that can fuse spectra recorded at different sampling rates, which can be applied to a 
wide range of time series from many disciplines.

During the UK Government COVID-19 briefing on 6th April 2020, the UK Deputy’s Chief Scientific adviser, 
Professor Angela McLean,  said1 “We need a good long time series of data on all stages of infection in order 
to be able to tell what the impact of measures that came in on March 23 will be”. The measures that Professor 
McLean referred to were the widespread UK social distancing and lockdown interventions made in the face of 
the COVID-19 threat. At the time of writing, few countries have experienced in excess of 70 days of COVID-19 
cases and most only have around 50 days. Professor McLean is correct in that many scientific inferences require 
longer time series than those currently available. However, we show that there are considerable and useful simi-
larities in the underlying cyclic (spectral) behaviours of the numbers of new daily COVID-19 cases for a range of 
different countries (see "Appendix" figures). We use recent Bayesian spectral fusion  methods2 (regspec) to pool 
spectral information across countries, which provides significantly more accurate estimates of cyclic behaviour 
than provided by a typical spectral analysis of a single country alone. The Bayesian principles underlying our 
fusion method mean that uncertainty is treated coherently, producing rational uncertainy assessment for our 
cycle (spectral) estimates. Our methods produce cycle estimates using the equivalent of over nine hundred daily 
observations, compared to the fifty or so that a typical standard spectral analysis might use. Using  data3 from 
all of the countries we considered, our results show that transformed new daily COVID-19 cases have three 
underlying cycles: one operating at a wavelength of 2.7 days, a second at 4.1 days and a third at 6.7 days, which 
we take to be a weekly effect. We conducted separate analyses for the UK and groups of countries with similar 
spectra and note some variation in those cycles.

For some purposes it is not reasonable to compare or pool the number of new daily cases from one country 
to  another4. For example, different countries might use different definitions of the number of daily cases and 
they record cases through different national structures and this is even the case for countries with political, 
geographical or cultural similarities. However, as long as the method of recording cases is broadly unchanged 
over the period in question for a particular country, the spectral properties across countries are comparable. The 
transformed cases’ spectrum quantifies the internal oscillatory structure within the series and, in terms of peak/
trough identification, is largely unaffected by the overall level of cases, the different start times of epidemics in 
different countries (phase) and country-specific internal delays due to reporting requirements (also phase). In 
addition, the demonstration of the presence three consistent cycles across all countries, with some variation, 
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provides supporting evidence for the suitability of the transformed new daily cases as a target of analysis, and 
comparisons between and across countries.

Another topic of great current interest is to ascertain whether and how a lockdown will influence the number 
of new daily COVID-19 cases. We consider this question for the group consisting of the UK, Italy, France, Ger-
many, Spain, Switzerland, Belgium and the Netherlands. The number of days (with cases) before lockdown is, on 
average, 24.7 for this group of countries, and, after lockdown, is 23 (except the UK, which started its lockdown 
later). The averages just quoted allow for a five day incubation period. Our analysis compares the spectral proper-
ties before and after lockdown. A spectrum based on about 25 days worth of data would provide a very poor and 
highly uncertain estimate. However, our spectral fusion  methods2 permit effective sample sizes for the group of 
211 days worth of data prior to the lockdown, and 175 after, resulting in highly accurate spectral estimates for 
these periods. We learn that, after lockdown, the weekly cycle remains strong, but the shorter wavelength cycles 
become suppressed. This indicates that the weekly cycle is due, at least in part, to administrative recording effects, 
which are not effected by the lockdown.

The discovery of how the shorter wavelength cycles are disrupted by full lockdown suggests that they could be 
monitored during partial lockdowns. For example, if schools are reopened and the shorter wavelength cycles do 
not reappear, then this might indicate the effectiveness of that strategy. Given the similarity of the cycles across 
countries, this indicates that cases could be monitored and pooled across regions, over a short number of days 
to be fused into longer effective samples using the methods described here.

A considerably difficult problem is that of forecasting transformed new daily COVID-19 cases. Such informa-
tion would be of great interest, e.g., to those planning health provision over a short timescale. Knowledge of the 
cycles is helpful, but we have had varying success in forecasting daily cases. However, with individual country 
series, with smaller number of days, it is unrealistic to expect too much and, in particular, the transformed cycles 
experience both a degree of time-modulation and possible frequency changes. More useful perhaps, are not 
daily forecasts, but the knowledge that the number of cases tend to increase and decrease over a period of three/
four days. This means that if one observes a decrease in the number of daily COVID-19 cases after lockdown, 
that does not necessarily mean the peak has been reached, but is simply a manifestation of the 3/4 day cycles. 
Hence, one might believe a lockdown strategy has been successful after a sustained decrease of at least four days.

Spectral  analysis5,6 of epidemics is not new, but most work has been carried out on epidemics observed over 
long time periods (seasons and years) using lengthy time  series7–9. Recent  work10 on COVID-19 has applied 
popular autoregressive integrated moving average  process5,11models to a single prevalence time series with a 
sample size of n = 22 . However, conclusions derived from such analyses on a single series with such small sam-
ple  sizes12 are questionable. For example, an autoregressive process of order one with parameter 0.9, normally 
considered to be a strong signal, is only distinguishable from white  noise13 approximately 20% of the time with 
sample size of n = 22 ; basic simulation studies show the large number of possible different models that can fit 
such short series apparently well. This indicates that it is virtually impossible to tie down the correct model 
with such a small sample size. Phenomenological sub-epidemic  models4,14 show more promise and have been 
applied with some success to short-term forecasting of COVID-19 cases in Guangdong and Zhejiang, China. 
These improve performance by using bootstrap methods on short case time series, but are still ultimately based 
on a parametric model of single series. Our work is very different as it provides exceptionally accurate spectral 
estimates for a novel live epidemic that is still in its early days on short series, but reliably so by using recent 
Bayesian spectral fusion  techniques2.The nonparametric nature of our analysis also permits us to split case time 
series at a boundary (e.g. lockdown or other intervention) and analyse the two halves separately, still with very 
short series in each. This is perhaps harder to do with classical parametric models and to maintain consistency 
between the two halves. On the other hand, our method relies on good quality case series from different regions, 
which are not always available for all epidemics.

Results
Transformed series, the UK spectrum and fusing the world and Europe. We transformed the 
number of new daily COVID-19 cases by applying a signed log transform to the first differences of the new case 
time series (see Methods). The transformed number of new daily cases for 16 countries are shown in Fig. 1 each 
showing a distorted noisy, but characteristic sinusoidal trace.

The estimated log-spectrum for the UK transformed new daily cases is shown in Fig. 2 and for all other 
countries we considered in the "Appendix" figures. Spectral estimates are commonly displayed on a logarithmic 
 scale15. Spectral peaks can be observed in Fig. 2 at wavelengths of 6.7, 3.2 and 2.3 days, respectively. Although 
the peaks are visible, the credible intervals indicate that there is a fairly large degree of uncertainty, because this 
time series contains 52 observations. A frequentist analysis, e.g. using the spectrum function in  R15, produces 
a similar result, but with even wider confidence bands.

Similar spectral analyses for each country indicate three similar spectral peaks, although not always as well-
defined nor in precisely the same location.

Figure 3 shows an estimate that is the result of coherently fusing spectra from 18 countries, giving an an 
effective sample size of 916 days. Here, the clear spectral peaks have narrow credible intervals, due to the large 
effective number of days afforded by using 18 countries together. The spectral peaks are located at wavelengths of 
6.7, 4.1 and 2.7 days. The peak around 6.7 days is observed in the spectral plots for individual countries and we 
interpret it to be a weekly effect. Such a weekly effect could be produced by reporting artefacts (e.g. paperwork 
being delayed until Monday, or carried out differently at the weekend) or due to the behaviour differences of 
people at weekends. All countries analysed have a 5+2 working week/weekend pattern, although not necessarily 
the same days of the week (the particular specific weekend days amount to a phase effect, which does not affect 
the spectrum).
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Clustering spectra and groups of countries with similar spectra. We next clustered our 18 coun-
tries based on their spectrum, by calculating a dissimilarity between the spectra for each pair of countries, and 
then performing both a hierarchical cluster analysis and multidimensional scaling on the dissimilarity matrix. 
The scaling solution indicated that only two dimensions were required to encapsulate 72% of variation in the 
data. Figure 4 shows the resultant two-dimensional solution.

Attaching a precise meaning to the scaling axes in Fig. 4 is not easy in that the origin and orientation of the 
presented configuration is arbitrary in this  method17. What counts is the relative position of the countries to each 
other, which are arranged according to the spectral distance between each pair of countries, which is in units 
equivalent to the (local) log-variance of the series. We speculate that Axis 1 might indicate how badly a country 
has been perceived to have been affected by the virus with Australia, New Zealand and Sweden less so and those 
on the left of the plot considerably more so. However, Germany is the obvious anomaly to this interpretation as, 
currently, it has perhaps been perceived to have handled the crisis well so far.

Figure 5 shows the spectral estimates for each of the three groups of countries identified in Fig. 4, using the 
clustering techniques described in Methods.

The peak frequencies for each of these groups is listed in Table 1, which shows differences between them. 
However, each group possesses a possible weekly peak and higher-frequency peaks labelled a., of around three 
to four days, and b., around 2.6 days. The Group 3 fused spectrum looks qualitatively quite different to Groups 1 
and 2 in that Group 3 does not appear to have any strong seven day cycle, the shorter wavelength peaks are flatter 
and most power appears around the highest frequencies.
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Figure 1.  Number of daily cases on transformed scale for 16 countries. Left-to-right, top-to-bottom: UK, IT; 
FR, DE; ES, CH; BE, NL; AT, NO; US+CN; IR+CA; KR+AU. First country of pair in black, second is red.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22134  | https://doi.org/10.1038/s41598-020-79092-6

www.nature.com/scientificreports/

Spectral changes after lockdown. Many countries experiencing the COVID-19 pandemic instituted a 
range of lockdown measures to dramatically reduce virus spread. At the time of writing, these countries have 
observed new daily COVID-19 cases for between 43 and 54 days. We assume that, on average, it takes about 
five days for the virus to incubate. Table 2 shows the start and end date for each time series used in the pre- and 
post-lockdown spectral estimates to follow. It also shows the date we used for transition between pre- and post-
lockdown periods and the total number of observations in the case series along with the numbers before and 
after the transition date.

A precise, single, lockdown date is not easy to discern for every country. For the UK it is generally assumed 
that the virus was spreading more or less evenly across the country and the whole country was instructed to lock-
down on one date by the Prime Minister in televised announcement on 23rd March. Hence, adding on the five 
days assumed incubation period gives us the transition date of 28th March as shown in Table 2. For other coun-
tries, e.g. Switzerland, lockdown was a more prolonged process, restricting different activities in the country over 
a series of days. As another example, Italy enacted regional lockdowns before enacting more stringent national 
restrictions. We chose the transition dates in Table 2 by reference to the various lockdown actions reported in 
each  country18 and by examining the percentage change in retail and recreation activity from the Google Mobility 
Reports for each  country19. The Mobility Reports show that activity for all countries started to decline in advance 
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Figure 2.  Bayesian log-spectral estimate of transformed UK new daily COVID-19 cases with 50% (dark blue 
shaded region) and 90% (light blue shaded region) credible intervals.
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Figure 3.  Bayesian log-spectral estimate of fusion of new daily COVID-19 cases for 18 countries with 50% 
(dark blue) and 90% (light blue) credible intervals. Countries included are the UK, Italy, France, Germany, 
Spain, Switzerland, Belgium, the Netherlands, Austria, Norway, the USA, China, Iran, Canada, South Korea, 
Australia, New Zealand and Sweden.
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of the official lockdown date (where a single date could be identified) and continued afterwards. Hence, we 
select a ‘lockdown’ date that is roughly halfway during the main period of decline, consistently for each country

The number of days before and after the lockdown are, in each case, too small to carry out anything other 
than the most simplistic time series to maintain statistical reliability for individual countries. In particular, a 
spectral estimate in this situation would be subject to a high degree of uncertainty. However, Fig. 6 shows our 
coherently fused spectral  estimates2 across these countries before and after the lockdown period, making use of 
211 effective days prior to lockdown and 175 days afterwards.
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Figure 4.  Multidimensional scaling solution of dissimilarity matrix generated by Euclidean distances calculated 
between two spectral estimates for each pair of countries. Countries’ position denoted by their two character 
ISO 3166-1 standard abbreviation. The ellipses group together countries that are clustered using the robust 
cluster stability  method16. AT = Austria, AU = Australia, BE = Belgium, CA = Canada, CH = Switzerland, CN = 
China, DE = Germany, ES = Spain, FR = France, GB = United Kingdom, IR = Iran, IT = Italy, KR = South Korea, 
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Figure 5.  Bayesian log-spectral estimates and 50% and 90% credible intervals for (a) Group 1 countries: Spain, 
France, Italy, the US, the UK and Iran. Effective number of days=357; (b) Group 2 countries: Switzerland, 
Canada, Belgium and China. Effective number of days=229; (c) Group 3 countries: Norway, Australia and South 
Korea. Effective number of days = 157.

Table 1.  Spectral peaks for the three country groups in units of days. The peaks in the second and third rows 
have been arbitrarily labelled as peak (a) and (b). The peak values have been taken by manual location and, of 
course, are subject to error.

Peak Group 1 Group 2 Group 3

Weekly 6.48 7.27 6.59

a. 3.31 4.30 4.09

b. 2.52 2.77 2.70
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The weekly peak is clearly visible in both estimates. There are pre-lockdown peaks at wavelengths of 4.42, 
3.14 and 2.17 days. After lockdown all of these peaks are suppressed relative to the rest of the spectrum and, 
indeed, the first two have turned into troughs. This result is particularly interesting as it suggests that the non-
weekly peaks have been severely disrupted by the lockdown. The weekly effect seems relatively unchanged by the 
lockdown, indicating that it was driven by non-epidemic effects, such as recording/paperwork or bureaucracy 
caused by weekends.

The post-lockdown spectrum is higher overall than the pre-lockdown spectrum, this is due to the larger 
variation associated with the larger number of cases identified during the progress of the epidemic. Our trans-
formation suppresses this variation, but does not remove it entirely.

There is considerable uncertainty around the value of the incubation period for COVID-19. The current 
consensus appears to be around five  days20, which Fig. 6 uses. Recent literature reports a range of incubation 
periods such as a medians of four days (interquartile range of two to seven)21, of 5.1 days (with 95% confidence 
interval of 4.5 to 5.8 days)22 or of 6.06 days (with 95% confidence interval of 5.84 to 6.29 days)23. So we repeated 
the analysis that led to Fig. 6 and a broadly similar picture emerges if we change the incubation period to three, 
four, seven, eight and nine days, but is inconclusive for six days.

Discussion
Early on within an epidemic various characteristic time series (cases, deaths, hospitalizations) tend to be short 
and it is unreasonable to expect them to provide accurate information on quantities of interest, such as flexible 
trend and stochastic structure such as autocovariance and spectral quantities. When examining the effect of 
pre- and post-interventions, the length of the component series can be shorter still. Our work uniquely provides 
a way for coherently fusing spectral information using a Bayesian method to provide accurate spectral estimates 
that can provide information such as cycles of varying wavelength as exemplified here. Such cycle knowledge 

Table 2.  Start and end dates and number of observations of cases time series. The transition date used, 
including incubation time of five days, and the number of observations used in the ‘pre’ and ‘post’ lockdown 
period.

Country

Time series dates Number Obs.

Start ‘Transition’ End Total Before After

United Kingdom 22 Feb 28 Mar 13 Apr 52 38 14

Italy 20 Feb 14 Mar 13 Apr 52 24 28

France 24 Feb 18 Mar 12 Apr 49 26 23

Germany 24 Feb 22 Mar 12 Apr 49 30 19

Spain 24 Feb 16 Mar 12 Apr 49 24 25

Switzerland 26 Feb 18 Mar 12 Apr 47 24 23

Belgium 1 Mar 19 Mar 12 Apr 43 21 22

Netherlands 28 Feb 20 Mar 12 Apr 45 24 21

Total 386 211 175
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Figure 6.  Pre-lockdown Bayesian log-spectral estimate (red solid line) and 90% credible interval (red dashed 
lines). Post-lockdown log-spectral estimate (blue solid line) and 50% and 90% credible intervals. Green vertical 
dashed lines from left to right indicate wavelengths of 6.74 (weekly), 4.42, 3.14, and 2.17 days.
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provides useful information such as that to explain sudden drops in numbers of (e.g.) cases, which are observed 
early on by experts and the media alike as evidence for epidemic control, but really were just manifestations of 
the intrinsic cycle. Knowledge of cycles also indicates the approximate length of time that cases (e.g.) need to be 
observed before genuine rises or falls can be believed.

The analysis above reveals strong weekly cycles (at wavelengths just short of seven days) and other cycles typi-
cally operating around 2.7 and 4.1 days. Other individual countries and mixtures of countries in fused estimates 
do occasionally give rise to other cycles or cycles with wavelengths slightly shifted from those quoted, but the 
approximate agreement across several countries is remarkable. Such similarities provide justification for the spec-
tral fusion method itself, but also the claim that epidemic response in countries with different measuring criteria 
and systems can be compared in terms of spectral quantities. This is because a spectral quantity is a relatively 
defined quantity and assessing the frequency behaviour of a time series, irrespective of the measurement units or 
system used. Hence, it then is possible to group countries using cluster analysis applied to the spectral estimates 
as discussed above where Spain, France, Italy, the USA, the UK, Germany and Iran formed a single group (Group 
1), Switzerland, Canada, China and Belgium formed Group 2, Norway, Australia and South Korea formed Group 
3, Austria and the Netherlands and, separately, New Zealand and Sweden formed a final group (although the 
latter two are probably better understood as not being particularly similar, but just not members of Groups 1–3.

We analysed numbers of deaths using similar methods described here and found similar cycles. Although 
we have not carried out a detailed analysis, if the number of deaths process can be approximated by a linear 
 system5,11 with the numbers of cases as input, then similar cycles are to be expected.

A time series with a fixed sampling rate and length has a minimum and maximum (Nyquist) frequency range 
that can be  observed5,11. Although our spectral fusion  methods2 provide more accurate estimates of the spec-
trum in that range (equivalent to having a larger sample size), they can not provide information on frequencies 
outside of it. To estimate lower frequencies, we would need a genuinely longer series and, for higher frequen-
cies, we would require cases more frequently than once a day, which do not seem to be routinely collected by 
official bodies. However, if a country decided to release case numbers on some other sampling plan (e.g. every 
two days, or weekly) then regspec would be able to fuse the spectral estimates. Such a feature might be of use 
when dealing with reporting structures that are not equipped to provide daily reporting of cases or where weekly 
cases are thought to be more accurate. For example, this might apply to regions with fragile health or reporting 
systems or populations that are spread across widely dispersed geographical regions with poor communications.

Our analyses assume approximate stationarity and linearity for the transformed series, which is unlikely to 
be exactly true in practice. For example, in the UK transformed case series, there are hints of the series oscilla-
tion speeding up over the last ten days. Practically speaking, changes in the testing regime, recording practices, 
the lockdowns or other interventions will change the dynamics of either the pandemic itself or recording of it. 
Ideally, it would be of interest to use methods for non-stationary time  series24,25, but the current series available 
to us are far too short for such analyses.

We also attempted some short-term forecasting of the COVID cases and deaths series with our short time 
series and results were not particularly good. We used autoregressive moving average (ARMA)11 models and 
direct least-squares fitting of linear combinations of sinusoids and, as is often the case with time series, especially 
short ones, the model fit was acceptable, but forecast results were very poor. For these short time series it is prob-
ably the case that multiple models in the rich ARMA class (for example) fit well, but are not really reflective of 
the true nature of the time series. For some time series models it can be that hundreds of observations need to be 
collected before a unique correct model can be reliably  ascertained13. Secondly, it seems likely that these series 
will not be stationary (in first or second order), but they might be locally or piecewise stationary, so forecasting 
methods might only work well for some stable periods.

The spectral peaks are not always well-defined, nor precisely in the same location and, indeed, occasionally 
more than three peaks appear, such as in the pre-lockdown estimate shown in Fig. 6. The Bayesian credible 
intervals in our figures permit us to coherently quantify our uncertainty around these peaks. As well as the 
clear weekly signal, the repeated appearance of similar wavelengths in multiple plots for multiple regions lends 
credibility to their actuality. From Table 1 it should be noticed that the ratio 6.48/3.31 ≈ 1.96 ≈ 2 exactly, so the 
(a.) peak might be a harmonic of the weekly signal. However, the (b.) peak does not appear to be a harmonic.

A further intriguing possibility would be to examine the spectra of short series arising from regions within a 
country. Some countries do possess a regional reporting system that adheres to a robust national data standard, 
for example Brazil or the USA. In this case, the spectral fusion might be even more useful for short series as, 
presumably, there will be fewer extraneous factors that distort spectra on a regional basis.

Table 3.  Start date and number of observations of cases time series.

Country Start No. Days Country Start No. Days

Austria 24th Feb 40 New Zealand 14th Mar 26

Australia 19th Feb 52 Norway 26th Feb 45

Canada 24th Feb 49 South Korea 17th Feb 54

China 17th Jan 87 Sweden 26th Feb 47

Iran 18th Feb 53 USA 20th Feb 51
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Figure 7.  Regspec spectral estimates for numbers of new daily COVID-19 cases. Top-to-bottom, left-to-right: 
United Kingdom on 52 days, Italy on 54 days, France on 49 days, Germany on 49 days, Spain on 49 days, 
Switzerland on 47 days.
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China on 87 days.
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Figure 9.  Regspec spectral estimates for numbers of new daily COVID-19 cases. Top-to-bottom, left-to-right: 
Iran on 55 days, Canada on 49 days, South Korea on 56 days, Australia on 54 days, the New Zealand on 28 days, 
Sweden on 47 days.
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Methods
All computations were executed in  R15 and packages that are mentioned specifically below.

COVID‑19 new daily cases transformation. Let Yt , for t = 1, . . . , nc represent the number of new 
daily cases for nc days for country c. The spectral dynamics of the number of daily cases for different countries 
are all countries masked by the well-known and characteristic exponential increases (and decrease, for those 
countries that locked down and have now passed their peak). Hence, we transform our number of daily cases 
series to reveal the spectral dynamics. After exploratory data  analysis11 the following transform was used for all 
series Lt = sgn(Dt) log(|Dt |) , where the sign function sgn(x) is +1 , if x is positive or −1 , if x is negative, and 
Dt = Yt − Yt−1 for t = 2, . . . , nc . The transform is easily inverted (if Y1 is retained).

Bayesian spectral estimation and fusion: Regspec. We use the  regspec2,26 Bayesian spectral estima-
tion method with a neutral white noise prior with prior variance of 1 and all default arguments, except for a 
smoothing parameter of 0.7, although the results are not sensitive to the latter. Regspec straightforwardly enables 
the production of spectral estimates using multiple data sets, with each having different lengths and produces 
coherent credible intervals to properly ascertain the uncertainty inherent in the estimation process. Regspec can 
also fuse spectra for multiple series recorded at different sampling rates, but we do not need to use this feature 
here as all our time series are recorded daily.

Clustering of spectra. Although the number of cases transformed time series show similar spectral behav-
iour they are not identical. However, it is possible to observe closer similarities within certain subgroups of coun-
tries. We used unsupervised clustering and scaling  techniques17,27 to depict the relationship between different 
countries and suggest a clustering for them. First, for each country we produced a spectral estimate using regspec 
as mentioned above, and then formed a dissimilarity for each pair of countries by computing the Euclidean dis-
tance between their log-spectral values (using the dist function in  R15). Classical multidimensional scaling was 
then used to produce an estimated two-dimensional configuration using the cmdscale function in  R15. For 
clustering we use hierarchical cluster analysis on the dissimilarity matrix. It is well-known that dendrograms are 
sensitive to the input dissimilarity matrix, so we used the clusterwise cluster stability assessment by resampling 
method to produce a stable  clustering16. We use the R hclust  algorithm28 and the ward.D2 agglomeration 
 method29,30.

Data availability
The number of daily COVID-19 cases for countries can be found at the website of the European Centre for 
Disease Prevention and  Control3.

Code availability
Full code to reproduce our methods and figures can be found in the zenodo archive with DOI is 10.5281/
zenodo.4081366.

Appendix
Extended Data Figs. 7, 8, 9 are displayed on the next pages. Start and end dates for series in the lockdown com-
parison was given in Table 2. For the remaining countries the end date was always 12th April and the length of 
series and start dates as shown in Table 3.
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